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Abstract

For nearly a century adaptive landscapes have provided overviews of the evolutionary process and yet they remain
metaphors. We redefine adaptive landscapes in terms of biological processes rather than descriptive phenomenology. We
focus on the underlying mechanisms that generate emergent properties such as epistasis, dominance, trade-offs and
adaptive peaks. We illustrate the utility of landscapes in predicting the course of adaptation and the distribution of
fitness effects. We abandon aged arguments concerning landscape ruggedness in favor of empirically determining land-
scape architecture. In so doing, we transform the landscape metaphor into a scientific framework within which causal
hypotheses can be tested.

Key words: adaptive landscape, genotype–phenotype gap, epistasis, genotype by environment interaction, distribu-
tion of fitness effects, pleiotropy.

Introduction
Ever since their inception, adaptive landscapes have proved
compelling metaphors in evolution. Fitness is depicted as
height with phenotypes or genotypes arrayed across a geo-
graphic grid. Less fit genotypes are replaced by fitter ones as
populations creep up slopes, ever onward and upward.
Adaptation is analogous to climbing a hill and stops only
when a summit is reached.

Adaptive landscapes were first introduced in the early
1930s by Ronald Fisher and Sewall Wright (Box 1). Fisher
(1930) conceived an abstract geometrical model to explain
why the inheritance of metrical traits is governed by many
alleles, each with a small statistically additive effect. Wright
(1932) suggested nonadditive interactions (epistasis) would
produce rugged landscapes. Each was the basis for a compet-
ing vision of the adaptive process. Together they provided a
framework for thinking about adaptation that would be fur-
ther developed and embellished over many decades
(Simpson 1944; Lande 1976; Kauffman and Levin 1987;
Gavrilets 2004). Today, the concept has found application
in protein engineering (Romero and Arnold 2009) and studies
of catalytic RNAs (e.g., Pressman et al. 2015).

At the time, little was known of biochemistry, molecular,
cell and systems biology. Fisher and Wright therefore framed
their landscapes in terms of what was known, and what was
known was genetics. They took additivity, dominance, epis-
tasis, and pleiotropy as the elements of their landscapes and
applied mathematics to predict evolutionary outcomes.

There are limitations to using phenomenological terms
like epistasis and pleiotropy as a basis for theory. A phenom-
enon might be illusory, just as the sky can be seen but not
touched. Seemingly independent phenomena may share a
common origin, just as waves and particles are the twinned

expressions of light. Changes in a phenomenon cannot be
predicted in the absence of causative mechanisms, just as
the bending of light in a gravitational field cannot be pre-
dicted by Newtonian mechanics. Like Newtonian mechanics,
population genetics is a theory of consequences, not of
causes. It can predict the kinetics of evolution across a land-
scape, but it cannot address the origins of the landscape’s
architecture.

The debate between Fisher and Wright over the origins of
dominance (Provine 1986), a key descriptor of landscape ar-
chitecture, is an exemplar of the futility of addressing causes
with a theory of consequences. Fisher (1928) argued that
dominance itself was an adaptation and invoked a special
class of genes, the modifiers of dominance, to explain its
evolution. Wright (1929, 1934) and Haldane (1930, 1939) ar-
gued that dominance arose as a passive consequence of se-
lection for physiological buffering. The same argument
continues today in remote corners (Billiard and Castric
2011; Huber et al. 2018) even though a compelling metabolic
theory of dominance was provided decades ago (Kacser and
Burns 1981).

That a molecular basis of dominance took decades to be
embraced by evolutionists epitomizes a schism entrenched in
academe, between studies of ultimate and proximate causes
(Mayr 1961; Tinbergen 1963). Evolutionary biologists focus on
ultimate causes (the “why?”), often using field studies and
framing results in a historical context. Many question the
relevance of results from laboratory studies on proximate
mechanisms (the “how”) to natural settings, believing that
functionalism merely adds detail, and possibly laboratory ar-
tifact, to the big picture painted by evolutionary biology
(Morange 2011).
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This attitude has perpetuated for decades the same tired
arguments of Fisher and Wright within the same tired intel-
lectual framework, one that owes little to progress elsewhere
in the life sciences. The causes of dominance were not found
in evolutionary theory as Fisher, Wright, and Haldane believed
(Fisher 1928; Wright 1929, 1934; Haldane 1930, 1939), but
rather in the proximate mechanisms of functional biology
(Kacser and Burns 1973, 1981). Dobzhansky (1964, 1973)
was wrong. Nothing in evolution makes sense except in the
light of biology.

We advocate using functional biology to study adaptive
landscapes. In the seven examples discussed (table 1), we
show that how knowledge of biochemistry and physiology
enriches and extends the current framework. These land-
scapes are presented in only as much detail as is essential

to understand their architecture. Epistasis, dominance, plei-
otropy, constraints, and genotype by environment interac-
tions are seen to emerge as natural consequences of
underlying proximate mechanisms. They are useful descrip-
tors of landscapes, but they lack causality. Our approach
replaces the current paradigm of interpreting observations
in light of heuristic theory with direct experimental tests of
causal mechanisms. Our framework provides a foundation for
novel prediction and discovery.

Landscape Basics
What do all adaptive landscapes have in common?
Genotypes, phenotypes, and fitnesses. A fourth element,
the environment, enters implicitly when translating geno-
types into phenotypes and phenotypes into fitnesses. The
relationships between these elements define a landscape
(fig. 1). Fisher’s (1930) geometrical model captures the idea
that the biology flows from genotype to phenotype (the in-
finitesimal model is his genotype–phenotype map) to fitness
(his geometrical model). Wright’s (1932) rugged landscape
omits phenotypes to focus on the genotype–fitness map in
the abstract.

Many attempts to investigate adaptive landscapes con-
found the landscape itself with the kinetics of the

Box 1.

Fisher’s (1930) Geometrical Model Consider two
metrical traits, x and y, graphed on a plane (right)
with their fitness optimum at the origin, O. Place a
population (green dot) on the circumference of a
circle, radius r, from the origin. Mutations inside the
circle are beneficial; those outside are deleterious.
Now draw two circles, centered on the population,
that differ in size to represent mutations of small
and large effect. Assume mutations are distributed
uniformly on the circles. A mutation of small effect
has an �50% chance of being beneficial (approxi-
mately half the circumference of the small circle lies
within r of the optimum). A mutation of large effect
has a lower probability of being beneficial (less than
half the circumference of the large circle lies within r
of the optimum). The difference is not very impres-
sive in two dimensions, but when expanded to many
traits on an n-dimensional hypersphere the likeli-
hood that a mutation of large effect is beneficial
diminishes rapidly (more dimensions differentially
increase the opportunities for deleterious effects).
This simple model—amended by Kimura (1983) and
then Orr (1998)—provides justification for the ob-
servation that metrical traits are governed mostly by
many alleles of small, statistically additive, effect.

Trait y 
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it x
 

O 

r 

Wright’s (1932) Lumpy Landscape Wright’s work on
guinea pig coat colors showed that mutations could

affect phenotypes in highly nonadditive ways. This sug-
gested to him that fitness might also be a rugged func-
tion of genotype. His difficulty was in visualizing the high
dimensionality of genotype space on a two dimensional
page. So he settled on a metaphor. A rugged landscape
(right) of adaptive peaks (þ) separated by maladaptive
valleys (�) with the axes representing heuristic orderings
of the numerous genotypes. He left the axes unlabeled—
there is no way to collapse an n-dimensional array of
genotypes onto two dimensions. Later Lewontin and
White (1960), analyzing chromosomal inversions in pop-
ulations of the grasshopper Moraba scurra, would rede-
fine Wright’s landscape as a plot of mean population
fitness against genotype frequencies.
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evolutionary process (commonly a result of conflating
Wright’s shifting balance hypothesis with the landscape
that underpins it). We follow the logic of Fisher and Wright
in keeping the two separated. The population genetic pro-
cesses of mutation, recombination, migration, mating, drift,
and selection are not part of the landscape—they determine
how populations move across the landscape—and we shall
not discuss them further.

Our focus is on static landscapes. We recognize that many
landscapes are dynamic. As evolving populations modify their
environments, for example, by consuming resources and pro-
ducing wastes, so the genotype–phenotype and phenotype–
fitness maps can change. The resulting ecoevolutionary feed-
backs not only generate frequency-dependent selective
effects (Lunzer et al. 2002; Pelletier et al. 2009) but can also
create new ecological niches (Rosenzweig et al.1994; Rainey
and Travisano 1998). We omit these fascinating topics to
focus on making the simplest adaptive landscapes manifest.

Seven Empirical Landscapes

TEM-1: A Genotype–Fitness Map
Resistance to the antibiotic cefotaxime is conferred by
five mutations in the plasmid-borne TEM-1 b-lactamase.
Weinreich et al. (2006) constructed all 25¼ 32 genotypes,
transformed them into Escherichia coli, and determined
the minimum inhibitory concentrations (MICs) needed
to prevent growth. The mutational network is character-
ized by the presence of both magnitude and sign epistasis
(Box 2) with only 18 of the 5! ¼ 120 possible pathways
leading to the single adaptive peak (fig. 2). These results
are generally held to confirm Wright’s concept of a rugged
adaptive landscape.

Wright’s vision was far more expansive than the small
network explored by Weinreich et al. In this broader context,
there might well be many adaptive peaks, or perhaps just the
same peak, or perhaps this one peak ceases to be a peak at all
as it folds into the shoulder of a still higher peak. The problem
is that sign epistasis is necessary but not sufficient to generate
isolated adaptive peaks (Crona et al. 2013). Four interacting
sites in Streptococcal protein G illustrate the difficulty (Wu
et al. 2016). Although reciprocal sign epistasis among muta-
tions at paired sites might seemingly trap protein G on aT
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FIG. 1. Three elements of an adaptive landscape: G, genotypes; P,
phenotypes; and W, fitnesses. A fourth element, the environment
(E, not shown), enters implicitly in transforming genotypes into phe-
notypes (the GP map) and phenotypes into fitnesses (the PW map).
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Box 2.

Epistasis is a deviation from additivity, the naı̈ve expectation that the phenotypic contribution made by a mutation (a, A)
should be independent of the genotype at a second site (b, B).Weinreich et al. (2005) define three types of epistasis
below: 1) magnitude, where the effect size differs according to background, 2) sign, where the direction of the effect
differs according to background, and 3) reciprocal sign, where the direction of the effects differ at both loci. Only
reciprocal sign epistasis produces multipeaked landscapes (Poelwijk et al. 2011). However, the converse is not true; the
presence of reciprocal sign epistasis does not guarantee multiple peaks exist (Crona et al. 2013). Identifying multiple
peaks in a local landscape is no guarantee that they also exist in the global landscape.
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Additive              Magnitude                Sign             Reciprocal Sign 
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Additivity on one phenotypic scale in the biological hierarchy need not imply additivity on other dependent
phenotypic scales. In the two state model of protein folding (below left), the fraction of protein folded (f) is a
sigmoidal function of DG, the difference in free energy between the folded and unfolded states (Privalov and
Khechinashvili 1974). Two mutations, A and B, each acting additively on the DG scale, and each having marginal
effects on protein stability, can together completely unfold a protein to obliterate all function. For example, (below
right) two replacements in the influenza nucleoprotein Aichi/1968, N334H and L259S, act additively on protein stability
and nonadditively at the levels of expression and activity (Gong et al. 2013).
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A perfect fit to data for two mutations (four genotypes) that lie on an arbitrary nonlinear curve (as in the two state
model) requires estimating a mean, two additive terms, and a pairwise epistatic (interaction) term. The more
mutations, the more terms are needed. For n mutations, 2n terms are needed to achieve a perfect fit: a mean, n
additive terms, and

Pn
i¼2 nCi epistatic terms. High-order epistatic terms necessarily exist yet may be too small to

estimate. In the unlikely event that we obtain a perfect fit, we still have learnt nothing biological. All we have is a
statistical partitioning of variability. Our perfectly fitted model provides no mechanistic understanding of biological
cause and effect.

Weinreich et al. (2013) suggest epistasis is a measure of our “surprise.” Yet nonlinearities in biology abound. In light of
this fact, we suggest that epistasis quantifies our “ignorance”—whereas our inability to detect the high-order terms
quantifies our “technical incompetence.”
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lower peak, escape to a higher peak is made possible through
the temporary acquisition of alternative amino acid replace-
ments at either site or at additional sites.

Absent causal theory one cannot make inferences beyond
data that merely associate each genotype with a fitness.
Wright’s landscapes are uninteresting by themselves because
they lack causal mechanisms and so provide few insights and
predictions.

Opsins: Bridging the Genotype–Phenotype Gap
That we are unable to predict from primary sequence, the
structure, stability, and functional properties of a single pro-
tein points to the yawning chasm that is the genotype–phe-
notype gap. The astronomical number of possible peptide
conformations, the difficulty in describing the kinetics of so
highly a cooperative process as protein folding (Levinthal
1969), and the need to embed a quantum mechanical de-
scription of catalysis within a dynamic active site (Swiderek
et al. 2014) suggest that a comprehensive theory bridging the
genotype–phenotype gap cannot be envisioned within the
foreseeable future.

Nevertheless, studies of visual pigments (a multigene fam-
ily of transmembrane proteins with covalently bound retinal
chromophores that transform light into vision) point to the
feasibility of bridging the gap (fig. 3A). Interactions that delo-
calize electrons into the 11-cis-retinal polyene p system and
b-ionone ring have the effect of localizing the positive charge
at the lysyl Schiff base. This stabilizes the 11-cis-retinal ground
state. With higher energy photons needed to trigger isomer-
ization, maximum absorbance (kmax) shifts toward shorter
wavelengths. Interactions that delocalize electrons from the
polyene p system toward the lysyl Schiff base allow lower-
energy photons to trigger isomerization and so kmax shifts in
the opposite direction, toward longer wavelengths. Amino
acid replacements produce kmax shifts by 1) modulating

the interaction between the protonated Schiff base and its
counter ion Glu113 (Sakmar et al. 1989; Zhukovsky and
Oprian 1989), 2) increasing the planarity of the polyene back-
bone through steric interactions with the protein, and/or 3)
using polar side chains to modify the dipolar environment of
the polyene and b-ionone ring (Ernst et al. 2014; Gozem et al.
2017).

Based on phylogenetic analysis and site directed mutation
experiments, Yokoyama and coworkers identified the amino
acid replacements that control spectral tuning in mammalian
medium/long wavelength sensitive (M/LWS) visual pigments
(Yokoyama and Radlwimmer 1998, 2001; Yokoyama 2008;
Yokoyama et al. 2008). They proposed and refined a “five
sites rule” to explain the 50-nm shift in maximum absorbance
from red (kmax ¼ 560 nm) to green (kmax ¼ 510–530 nm).
Identifying these sites enabled hybrid quantum mechanics/
molecular mechanics (QM/MM) calculations to explore the
chemical basis of spectral tuning (Altun et al. 2008a, 2008b,
2009; Sekharan et al. 2010, 2011, 2012, 2013). This led to a
broader “OH-site rule” that accounts for spectral shifts in the
visual pigments of species as diverse as monkeys and squid.
Inspired by Honig et al. (1976, 1979), Collette et al. (2018)
recently explored the role of electrostatics in spectral tuning
using a linearized Poisson–Boltzmann/quantum chemical
(PBQC) method. They further refined the “OH-site rule”
into a “dipole orientation rule” wherein both the position
and orientation of a hydroxyl (or other dipolar group inter-
acting with retinal) determine the direction and magnitude of
the shift in kmax.

The molecular basis of ultraviolet (UV) vision has also been
established (Tada et al. 2009). QM/MM calculations attribute
the shift in kmax from UV to violet in ancestral SWS1 fish
opsins to deleting amino acid Phe86. This mutation rear-
ranges the hydrogen bond network surrounding the retinal
(fig. 3C and D), stabilizing the protonated Schiff base over its

FIG. 2. (A). The genotype network of TEM-1 b-lactamase showing the 18 possible routes of ever increasing fitness (log10 MIC) from wildtype to the
cefotaxime resistant TEM*. The 16 genotypes accessible only by mutations that lower fitness are not shown. (B) An example of sign epistasis.
Replacement M182T enhances resistance only in the presence of replacement G238S. Evolution from M182, G238 to T182, S238 must proceed
counter clockwise through M182, S238.
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ancestral unprotonated form. Deleting Phe86 in an earlier
ancestor produces only a modest effect on kmax because, as
QM/MM calculations show, the retinal Schiff base in that
opsin remains unprotonated.

These hybrid quantum mechanical calculations are re-
markably accurate (fig. 3B), yet computationally intensive
and not generally practicable. Accurate homology models
of extant and ancestral proteins are needed, as is a detailed
understanding of the functional chemistry of each protein.
Nevertheless, phylogenetic reconstructions combined with
protein engineering and QM/MM calculations have bridged
the genotype–phenotype gap, revealing the molecular basis
of red-green and UV vision and the origins of intramolecular
epistasis in ancestral SWS1 fish opsins.

lac Operon: A Phenotype–Fitness Map
The lactose pathway of E. coli provides a precise mechanistic
biochemical model of Darwinian fitness in which the direc-
tion and intensity of natural selection can be predicted solely
from knowledge of enzyme kinetics (Dean 1989) (fig. 4A–C).
Fitness climbs onto a plateau as enzyme activity is increased
(fig. 4D). This relationship inevitably produces diminishing
returns epistasis; a small increase in the activity of an ineffi-
cient enzyme is strongly favored, whereas the same increase in
an efficient enzyme is selectively neutral. The flux–fitness pla-
teau represents a limit of adaptation where evolution pro-
ceeds in a neutral fashion (Hartl et al. 1985).

A second source of epistasis arises from interactions
among enzymes within a pathway. As an enzyme approaches
its flux–fitness plateau, it becomes less rate limiting, forcing
other steps in the pathway to become more rate limiting
(Kacser and Burns 1973, 1981). A once neutral 50% reduction
in b-galactosidase activity (fig. 4E) becomes mildly deleterious
in a background with increased porin activity (fig. 4F),
whereas a once mildly deleterious 50% reduction in permease
activity becomes strongly deleterious. Increased activity at

one step potentiates adaptation by exposing polymorphisms
at other steps to selection. The neutrality of an enzyme’s
polymorphism is conditional on the activities at other steps
in the pathway.

The very same asymptotic relationship between enzyme
activity and metabolic flux that generates diminishing returns
epistasis also provides a basis for dominance in diploid species
(Kacser and Burns 1981). The 50% reductions in activities in
figure 4E might just as well represent the activities in the
heterozygotes of null mutants, with complete dominance
at b-galactosidase, partial dominance at the permease and
codominance at the porins. Just as adaptation at one step in a
pathway can expose a previously neutral polymorphism to
selection at another step, so swapping alleles at one step can
modulate the dominance relationships among alleles at other
steps. In a wildtype background, permease heterozygotes
show partial dominance, whereas in a background where
porin acivity is increased 100-fold they show codominance
(fig. 4F).

b-Isopropylmalate Dehydrogenase: An Ancient
Adaptive Landscape
Coenzyme use by b-isopropylmalate dehydrogenase (IMDH),
an enzyme in the leucine biosynthetic pathway, is determined
by six active site amino acids. Lunzer et al. (2005) constructed
256 E. coli IMDH mutants, including transitional amino acids
no longer extant, determined their activities with the coen-
zyme substrates NADþ and NADPþ, and estimated their
fitnesses in competition for glucose as a limiting resource.

Amino acid replacements act additively with respect
NADþ and NADPþ activities. As in the lac operon, the con-
cave dependence of fitness on enzyme activities generates
diminishing returns epistasis (fig. 5A). An evident trade-off
in activity—no enzyme uses both NADþ and NADPþ effi-
ciently—jams the enzymes up against the perimeter of the
landscape. This arrangement generates reciprocal sign

A B C D

FIG. 3. Spectral tuning in visual pigments is achieved by modulating the relative energies of the ground and excited states. (A) Upon photoex-
citation, the retinal chromophore isomerizes from the 11-cis ground state to the all-trans conformation. (B) QM/MM (Altun et al. 2011) and
PBQC/MM (Collette et al. 2018) calculations accurately predict experimentally observed shifts in kmax: from UV to violet in mutants of ancestral
and modern fish SWS1 opsins (dots) and from red to green in mutants of bovine M/LWS opsin (squares). (C and D) QM/MM calculations showed,
and mutagenesis experiments confirmed (Tada et al. 2009), that the shift in kmax from UV to violet in fish SWS1 opsins was achieved by the deleting
Phe-86. This rearranged the hydrogen bond network surrounding the retinal and converted the unprotonated Schiff base–linked 11-cis-retinal (C)
to the protonated form (D). (C) and (D) from Tada et al. (2009).
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epistasis in fitness; many amino acid replacements that de-
crease fitness of the NADPþ-dependent RKYVYR mutant
increase the fitnesses of mutants near the NADþ-dependent
wildtype. Despite the presence of sign epistasis, the NADþ-
dependent wildtype is accessible from anywhere on the land-
scape. Access from the NADPþ-dependent RKYVYR mutant
is made possible by three mutations of large functional effect
that skirt the maladaptive funnel near the origin. In any land-
scape, the ruggedness of the phenotype–fitness map must be
scaled to the size of the mutational effects in the genotype–
phenotype map.

Why is using NADPþ less optimal than using NADþ? The
positively charged nicotinamide ring of either coenzyme lies
“above” the c-isopropyl moiety of the bound substrate
(fig. 5B). On reduction to NADPH or NADH, the ring loses

its charge and forms a tight hydrophobic interaction (blue
arrow) with the c-isopropyl moiety of the product “beneath.”
Inhibition by abundant intracellular NADPH is severe;<1% of
the RKYVYR mutant is available for catalysis. Inhibition by
scarce intracellular NADH is weak; >80% of the wildtype
enzyme is available for catalysis. Hence, NADPþ use is mal-
adaptive (Miller et al. 2006). This landscape is sufficient to
explain why all IMDHs use NADþ rather than NADPþ and
shows that at least one adaptive landscape has remained
remarkably stable throughout the entire history of life.

Methanol Metabolism: A Top-Down Approach
The above adaptive landscapes explore relationships among
genotype, phenotype, and fitness using predefined genetic
variation chosen with prior knowledge. This bottom-up
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FIG. 4. (A) The lactose pathway of Escherichia coli consists of three steps: 1) passive diffusion of lactose through porin pores (green) into the
periplasm, 2) active transport of lactose by the lacY encoded permease (blue) into the cytoplasm, and 3) irreversible hydrolysis by the lacZ-encoded
b-galactosidase (red). (B) Starvation in chemostats ensures that the growth rate, l, is proportional to the flux of lactose, J, into central metabolism.
Flux is analogous to current in Ohm’s law of resistance, I¼V/R: I� J is current, V� [Environmental Lactose] is the potential and R¼R1/Ci�R1/Ei

is resistance. The conductance of each component (Ci) is analogous to enzyme activity (Ei/ [Ai] kcat.i/Km.i, where Ai is the concentration of active
enzyme and kcat.i and Km.i are the Michaelis–Menten parameters). Hence, relative growth rate (relative fitness) equals relative flux (loperon/lK12¼
Joperon/JK12). (C) This mechanistic biochemical model (the straight line) accurately predicts relative fitness: dark blue is the E. coli K12 operon with
b-galactosidase mutants (red), permease mutants (blue), operons from natural isolates (green), and lac�mutant at the origin (yellow). (D) Strong
directional selection drives b-galactosidase activity onto a fitness plateau, a limit of adaptation where evolution is governed by neutral processes.
(E) Not all steps in a pathway can lie in a limit of adaptation (Kacser and Burns 1981; Hartl et al. 1985); mutants with half wildtype activity might be
selectively neutral (or nearly so) at b-galactosidase (red line), yet mildly deleterious at the permease (blue line) and strongly selected against at the
porin step (green line). (F) A 100-fold increase in activity brings the porins close to their limit of adaptation. Necessarily, the b-galactosidase and
permease become more rate limiting and so selection against their mutants intensifies, providing an example of intergenic epistasis.
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approach is suitable for testing hypotheses about the under-
lying architecture of adaptive landscapes, for example, the
structural and metabolic origins of epistasis and its impact
on adaptation. As powerful as this approach is, it does restrict
the scope of discovery to the predefined genetic variation.

Experimental evolution follows populations as they freely
adapt to novel environments. This top-down approach
allows for relatively unrestricted and open-ended explora-
tions of landscapes. For example, Marx and coworkers
(Chou et al. 2014) followed adaptation by
Methylobacterium extorquens in which methanol catabolism
by the native tetrahydromethanopterin-dependent pathway
had been replaced by the unrelated glutathione-dependent
pathway from Paracoccus denitrificans. Combining beneficial
mutations that had emerged during laboratory adaptation, all
of which reduced expression of the enzymes S-hydroxymethyl
GSH dehydrogenase (FlhA) and S-formyl-GSH hydrolase
(FghA), allowed the construction of a phenotype–fitness
map (fig. 6).

Like the adaptive plateaus seen in the lac and IMDH
landscapes, increases in fitness decline with further
increases in enzyme activity. Unlike those landscapes,
increases in enzyme activity are coupled to pleiotropic
costs associated with increases in expression. The

resulting peak (positioned where costs and benefits are
equipoised) generates both diminishing returns epistasis
and sign epistasis. Another feature of this landscape is
that zero fitness is offset from the FlhA origin; a minimum
FlhA activity is needed to prevent build up of formalde-
hyde, a toxic metabolite in the pathway.

One might expect that multiple correlated mutational
changes in both enzymes would be needed to reach the
peak, and that many adaptive walks would be characterized
by a series of phenotypic reversals whenever the optimum
was overshot. Yet a single beneficial mutation is sufficient to
reach the optimum from the phenotypically distant ancestor.
In this adaptive landscape, a variety of genotypes converge to
the same phenotypic solution.

Work by Chou et al. (2014) illustrates the great strength of
top-down approaches: Genotype–phenotype and pheno-
type–fitness maps can be generated, likely adaptive paths
delineated, new phenomena discovered and fresh material
obtained for studies of mechanistic origins.

lac Repressor: Information Processing on a
Phenotype–Fitness Map
Survival depends on sensing and responding to the environ-
ment. Hence, organisms process information. To explore the
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B

FIG. 5. The adaptive landscape controlling coenzyme use by IMDH (Lunzer et al. 2005). (A) The NADþ-dependent wildtype (blue ball) lies on a high
fitness plateau (right), whereas the NADPþ-dependent RKYVYR mutant (red ball) lies on a lower-fitness plateau (left). A trade-off in activity leaves
the interior largely devoid of mutants. (B) Structural biology (Gonçalves et al. 2012; Pall�o et al. 2014) shows the nicotinamide ring of the coenzyme
above the c-isopropyl moiety of the bound substrate/product. NADH and NADPH are potent inhibitors of IMDH because the reduced nicotin-
amide ring binds the c-isopropyl moiety tightly (Dean and Dvorak 1995; Miller et al. 2006). (C) NADH and NADPH are weak inhibitors of the related
IDH because the reduced nicotinamide rings have no affinity for the negatively charged c-carboxylate of the isocitrate substrate (Dean and
Koshland 1993). (D) A maximum likelihood phylogeny of the IDH-IMDH family of enzymes reveals that all IMDHs use NAD, whereas the related
IDHs have evolved NADP use several times.
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evolution of information processing, Poelwijk et al. (2011)
engineered a synthetic operon, using the E. coli lac regulatory
system to drive the expression of sacB (which confers sensi-
tivity to sucrose) and cmR (which confers resistance to chlor-
amphenicol) (fig. 7A). This enabled selection for high
expression (chloramphenicol medium) or low expression (su-
crose medium) in the presence or absence of an environmen-
tal cue, the artificial inducer IPTG.

Population growth rates in presence of either chloram-
phenicol or sucrose were determined across a range of
IPTG-induced expression levels (fig. 7B). These were used to
predict average doublings per hour in a cyclical environment
that alternated between sucrose and chloramphenicol at var-
ious combinations of expression levels (fig. 7C). lacIþ fitness is
predicted to be maximized on full induction by IPTG when
chloramphenicol is present and complete repression in the
absence of IPTG when sucrose is present (green dot). The
presence of this adaptive peak was confirmed by the recovery
of high fitness lacI mutants with the wildtype phenotype (low
basal expression levels with high induction by IPTG) from a
library of randomly mutated lacI repressors that had been
propagated in the cyclical environment.

Flipping the environmental cue, IPTG, so that wildtype
lacIþ expression is induced in the presence of sucrose and
repressed in the presence of chloramphenicol is predicted to
force the wildtype lacIþ into the maladaptive valley (red dot).
After one round of random mutation and selection, lacI
mutants of similarly improved fitness were isolated across a
wide range of expression levels (light ellipse). None responded

FIG. 6. The adaptive landscape for methanol catabolism by the
Paracoccus denitrificans glutathione-dependent pathway placed in
Methylobacterium extorquens reveals a single adaptive peak that
could not have been predicted a priori. The surface represents the
fit to a model in which fitness is proportional to the methanol flux
minus the costs associated with protein expression and with the
buildup of formaldehyde, a toxic metabolite. The peak is reached
either by a single mutation or by a combination of mutations. Both
diminishing returns epistasis and sign epistasis are present. Ancestor
(asterisk), single mutants (gray circles), mutational combinations
(white squares), and inducible expression from plasmids (black
circles). From Chou et al. (2014).
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FIG. 7. Evolution of information processing in a synthetic operon. (A) The wildtype regulatory system of the Escherichia coli lac operon was used to
control expression of sacB, which confers sensitivity to sucrose (Suc), and cmR, which confers resistance to chloramphenicol (Clm). (B) Induction
of the operon by IPTG modulates sensitivity to sucrose (orange) and resistance to chloramphenicol (blue). (C) The phenotype–fitness map of the
operon when alternating between two media, one with sucrose and the other with chloramphenicol. Operons expressed only in the presence of
chloramphenicol occupy the adaptive peak (green dot). Operons whose expression is insensitive to the environmental cue lie on the blue line
according their level of constitutive expression. Operons expressed only in the presence of sucrose occupy the maladaptive valley (red dot). The
light ellipse depicts the region from which deregulated mutants were first isolated.
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to IPTG as an environmental cue. Hence, the first response to
selection was to deregulate operon expression by obliterating
sensing.

Following two more rounds of random mutation and se-
lection, lacI mutants were isolated that once again had high
levels of expression in the presence of chloramphenicol and
low levels of expression in the presence of sucrose. On return-
ing to the adaptive peak, these lacI mutants had changed
their mode of information processing, from induction by
IPTG to corepression with IPTG.

Additional experiments showed that the lacI mutants
bound the lac promotor only in the presence of IPTG. This
meant the allosteric response to IPTG had been inverted. In
addition to the critical S97P, which lies at the dimer interface
key to the IPTG-induced allosteric transition in wildtype lacI,
any of a number of other amino acid replacements can con-
tribute to repression.

A second means by which lacI mutants can switch from
induction to repression is to increase the affinity for DNA in
general while retaining the same allosteric response to IPTG
(Pfahl 1976; Miller and Schmeissner 1979). These mutants
bind DNA sufficiently tightly to slow diffusion along the dou-
ble helix to the point that, in growing cells, they fail to find lac
promotors before the next round of replication. Adding IPTG
weakens their overall affinity for DNA and so increases their
rate of diffusion, allowing the mutants to once again find and
preferentially bind the lac operator, causing repression. This
second mechanism involves no change in the allosteric re-
sponse to IPTG and can be achieved by one of several single
amino acid replacements. These experiments, together with
those of Poelwijk et al. (2011), show that phenotypic paral-
lelism need not imply mechanistic parallelism, and that the
same mechanism need not imply genetic parallelism.

Chemotaxis–Growth: New Behavior Enables Escape
from an Adaptive Peak
In a twist on the standard serial transfer protocol of experi-
mental evolution (Yi and Dean 2016), E. coli cells that swam
into a capillary tube loaded with chemoattractants were used
to inoculate fresh medium twice daily (fig. 8A). This protocol
defines a phenotype–fitness map, with the growth rate dif-
ferential on one axis and the motility differential on the other
axis (fig. 8B). The phenotype–fitness map has no adaptive
peak. Cells must partition the limiting carbon source between
growth and chemotaxis (both are energetically expensive).
The ensuing trade-off cuts across the contours to produce
a peak in the map.

Five replicate populations rapidly adapted to this cyclical
environment, first reaching and then moving along the trade-
off front (established empirically) toward the adaptive peak
where they remained trapped for several weeks. Isolates from
these populations were characterized by increased motility at
the expense of growth rate, indicating that a premium existed
on gaining access to fresh medium through chemotaxis.

After a few more weeks, several populations escaped from
the peak, breaking through the Pareto front. Fitness improved
through higher growth rates, even as efficient chemotaxis was
retainedinseemingviolationofthetrade-off.Thecontradiction

was resolved when it was shown that, compared with the an-
cestor, isolates reduced their motility during exponential
growthonlytoincreaseitoncloseapproachtocarryingcapacity
(fig. 8C). Hence, a new physiological program had been imple-
mented in which phenotypes were matched to each phase of
the cyclical environment. Thus, did an evolved behavior miti-
gate the deleterious consequences of a hard-wired trade-off.

This dramatic change in behavior is largely attributable to a
single mutation in a transcription factor specific to chemo-
taxis and motility (fig. 8D). The Arg220Trp amino acid re-
placement in FliA eliminates an ionic hydrogen bond to the
backbone phosphate of DNA, weakening expression from
client promotors, reducing motility during exponential
growth, and increasing the proportion of the population
that is motile near carrying capacity. A single point mutation
at the hub of an existing complex gene network had reprog-
ramed cellular physiology to produce a new behavior that
optimized organismal phenotypes to current environmental
demands.

Discussion
These seven functional studies show how proximate mecha-
nisms shape landscape architecture. The emphasis is on de-
lineating chains of causality, from genotype to phenotype to
fitness. In this new vision, the old genetic descriptors of ad-
ditivity, epistasis, dominance, and pleiotropy are assigned no
causal roles; they are simply labile epiphenomena. From met-
abolic architecture to dominance, from active sites to phylo-
genetics, studies of the proximate mechanisms that underpin
adaptive landscapes have enriched our understanding of evo-
lution far beyond what has been achieved previously. After
almost 100 years, the adaptive landscape has ceased being a
metaphor and emerged as a scientific framework of testable
theories.

Adaptive Landscape Uses
The seven landscapes differ in their biology, architecture, and
uses (table 1). Weinreich et al.’s (2006) study of TEM-1 b-
lactamase is the classic example of a Wrightian hypercube, a
local genotypic network shorn of biological causality that
illustrates how epistasis can restrict the number of adaptive
walks to a local adaptive peak. Quantum mechanical calcu-
lations of visual pigments provide a means to predict pheno-
type from genotype including the molecular basis of
intramoleculr epistasis (Altun et al. 2008a, 2008b, 2009;
Tada et al. 2009; Sekharan et al. 2010, 2011, 2012, 2013;
Collette et al. 2018). Experiments with the lac operon
(Dean 1989) test a mechanistic prediction of fitness from
metabolic theory. Studies of IMDH provide a complete fitted
adaptive landscape (Lunzer et al. 2005) that informs phylo-
genetic patterns across the entire tree of life (fig. 5C and D).
Chou et al.’s (2014) study of methanol metabolism exempli-
fies a top-down approach to constructing adaptive land-
scapes. Experiments by Poelwijk et al. (2011) and Yi and
Dean (2016) explore adaptive landscapes in variable environ-
ments and illustrate the power of combining bottom-up and
top-down approaches.
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Adaptive landscapes have myriad uses: revealing prin-
ciples, testing hypotheses, discovering new phenomena,
and explaining biological patterns. For example, epistasis
turns out to be something of a mirage. Amino acid
replacements may act additively on one scale (e.g., pro-
tein stability), yet epistatically on another (e.g., metabolic
flux). So, do the amino acids interact or do they not?
Epistasis is, like a blue sky, an illusion even though it
can be quantified. Dominance and diminishing returns
epistasis are the twinned expressions of underlying met-
abolic architecture. To discuss the one and ignore the
other makes no sense. Moreover, they are both spandrels
(sensu Gould and Lewontin 1979) that evolve in response
to selection, even though they themselves are never se-
lected (Kacser and Burns 1981; Hartl et al. 1985).Adaptive
landscapes have inspired new experiments. High-
throughput approaches have extended Weinreich
et al.’s (2006) TEM-1 b-lactamase genotype–fitness map
to explore the phenotype–fitness map and the impact

of genotype by environment (G� E) interactions by
varying both the type and concentration of antibiotics
(Stiffler et al. 2015). Work on lac (Dean 1995) identified
two fundamental causes of G� E (Box 3). That G� E
interactions combine with ecoevolutionary feedbacks to
produce negative frequency-dependent selection during
competition for mixtures of galactosides has been con-
firmed experimentally and the region where the polymor-
phism is protected identified (Lunzer et al. 2002). The de
novo evolution of specialists within this region has been
repeatedly observed (Dykhuizen and Dean 2004), and the
mutations associated with each specialization identified
(Zhong et al. 2004, 2009). The physiological cause of the
trade-off and the presence of two adaptive peaks have yet
to be confirmed.

Adaptive landscapes explain the characteristic U-shaped
distributions of the fitness effects of new mutations (DFEs).
This has important implications for the evolutionary fate of
populations (Eyre-Walker and Keightley 2007), from the rate

FIG. 8. Evolution of phenotypic plasticity to escape from an adaptive peak. (A) The selection regime where cells must chemotax into a capillary of
fresh medium to be transferred to fresh medium. (B) Fitness is a function of growth rate and the ability to chemotax. Logistic growth produces
curved contours in the phenotype–fitness map (exponential growth would produce linear contours). The dashed line represents the empirically
determined position of the trade-off between chemotaxis and growth rate. The peak (red dot) is broad because the trade-off lies parallel to the
contours. Each point is the mean of six weekly isolates from an evolving population. Ancestor (Anc), optimum (Opt), and week sampled
(numbers). The large standard standard errors at week 8 are a consequence of transient polymorphisms. (C) The ancestor (Anc) swims fastest
during exponential growth when resources are abundant. Week 7 isolates increase the overall swimming speed. Week 9 isolates reduce swimming
speed during midlog phase while maintain increased swimming speed during transfer. (D) Amino acid replacement Arg220Trp removes a positive
charge and hydrogen bond between transcription factor FliA and the promotor DNA. From Yi and Dean (2016).
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of neutral evolution to the likelihood of an adaptive response
(Silander et al. 2007). The asymptotic dependency of flux on
enzyme activity (fig. 4D) predicts that mutations obliterating

enzyme function will have low fitness, whereas those with
even residual activity have near wildtype fitness leaving few
mutants of intermediate fitness. The resulting U-shaped DFE

Box 3.

Environments are constantly changing and so it is of interest to know how changes in the environment affect both
phenotypes and fitness. The standard approach is to plot phenotypic values or fitnesses against an environmental
treatment (right). Our classification follows the example set by Weirauch et al. (2013) for epistasis. We classify G� E
interactions as additive (no interaction, environment Y contributes equally to genotypes A and a), magnitude G� E
(environment Y contributes more to a than to A). We identify two kinds of sign G� E: either environment Y increases a
and decreases A, or substituting A has opposite effects in environments X and Y. With reciprocal sign, G� E in
environment Y increases a and decreases A, whereas substituting A causes an increase in environment X and a decrease
in environment Y. As with epistasis, such plots expose the presence of G� E but reveal nothing of its causes.
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Changes in environments can modify landscapes in two ways: 1) by modifying the phenotype–fitness map and
2) by modifying the genotype–phenotype map. Both are evident in the lac operon (Dean 1995), where laboratory
mutants of the permease and b-galactosidase (pink spheres) were used to define the landscapes (below).
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The landscape, almost flat around strain K12 (blue sphere at 1, 1, 1) during competition for lactose, is far steeper
during competition for galactosyl-fructose where the permease and b-galactosidase are more rate limiting to metabolic
flux. Operons from natural isolates (green spheres), once mildly deleterious on lactose become strongly deleterious on
galactosyl-fructose (magnitude G� E), even though their enzyme activities (relative to K12) are unchanged (mostly).
Modifications of this phenotype–fitness map are not expected to change the direction of selection at either step in the
pathway because fitness is a monotonic function of enzyme activities.

However modifications to the genotype–phenotype map can change the direction of selection (sign G� E) by
changing the rank order of relative enzyme activities. For example, the permease of strain TD10 (red sphere) is more
active than the permease of strain K12 on lactose, but less active on galactosyl-fructose. Hence, selection favors
strain TD10 on lactose and strain K12 on galactosyl-fructose (sign G� E).

G� E interactions are useful in the design of experimental controls. In many landscape studies, alleles are placed in
a common genetic background for estimating fitnesses. To be certain that any selection observed is caused by the alleles
of interest, and not by mutations that spontaneously arise in the genetic backgrounds during strain construction,
control experiments are conducted in an environment where the alleles are not expected to contribute to fitness.
Selection at lac disappears during competition for glucose. Selection at TEM-1 b-lactamase disappears in the absence of
antibiotic. Without these controls any epistasis detected in a Wrightian genotype–fitness map might plausibly be
assigned to mutations elsewhere in the genetic background.
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was first established (Dean et al. 1989) in a high-resolution,
low-throughput screen of amino acid replacements in E. coli
b-galactosidase (fig. 9A).

Adaptive landscapes explain why the fraction of deleteri-
ous mutations and the precise distribution of fitness effects
vary from protein to protein: ubiquitin (Roscoe et al. 2013;
Mavor et al. 2016), Hsp90 (Bank et al. 2015), TEM-1 b-lacta-
mase (Jacquier et al. 2013; Firnberg et al. 2014; Stiffler et al.
2015), an amide hydrolase (Wrenbeck et al. 2017), and
50ProFAR isomerase (HisA) (Lundin et al. 2018). Each protein’s
DFE depends not only on its sensitivity to mutation but also
on its position along the function–fitness curve. For example,
higher concentrations of ampicillin move TEM-1 b-lactamase
down its fitness curve exposing more mutations to purifying
selection (Stiffler et al. 2015) (fig. 9B and C). Introducing
M182T stabilizes wildtype TEM-1 b-lactamase, buffering fit-
ness against the destabilizing effects of random amino acid
replacements (Jacquier et al. 2013). DFEs are to be understood
as the products of combining genotype–phenotype maps
and phenotype–fitness maps. Without this framework,
DFEs merely form a series of disconnected anecdotal
observations.

Adaptive landscapes explain patterns of variation in nat-
ural populations. That most inborn errors of metabolism are
recessive (Kacser and Burns 1981) and that most segregating
polymorphisms are nearly neutral (Bustamante et al. 2005;
Castellano et al. 2018) and are consistent with DFEs produced
when the fraction of folded protein is a sigmoidal function of
DDG (Box 2; Bershtein et al. 2017; Echave and Wilke 2017;
CanaLe et al. 2018) and fitness is a concave function of en-
zyme activity (Hartl et al. 1985). Such adaptive landscapes
buttress Ohta’s nearly neutral model of evolution (Ohta
1973, 1977, 1992; Akashi et al. 2012).

Adaptive landscapes provide insights into the broad pat-
terns of functional change and stasis in molecular phyloge-
nies. We have already seen that NADPþ use by IMDH is
deleterious because the reduced hydrophobic nicotinamide
ring of abundant cellular NADPH forms a tight hydrophobic
interaction with the c-isopropyl moiety of the bound sub-
strate/product (fig. 5B, blue arrow). The related isocitrate de-
hydrogenase (IDH) suffers no such inhibition because the
reduced hydrophobic nicotinamide ring has little affinity for
the negatively charged c-carboxylate of its substrate/product
(fig. 5C, red arrow). Inhibition by intracellular NADPH is suf-
ficiently weak that IDHs have been free to evolve NADPþ use
(Zhu et al. 2005) and have done so on multiple occasions
(fig. 5D). The pattern of functional evolution and constraint
across the tree of life finds its explanation in the structure–
function relationships of the active sites that underpin the
architectures of the respective adaptive landscapes.

Adaptive landscapes have practical applications. Analysis
of TEM-1 b-lactamase landscapes across 15 antibiotics point
to the possibility of retarding the evolution of resistance by
deploying cyclical treatment paths that select for reversions
to the starting state (Mira et al. 2015a). Caution is warranted
however. A larger study revealed that although optima vary
across 30 landscapes, G� E interactions are numerous, com-
plex, and can mitigate the impact of sign epistasis to gain

access adaptive trajectories to higher optima (Mira et al.
2015b).

Bridging the Genotype–Phenotype Gap
Bridging the genotype–phenotype gap remains a huge chal-
lenge. Deletions, nonsense mutations, etc. reliably obliterate
functions. Less catastrophic mutations have less predictable
phenotypic effects. For example, silent substitutions are
commonly assumed to be functionally equivalent and
selectively neutral (Kimura 1983), yet exceptions are
known (Ikemura 1981; Sharp and Li 1987; Agashe et al.
2013; Bailey et al. 2014). Gain of function mutations can-
not be predicted. They must be identified through mu-
tant screens (Arnold 2015), directed evolution studies
(Hartl and Hall 1974), or phylogenetic methods coupled
with ancestral sequence resurrection and protein engi-
neering (Siddiq et al. 2017).

High-throughput association studies are now fashionable
means to explore, empirically and comprehensively, the im-
pact of mutations on protein phenotypes and fitness (Meng
et al. 2005; Berger et al. 2006; Maerkl and Quake 2007;
Domingo-Calap et al. 2009; Zykovich et al. 2009; Filion et al.
2010; Fowler et al. 2010; Bank et al. 2015; Christensen et al.
2011; Wong et al. 2011; Kouyos et al. 2012; Gordan et al. 2013;
Stormo 2013; Szendro et al. 2013; Weirauch et al. 2013; Olson
et al. 2014; Orenstein and Shamir 2014; Thyagarajan and
Bloom 2014; Wu et al. 2014, 2016; Zuo and Stormo 2014;
Jolma et al. 2015; Levo et al. 2015; Stiffler et al. 2015;
Boucher et al. 2016; Chattopadhyay et al. 2016; Li et al.
2016; Mavor et al. 2016; Puchta et al. 2016; Tripathi et al.
2016; Grossman et al. 2017; Sarkisyan et al. 2016; Wrenbeck
et al. 2017; Aguilar-Rodr�ıguez et al. 2018; Le et al. 2018; Robert
et al. 2018). Rather than direct assays of the phenotypes of
interest, many studies instead employ proxy metrics subject
to artifact. Results, often inadequately replicated and lacking
suitable experimental controls, are extracted using ad hoc
computational modeling and reported as “enrichment
scores” or some other opaque statistic (Stormo 2013;
Weirauch et al. 2013; Le et al. 2018). Yet even careful empir-
icism, essential to discovery and foundational to coherent
theory, lacks predictive power.

In any conceptual vacuum, perceptions are apt to change
as data accumulate. The original empiric additive “three sites
rule” for mammalian M/LWS visual pigments (Yokoyama and
Yokoyama 1990; Neitz et al. 1991; Merbs and Nathans 1992;
Asenjo et al. 1994) eventually transmogrified into an empiric
“five sites rule” with five pairwise epistatic interactions
(Yokoyama et al. 2008). This more refined empirical fit still
lacked predictive power. However, identifying these critical
sites was essential before hybrid quantum mechanical/molec-
ular mechanical simulations could be deployed to accurately
predict changes in spectral tuning (Altun et al. 2008a, 2008b,
2009; Sekharan et al. 2010, 2011, 2012, 2013; Collette et al.
2018). This example nicely illustrates the marriage of empir-
icism with mechanism to illumine causality at a most basic
level of biological organization—the point mutation.

Our difficulties in bridging the genotype–phenotype gap
are further compounded by epistasis and pleiotropy.
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Cooperative effects associated with protein stability are obvi-
ous sources of epistasis (DePristo et al. 2005; Tokuriki et al.
2008; Tokuriki and Tawfik 2009; Soskine and Tawfik 2010;
Jacquier et al 2013; Melamed et al 2013; Bank et al. 2015;
Olson et al. 2014; Sarkisyan et al. 2016; Echave and Wilke
2017). Many mutations that affect the free energy of folding
act additively (or approximately so) and for these the fraction
of protein folded can be accurately predicted (Wells 1990;
Sandberg and Terwilliger 1991; Gregoret and Sauer 1993;
Araya et al. 2012; Melamed et al. 2013). In addition to reduced
levels of function, unfolded proteins can impose additional
pleiotropic fitness costs (Echave and Wilke 2017). Mutations
that affect function directly are often destabilizing
(Tokuriki et al. 2008; Tokuriki and Tawfik 2009; Soskine
and Tawfik 2010). Indeed, the replacements necessary for
a functional change can be so destabilizing that no folded
protein is produced. Bloom et al. (2006) showed that prior
selection for increased stability of a cytochrome P450 was
essential to its subsequent acquisition of novel activities.
Detailed structural and biophysical characterizations have
elaborated the causes of functional epistasis in a number
of proteins but offer few generalizations (Ortlund et al.
2007; Bridgham et al. 2006, 2009; Marciano et al. 2008;
Tada et al. 2009; Lunzer et al. 2010; Altun et al. 2011;
Kryazhimskiy et al. 2011; Gong et al. 2013; Natarajan
et al. 2013; Gong and Bloom 2014; Kaltenbach et al.
2015; Lagator et al. 2017). The problem remains extreme
context dependence, which renders each genotype–phe-
notype map idiosyncratic. Neither theory nor empiricism
has yet succeeded in exhaustively characterizing the com-
bined phenotypic impacts of multiple mutations.

Into the Future
This review has focused on just two levels of biological orga-
nization, intragenic and metabolic, and how they affect fitness
in single celled organisms. Higher levels of biological organi-
zation, tissue, organ, development, and behavior are expected
to contribute to the landscape architectures of multicellular
organisms (Svensson and Calsbeek 2012). These have never
been explored in detail owing to difficulties in constructing
isogenic strains and estimating genotypic fitnesses in species
with complex life histories and long generation times.

Recent attempts to explore the relationships between
metrical phenotypes and fitness in higher organisms employ
a framework established by Russ Lande (Lande 1976, 1979;
Lande and Arnold 1983; Phillips and Arnold 1989; Wood and
Brodie 2015). Despite statistical and experimental concerns
(Mitchell-Olds and Shaw 1987; Fincke and Hadrys 2001;
Kingsolver et al. 2001; Reed and Bryant 2004; Pekkala et al.
2011; Wood and Brodie 2015), Lande’s approach, which uses
least squares regression of fitness proxies against other phe-
notypes, has been used to infer natural selection from mor-
phological data. However, it cannot address the causes of
landscape architecture in terms of proximate mechanisms
because metrical phenotypes are not amenable to the exper-
imental manipulations needed to delineate specific associa-
tions among genotype, phenotype, and fitness.

We anticipate that future studies will be dominated by
top-down approaches. Inexpensive genome sequencing com-
bined with bioinformatic analyses can rapidly identify candi-
date mutations. New techniques in genome editing enable
candidate mutations to be isolated and combined in defined
genetic backgrounds suitable for fitness studies. GFP and
other fluorescent proteins can be introduced as reporters of
expression from titratable promotors, allowing the relation-
ships among gene expression, enzyme activity, and fitness to
be characterized with unprecedented ease. Hisidine-tagged
proteins can be rapidly purified for phenotypic characteriza-
tion. No longer confined to studies of a few well-defined
biochemical systems in model prokaryotes, new studies will
explore adaptive landscapes in nonmodel species and in
higher eukaryotes. Although genomic analyses offer little
more than association studies with no mechanistic insight
(Graur et al. 2013; Boyle et al. 2017; Doolittle and Brunet
2017), work on DFEs points to the possibility of coupling
comprehensive data sets with mechanistic studies to provide
a broader understanding of adaptive landscapes.

Epilog
The age of exploring adaptive landscapes is upon us. As can
be seen from the examples described, studying adaptive land-
scapes is a highly interdisciplinary undertaking involving ex-
pertise from many disciplines including physics, chemistry,
molecular, structural, cell and systems biology, microbiology,
genetics, metabolism, physiology, and behavioral ecology. As

A B C

FIG. 9. (A) DFE for amino acid replacements in Escherichia coli b-galactosidase with a limit of resolution of 60.5%/generation (Dean et al. 1988). (B)
A similar U-shaped DFE is seen for TEM-1 b-lactamase (Stiffler et al. 2015) in the presence of 156-lM ampicillin. Near wildtype, the distribution
barely differs from the bell curve (blue) in the absence of ampicillin. (C) Increasing the ampicillin concentration effectively pushes the wildtype
TEM-1 b-lactamase off its fitness plateau. Now most replacements are strongly deleterious.
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the traditional barriers between disciplines continue to erode,
so the study of adaptive landscapes will become increasingly
prominent, providing a useful framework to integrate rich
diverse and otherwise disparate knowledge of life. Future
studies can only deepen and broaden our understanding of
the causal basis of evolutionary change.
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