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The Human Phenotype Ontology:
Semantic Unification of Common and Rare Disease

Tudor Groza,1,2,25 Sebastian Köhler,3,25 Dawid Moldenhauer,3,4 Nicole Vasilevsky,5

Gareth Baynam,6,7,8,9,10 Tomasz Zemojtel,3,11 Lynn Marie Schriml,12,13 Warren Alden Kibbe,14

Paul N. Schofield,15,16 Tim Beck,17 Drashtti Vasant,18 Anthony J. Brookes,17 Andreas Zankl,2,19,20

Nicole L. Washington,21 Christopher J. Mungall,21 Suzanna E. Lewis,21 Melissa A. Haendel,5

Helen Parkinson,18 and Peter N. Robinson3,22,23,24,*

The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven

analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for

common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations

as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified

terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now

comprises over 250,000 phenotypic annotations for over 10,000 rare and common diseases and can be used for examining the pheno-

typic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by

genomic location. The annotations, as well as the HPO itself, are freely available.
Introduction

The Human Phenotype Ontology (HPO) provides a

structured, comprehensive, and well-defined set of over

11,000 classes (terms) that describe phenotypic abnormal-

ities seen in human disease.1,2 The HPO has been used for

developing algorithms and computational tools for clinical

differential diagnostics,3–5 for the prioritization of candi-

date disease-associated genes,6–11 in exome sequencing

studies,6–10 and for diagnostics in clinical exome

sequencing.11 In addition, the HPO has been used for

translational research, including inferring novel drug

indications,12 characterizing the proteome of the human

postsynaptic density,13 analyzing Neandertal exomes,14

and other topics.15–22

The HPO project provides not only a standard pheno-

type terminology but also a collection of disease-pheno-

type annotations, i.e., computational assertions that a

disease is associated with a given phenotypic abnormality.
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The A
The HPO currently provides over 116,000 annotations to

over 7,000 rare diseases; for instance, the disease Marfan

syndrome (MIM: 154700) is annotated with the HPO

terms ‘‘arachnodactyly’’ (HP: 0001166), ‘‘ectopia lentis’’

(HP: 0001083), and 46 others. The patterns and specificity

of the annotations allow the information content (IC) of

each term to be calculated; the IC reflects the clinical spec-

ificity of the term and represents a key component of most

of the aforementioned algorithms.23 Additionally, compu-

tational logical definitions are provided for HPO terms. For

instance, the HPO term ‘‘hypoglycemia’’ is defined on

the basis of ‘‘decreased concentration’’ (PATO: 0001163)

in ‘‘blood’’ (UBERON: 0000178) with respect to ‘‘glucose’’

(CHEBI: 17234); this definition uses terms from the

ontologies PATO24 for describing qualities, UBERON for

describing anatomy,25,26 and ChEBI for describing small

biological molecules.27 These definitions are useful for a

number of applications, including cross-species phenotype

comparisons6,28,29 and computational quality control.30
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The focusof theHPOhas, todate,beenonraredisease, and

correspondingly, it has primarily been adopted by groups

from various fields in human genetics, including the Sanger

Institute’s DecipheringDevelopmentalDisorders database22

andDECIPHER,31 the EuropeanCytogeneticists Association

Register of Unbalanced Chromosome Aberrations,32 the

NIH Undiagnosed Diseases Program and Network, the rare-

disease section of the UK’s 100,000 Genomes Project, and

GenomeCanada’sCARE for RAREprogram,but also bydata-

bases for genome-wide association studies (GWASs).33–35

Along with rapid technological advances in the field of

next-generation sequencing (NGS), personalized medicine

is quickly becoming reality,36 and initial attempts to use

genome sequencing to predict phenotypic abnormalities

in common, complex diseases are beginning to show prom-

ising results.37 In this work, we have extended the range of

the HPO from rare to common human disease in order to

provide a computational foundation for phenotype-driven

analysis of genomes and other translational research in the

field of genetics of complex human disease. We have gener-

atedover132,000phenotypic annotations fromtheHPOfor

3,145 common diseases by using a text-mining approach

and have made them freely available to the community.

Finally, we demonstrate the uses to which this resource can

be put and set out a framework for the future development

of the HPO as a community-driven resource for phenotypic

analysis of rare and common disease.
Material and Methods

Extraction of HPO Terms By Automatic Concept

Recognition
Concept recognition (CR) extracts ontology terms from text with

the aim of leveraging structured knowledge from unstructured

data. For example, CR might be able to identify the term ‘‘macro-

cephaly’’ (HP: 0000256) within an abstract that contains the

phrase ‘‘large head’’ because the latter is listed as a synonym in

the entry HP: 0000256. Published CR approaches rely on direct

dictionary lookup combined with stemming and word-permuta-

tion algorithms38 or use natural-language-processing pipelines

with techniques such as sentence splitting, tokenization, and

part-of-speech tagging.39 In our experiments we used a CR tool

specifically tailored to address the challenges of extracting pheno-

type concepts—the Bio-LarK Concept Recognizer.40 Bio-LarK uses

a two-step approach to index and retrieve ontology terms in com-

bination with a series of language techniques to enable term

normalization. In addition to providing standard CR, the system

is able to decompose and align conjunctive terms (e.g., ‘‘short

and broad fingers’’ aligns to ‘‘short finger’’ [HP: 0009381] and

‘‘broad finger’’ [HP: 0001500]), as well as recognize and process

non-canonical phenotypes, such as ‘‘fingers are short and broad,’’

which would be aligned to the same terms as in the previous

example. Our current CR approach does not attempt to detect

negation, which might represent a cause of false-positive results.

However, because of the post-processing steps used to generate

the final annotations on the basis of threshold values for annota-

tion frequency and IC (see below), our procedure will not, in gen-

eral, be sensitive to isolated negative assertions.
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PubMed-MEDLINE 2014 Corpus
The CR process was performed on the 2014 release of the

PubMed-MEDLINE corpus. The corpus contains 22,376,811 arti-

cles, of which 13,262,617 have a valid title and abstract (most

of the missing entries represent articles in languages other

than English and only their titles are listed). MEDLINE abstracts

are associated with a series of medical subject headings (MeSHs);

the main headings (descriptors) provide a schematic descrip-

tion of the topic of the article. The descriptors are divided into

16 categories, including category C, ‘‘diseases.’’ Category C con-

tains 4,620 unique entries, and we refer to it here as ‘‘MeSH

diseases.’’

We note that although MeSH category C is described as

comprising diseases, many of the terms in the complete tree C

(4,620 entries) do not refer to specific diseases. For instance,

many of the terms describe general categories, such as ‘‘brain dis-

eases’’ (MeSH: D001927), veterinary diseases (e.g., ‘‘brucellosis,

bovine’’ [MeSH: D002007]), and various other entities, such as

‘‘cadaver’’ (MeSH: D002102). Others represent phenotypic features

of diseases rather than actual disease entities; one example

is ‘‘Cheyne-Stokes respiration’’ (MeSH: D002639), which is an

abnormal breathing pattern that can be observed in diseases

such as central sleep apnea syndrome. We excluded such MeSH

entries by careful manual curation, leaving a total of 3,145

MeSH category C descriptors that we judged to actually represent

specific disease entries. Only these entries were used for the

analysis described in this manuscript.

We filtered the 13,262,617 abstracts on the basis of the MeSH

terms to retain only those abstracts that included at least one of

the 3,145 disease entries from the MeSH disease list and then pro-

cessed them with the Bio-LarK Concept Recognizer. In some cases,

a single abstract was annotated with multiple MeSH disease terms,

some of which were also featured as major topics for the article

under scrutiny. For the purpose of this analysis, we included all

abstracts independently of the number of associated MeSH terms

or their major topic feature.
Filtering HPO Annotations
Many abstracts that describe a given disease also mention a certain

HPOterm.Consequently, thatdisease ismore likely tobe character-

ized by the corresponding phenotypic abnormality. For instance,

the PubMed abstract with the PubMed identifier PMID: 23886833

is indexed with the MeSH term ‘‘encephalitis, herpes simplex,’’

and parsing the record with Bio-LarK reveals a number of HPO

terms, including ‘‘headache’’ (HP: 0002315). Therefore, one might

be tempted to conclude that this type of encephalitis can be charac-

terized by headaches, but from this single observation it cannot be

guaranteed that the abstract is indeed making this assertion. The

abstract could, for instance, be describing an adverse effect of a

medication, a differential diagnosis, or one of a number of other

things.We reasoned that if anHPO termwere identified inmultiple

abstracts associatedwith a givendisease from theMeSHdisease list,

then it would be more likely to represent a genuine phenotypic

abnormality associated with the disease.

However, frequency alone is not a strong enough indicator of a

correct association between a phenotype and a disease. Ideally, the

phenotype should also be specific to (i.e., present only in a limited

number of) certain diseases. Given this required balance, we devel-

oped a procedure that aims to distinguish the true annotations

on the basis of three metrics: (1) the balance between frequency

and specificity; (2) the IC of the term—i.e., the overall degree of
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Figure 1. Algorithm 1
Summary of the algorithm used to identify
a set ofHPO termannotated to diseases. See
Material and Methods for explanations.
specificity of the term in our corpus of diseases; and (3) the disease-

category-driven density of a subset of terms, based on the shortest

path between them in the HPO. The balance between frequency

and specificity is measured with a standard information-retrieval

technique: term frequency, inverse document frequency (TFIDF).

The TFIDF weighs HPO terms highly if they occur with high fre-

quency among abstracts annotated to a disease but down-weighs

terms that are commonwithin the entire corpus (see the following

section).

Figure 1 summarizes the algorithm we have developed. It takes

as input the initial set of HPO terms and, using three tuning

parameters, produces a final set of candidates. The three tuning

parameters control term cutoffs at different stages: (1) n, which de-

fines the initial TFIDF threshold used for creating the clustering

seeds; (2) m, which defines a second specificity threshold (over

TFIDFIC; see following section) used for pruning terms left over

from the first threshold; and (3) e, which defines the density

margin that dictates the inclusion or exclusion of a term in a

cluster.

The algorithm consists of three steps. First, the initial set of

terms is filtered with TFIDF for the creation of clustering seeds

(lines 1–3). Second, these clustering seeds are grouped according

to their common top-level HPO ancestor —i.e., the top-level

HPO abnormality (e.g., blood or skeletal system; line 4). The intu-

ition here is that most diseases affect, in principle, a very limited

number of major organs, and hence, most true positives will be

grouped according to these major organs (corresponding to the

top-level HPO phenotypic abnormality terms). Once the clus-

tering seeds are grouped, we look for the group-based subset of

terms that form the single shortest ontological path among

them (i.e., the sub-group with the minimum density; lines 5–7).

This can be seen as an inverse analogy to the traveling salesman

problem, where the shortest path between two terms (i.e., the

number of edges required to connect them in the HPO) denotes

the cost, and the goal is to minimize the SD of the array of shortest

paths. We adapted the Hungarian algorithm to solve this problem.

The resulting subset is added to the final list of candidates (line 8).
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Finally, the list of terms initially filtered

out with TFIDF is pruned with TFIDFIC

(lines 9 and 10), and the terms are grouped

according to the top-level HPO abnormal-

ities in the same manner as the clustering

seeds (line 11). Incrementally, using the

group-based density and set of seeds

computed in the previous step, we append

each leftover term to the seed subset and

compute an aggregated density. If the

new density is within the limits estab-

lished by the density margin error param-

eter (e) with respect to the seed density,

then the term is added to the final candi-

dates (lines 12–15).

Given a gold-standard corpus, one of the

main advantages of this algorithm is the

opportunity for learning diverse values
for the three parameters, subject to a particular goal. For example,

the above-mentioned assumption (i.e., diseases affect a very

limited set of major organs) can be transformed into a learning

task based on disease categories. We experimented with the 41

manually curated diseases, split into 13 categories dictated by

the top-level terms (e.g., cardiovascular diseases, integumentary

system diseases, etc.) in the Disease Ontology (DO), and aimed

tomaximize the category-based true-positive rate. This can be real-

ized by learning sets of parameters corresponding to each disease

category. The experimental results showed an overall resulting pre-

cision of 66.8%, including highlights such as over 70% precision

for diseases by infectious agents (73.0%), diseases of the nervous

system (77.8%), or immune system diseases (82.8%). Similarly,

we experimented with targeting a maximized overall F-score

(i.e., the harmonic mean of precision and recall—a balance be-

tween coverage and true-positive rate) and achieved a value of

45.1%. This value is equivalent to an average precision of around

60% associated with a recall of around 40%.

Information Theoretic Measures for HPO Annotations
The algorithm in Figure 1 uses several information theoretic mea-

sures, discussed below.

TFIDF is a standard information-retrieval metric for ranking

terms on the basis of their co-occurrence and specificity in the

context of a given set of documents. In our case, the goal is to

rank HPO terms according to their frequency and specificity in

the context of a particular disorder. TFIDF is adapted below (to

take into account the disorder-specific context), where t denotes

an HPO term, D denotes the disease under scrutiny, and TD repre-

sents the total number of disorders (i.e., 3,145).

TFIDFðt;DÞ ¼ TFðt;DÞ3 IDFðt;DÞ

TFðt;DÞ, the term frequency of HPO term t for disease D, is

defined as the number of D-associated abstracts in which a term

t appears at least once (regardless of the number of mentions in

a particular abstract), and the inverse document frequency,
n Genetics 97, 111–124, July 2, 2015 113



IDF(t, D), is defined as the logarithm of the quotient of the total

number of diseases (TD) divided by the number of diseases for

which the HPO term in question is mentioned in at least one

abstract.

IDFðt;DÞ ¼ log
TD

j fd ˛ D : t ˛ dg j

The IC of an individual HPO term within the MEDLINE corpus

can be estimated with its frequency among annotations of the

entire corpus. Intuitively, the IC of a term such as ‘‘fever’’ (HP:

0001945) is less than that of a term such as ‘‘aortic arch calcifica-

tion’’ (HP: 0005303) because fewer diseases are characterized by

the latter abnormality, and so knowing that an individual has

aortic arch calcification narrows down the differential diagnosis

much more than knowing that an individual has fever. For each

term t of the HPO, the IC is quantified as the negative logarithm

of its frequency: ICðtÞ ¼ �log pðtÞ. If a disease is annotated with

any term t in the HPO, it must also be annotated with all the an-

cestors of t. Therefore, the IC of terms is calculated on the basis of

annotations with the term or any of its descendants in the HPO.41

For instance, if seven of 1,000 abstracts are annotated with a

certain HPO term t0, and three more abstracts are annotated with

descendants of t0, then the frequency of the term would be calcu-

lated as p(t0) ¼ 10 / 1,000, and the IC of the term would be calcu-

lated as ICðtÞ0 ¼ �log pð0:01Þ. The higher (i.e., closer to the root) in

the ontology a term is located, the lower its IC. We use this as an

additional term to define TFIDFIC for HPO term t and disease D as

TFIDFICðt;DÞ ¼ TFIDFðt; DÞ3 ICðtÞ:

Calculation of Phenotypic Overlap with an Extended

Jaccard Index
The Jaccard index is a standard measure of similarity between two

sample sets, A and B, and is defined as the size of the intersection

divided by the size of the union of the sample sets:

JðA;BÞ ¼ jAXB j
jAWB j :

The value of the Jaccard index ranges from 0 for complete

dissimilarity to 1 for identity. In a typical set-based context, the

Jaccard index is computed on the strict intersection and union

of the elements. However, in our context these elements represent

ontology terms, structured in a logical hierarchy. And, as such, we

can rely on the subsumption relation between terms when

computing intersection and union. We exploited this aspect in

the computation of the Jaccard index. Amatch between two terms

was recorded not only when the two terms matched exactly (i.e.,

‘‘cranial hyperostosis’’ is the same as ‘‘cranial hyperostosis’’) but

also when the subsumption relation was present (i.e., ‘‘cranial hy-

perostosis’’ is a parent of ‘‘calvarial hyperostosis’’ and an ancestor

of ‘‘mandibular hyperostosis’’; Figure S1).

Validation of HPO Annotations for Common

Disorders
We chose three to five common diseases from each of the 13 DO

upper-level categories used in our common-disease network

(CDN; see below) for a total of 41 diseases. We used a Perl script

to choose diseases at random from among all diseases in the cate-

gories. We examined the diseases manually by assessing each HPO

termmentioned at least once in any abstract describing the disease

in question (thus, we evaluated substantially more HPO terms
114 The American Journal of Human Genetics 97, 111–124, July 2, 20
than merely the set of terms chosen by our annotation pipeline

on the basis of frequency and specificity of the term). Biocuration

was performed by N.V., G.B., D.V., A.Z., M.H., and P.N.R., and all

annotations were validated by P.N.R., who is both a computer

scientist and a medical doctor. This allowed us to assess the true-

positive, false-positive, and false-negative rates as shown in Tables

S1–S41.
CDN
In order to validate and visualize the phenotype annotations ob-

tained for common disease, we constructed a CDN by computing

the pairwise similarity of a total of 1,678 diseases (i.e., annotated

MeSH entries) belonging to 13 DO categories such as ‘‘nervous

system disease’’ (DOID: 863) or ‘‘respiratory system disease’’

(DOID: 1579) (Figure S2). Note that some diseases belong to mul-

tiple DO classes (Figure S3).

For each disease, we obtained all the HPO annotations that our

CR algorithm had associated with the disease. The annotation fre-

quency of a term was defined as the proportion of diseases that

were annotated by the term or any of its descendent terms. In

order to calculate similarity between two terms ðt1; t2Þ, we used

the IC of their most informative common ancestor (MICA),3

denoted as MICAðt1; t2Þ:
We used the above-mentioned term-similarity measures to

calculate a semantic-similarity score for two diseases ðD1;D2Þ. In
our case, for each of the terms of D1, the ‘‘best match’’ among

the terms annotated D2 was found, and the average overall query

terms was calculated. This was defined as the similarity:

simðD1/D2Þ ¼ avg
hX
s˛D1

maxt˛D2
ICðMICAðs; tÞÞ

i
;

where the average was taken over all terms s to which diseaseD1 is

annotated. Note that this score is asymmetric, i.e., it is not neces-

sarily the case that simðD1/D2Þ ¼ simðD2/D1Þ. Therefore, for
the analysis described here, we used a symmetric similarity score:

simðD1;D2Þ ¼ 1

2
simðD1/D2Þ þ 1

2
simðD2/D1Þ:

The CDN consists of nodes that represent common diseases and

edges that indicate that two diseases are phenotypically similar. In

order to create the CDN, we calculated the symmetric similarity

score for all pairs of diseases. The network was visualized with

the force-directed layout algorithm of Cytoscape,42 whereby an

edge between nodes was drawn if the similarity between two cor-

responding diseases exceeded 2.0 (simulation cutoff [simcut]). The

final CDN (CDN-o) consisted of 1,148 diseases and 4,059 edges.
Statistical Significance of the CDN
In order to test the statistical significance of the distribution of

phenotypic similarity amongdiseaseswithin the samedisease cate-

gory or between different categories, we introduced the concept of

the gray-edge fraction (GEF). That is, we visualized edges between

nodes (diseases) that do not belong to one of the same 13 general

disease categories as gray edges. TheGEFwas defined as the propor-

tion of gray edges among all edges in the CDN. The lower the GEF,

the better the phenotypic clustering of diseases agrees with the

classification of the diseases into the 13 categories. The original

CDN (CDN-o) comprised 3,547 edges, 998 of which were gray

edges, corresponding to a GEF of 0.246 (red arrow in Figure S4A).

We tested two randomization procedures, edge randomization

(er) and annotation randomization (ar).
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The edge-permutation procedure retains the number of edges

and the degree distribution of the network.43 Two edges, A-B

and X-Y, are chosen at random and reshuffled to create the edges

A-Y and X-B. Reshuffling is skipped if the edges A-Y and X-B

already exist. Reshuffling is performed 10,000 times, resulting

is an edge-randomized version of CDN-o, which we call CDN-er

and for which we can again compute the GEF. We constructed

1,000 versions of CDN-er and plotted the distribution of the

resulting GEF values in Figure S4A. As one can see, the p value

of the CDN is less than 0.001 because none of the edge-

randomized CDNs achieved the same or a smaller GEF than the

original CDN.

We additionally performed a test in which we randomized

the HPO terms associated with each disease (ar). For this, we

randomly selected 50% of the terms associated with each disease

and replaced them with randomly selected HPO terms. We

computed the randomized CDN (called CDN-ar) by using the

above procedures used to construct the CDN-o. We repeated

this procedure 100 times and computed the GEF for each CDN-

ar. Note that each CDN-ar might not have the same amount of

nodes and edges as the CDN-o. When using the same simcut

(2.0) used for constructing the CDN-o, we obtained much smaller

networks (fewer than 100 nodes). The distribution of GEF values

of CDN-ar with simcut 2.0 is shown in Figure S4B. No CDN-ar

achieved a GEF less than or equal to the CDN-o GEF, which cor-

responds to a p value of less than 0.01. We modified the simcut to

1.4 because it leads to CDN-ar versions with approximately the

same amount of nodes as CDN-o. The distribution of the result-

ing GEF values is shown in Figure S4C. Again, not a single

CDN-ar constructed with a simcut of 1.4 achieved a GEF less

than or equal to the CDN-o GEF, which corresponds to a p value

of less than 0.01.
GWAS Data
GWAS Central provides a comprehensive collection of summary-

level genetic-association data and advanced visualization tools to

allow comparison and discovery of datasets from the perspective

of genes, genome regions, phenotypes, or traits.33 The project col-

lates association data and study metadata from many disparate

sources, including the National Human Genome Research Insti-

tute GWAS Catalog,35 and receives frequent data submissions

from researchers who wish to make their research findings pub-

licly available. All gathered and submitted data are extensively

curated by a team of post-doctoral genetics researchers who

manually evaluate each study for its range of phenotype content

and apply appropriately chosen MeSH terms. As of December

2014, the resource contained 69 million p values for over 1,800

studies.

Data and metadata for up to 1,000 associations can be freely

downloaded from the BioMart-based system (GWAS Mart), and

larger custom data dumps (up to and including the complete data-

base) are available via contacting the GWAS Central development

team and agreeing with a data-sharing statement. Thus, to provide

data for the present study, we generated a tab-separated file repre-

senting 1,574 studies and 34,252 unique SNPs (annotated to 675

unique MeSH terms) and containing the GWAS Central study

identifier, PubMed identifier, dbSNP ‘‘rs’’ identifier, p value, and

MeSH identifier for all associations with p < 1 3 10�5. We

compiled the list of genes considered for our experiments by

retrieving the ‘‘mapped genes’’ column from the database SCAN

and identifying those genes corresponding to the GWAS Central
The A
SNPs. Where no mapped genes were reported, we used the up-

stream, as well as downstream, genes listed by SCAN.44
Results

Generation of Phenotype Annotations for Common

Disease by CR

We applied a phenotype-aware CR system (the Bio-LarK

Concept Recognizer40) to all available abstracts in PubMed

in order to extract phenotypic annotations for common

diseases. We first retrieved the MeSH terms associated

with PubMed abstracts and used them to retain only those

abstracts focused on diseases. 5,136,645 of 22,376,811 arti-

cles listed in PubMed had an abstract and could be assigned

to such a MeSH disease term (see Material and Methods for

a description of our inclusion criteria for MeSH disease

entries; a total of 3,145 diseases were included). Second,

we applied CR on the resulting set, after which a total of

930,805 HPO annotations were assigned to 3,145 common

diseases. Finally, we filtered this initial set of HPO terms, by

using a ranking-and-clustering method with the aim of

maximizing the F-score computed on a manually curated

gold-standard set of 41 common diseases (see Material

and Methods). This approach aims to maximize the text-

mining accuracy, defined as the harmonic mean of the

precision and recall of the derived annotations. This final

set comprised 132,006 HPO annotations covering 4,459

unique HPO terms. The mean number of annotations per

disease was 41.97 (range, 1–271; median, 32) and consisted

of terms belonging to all of the top-level HPO categories

(Figure S5). Figure 2 provides an overview of the analysis

procedures used to generate and validate the common-

disease annotations.

As an example, Table S1 lists the annotations produced

for ‘‘giant cell arteritis’’ (MeSH: D013700), which includes

terms such as ‘‘vasculitis’’ (HP: 0002633), ‘‘granulomatosis’’

(HP: 0002955), and ‘‘amaurosis fugax’’ (HP: 0100576). The

annotations are highly accurate, although some nuances

are not detected by the CR process. For instance, ‘‘facial

palsy’’ (HP: 0010628) and ‘‘renal amyloidosis’’ (HP:

0001917) are classic manifestations of giant cell arteritis.

The list of phenotypic manifestations is by no means com-

plete, given that it failed to identify manifestations such

as ‘‘dysphagia’’ (HP: 0002015), ‘‘trismus’’ (HP: 0000211),

and ‘‘encephalopathy’’ (HP: 0001298). Nonetheless, the

CR process was able to capture a largely accurate subset

of phenotypic abnormalities for giant cell arteritis, such

that 64% of the annotations were true positives.

We estimated the overall quality of the HPO annotations

by inspecting the automatically extracted annotations for a

set of 41 commondiseases randomly chosen from13upper-

level DO45 categories that had a MeSH disease identifier

and thus could be analyzed analogously to the common

MeSH diseases. The process involved manually validating

of all HPO annotations extracted by the CR process and

comparing them to the results of detailed manual curation
merican Journal of Human Genetics 97, 111–124, July 2, 2015 115
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Figure 2. Overview of CR and Bioinformatic Analysis
The analysis was performed in several major steps. (1) Bio-LarK was used to analyze the PubMed-MEDLINE 2014 corpus, which resulted
in a total of 5,136,645 abstracts annotated with MeSH terms and phenotypic features. (2) For each of 3,145 resulting diseases, the fre-
quency and specificity of HPO terms found in the abstract were used for inferring phenotypic annotations. (3) These annotations were
used for producing disease models for each of the diseases. (4) Medical validation of the annotations was performed on the basis of
disease, phenotype, and SNP annotations in GWAS Central for phenotype sharing in common disease. (5) Validation with OMIM,
Orphanet, and DO was used for assessing phenotype sharing between rare and common diseases linked to the same locus.
for the estimation of the true- and false-positive and the

false-negative rates. We note that it is not informative to

calculate a true-negative rate across the entire HPO because

even if the CR process flags several hundred terms, the great

majority of the over 10,000 HPO terms will be true nega-

tives. We found that maximizing the overall F-score (i.e.,

the harmonic mean of precision and recall) led to a mean

F-score of 45.1% (i.e., a mean precision of around 60%

accompanied by a mean recall of around 40%). In separate

experiments, we found that a CR run with parameters de-

signed tomaximize theprecision ineachof the13categories

achieved ameanprecisionof 66.8% (datanot shown).How-

ever, we chose to use the annotations derived from the

F-score procedure for the remainder of the analysis. The

complete setof annotations associatedwith the41common

diseases, including flags for true positives, false positives,

and false negatives, can be found in Tables S1–S41.

A Common-Disease Phenotypic Network

As a first test of the medical validity of the HPO annota-

tions for common-disease phenotypes, we visualized the

network of phenotypic similarity of a subset of 1,678 dis-

eases, such as ‘‘nervous system disease’’ (DOID: 863) or

‘‘respiratory system disease’’ (DOID: 1579), belonging to

13 DO categories. 1,148 of the 1,678 diseases showed at

least one connection to another disease (phenotypic simi-

larity score above a threshold of 2.0), and thus the final

CDN comprised 1,148 diseases. Phenotypic relationships
116 The American Journal of Human Genetics 97, 111–124, July 2, 20
between these diseases are shown by the linking of all

pairs of diseases exceeding the threshold similarity score

(Figure 3). Although generated independently of the disor-

der classes, the resulting phenotypic network clearly dis-

plays clusters corresponding to the disease categories.

We then constructed randomized phenotypic networks

as described in the Material and Methods and calculated

the number of links between diseases from the same dis-

ease category. We found that the observed correlation

between network connections and disease class is highly

significant (Figure S4). Thus, the phenotypic network of

common diseases, as defined by the HPO, is made up of

dense clusters of shared phenotypic features that show

characteristic patterns of interconnections between

selected areas of the phenotypic continuum, just as we

had previously observed for Mendelian diseases.2 The

high correlation between the computationally created

network clusters and the manually curated disease classifi-

cations provides further evidence that the automatically

created annotations are clinically meaningful and provide

a largely correct description of the disease in question.

Phenotypic and Genetic Overlap across Complex

Diseases

GWASs have been performed for a wide range of common

diseases and traits, and over 6,000 strong SNP associations

ðp < 10�8Þ have been identified.35 Variation at multiple

genetic loci collectively influences the likelihood of
15
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Figure 3. Phenotypic Network of Common Disease
A total of 1,678 common diseases could be mapped to at least one of 13 top-level DO categories (Figures S5 and S6). 1,148 of these dis-
eases displayed a connection to another disease with a phenotypic similarity score of at least 2.0. They are shown as a node in the graph
and are colored according to membership in the upper-level disease categories. The thickness of the connections between the nodes
reflects the degree of phenotypic similarity
developing many common and complex diseases; for

instance, it is estimated that that about 8,300 independent

and predominantly common SNPs contribute to risk for

schizophrenia46 (MIM:181500).Although thegenetic archi-

tecture is likely to differ for different diseases, often the trait

architecture consists of a few loci of relatively large effect and

many additional loci that have a very small effect on pheno-

type.47 To understand the genetics of complex disease, it is
The A
important to consider the phenotypic and genetic overlap

among diseases. For instance, susceptibility loci that are

common to both multiple ulcerative colitis and Crohn dis-

ease have been identified by GWASs, and some of these

loci are even shared with several other autoimmune disor-

ders.48 Similarly, several psychiatric disorders share risk

loci.49 The study of the distribution of overlapping loci

within a group of diseases might suggest shared pathways
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Figure 4. Phenotype-SNP Network
For constructing this network, individual HPO terms were connected to SNPs if the SNP was significantly associated with a disease char-
acterized by the HPO term in question. For instance, the SNP rs5029939 is significantly associated with both Sjögren syndrome51 and
systemic lupus erythematosus.52 The diseases also share a number of phenotypic features, including ‘‘antinuclear antibody positivity’’
(HP: 0003493) and ‘‘xerostomia’’ (HP: 0000217). A small and particularly dense subset of the network wasmanually chosen. The network
is centered on ten HPO terms representing clinical features that are common in autoimmune diseases.
and common pathogenetic features.23 On the other hand,

the lack of overlap of other loci could help to identify path-

ogenic mechanisms that are unique to specific diseases and

could help to explain phenotypic diversity across the spec-

trum of diseases in fields such as autoimmunity or psychia-

try.50 The computational resources presented here offer a

tool for comprehensivelymeasuring the phenotypic overlap

of a wide range of common diseases that share risk loci.

Fromthe total of 16,152unique SNPs, 863wereassociated

with more than one disorder, and the total number of

unique disorders was 300. 673 SNPs were associated with

two disorders, 130 were associated with three, and 60 were

associated with more than four (Figure S6). 577 of these

SNPs were associated with a total of 79 unique diseases in

our corpus and were used for the following analysis.

The mean Jaccard index for the pairwise comparison on

the 577 SNPs was 0:25150:132. That is, for each pair of

SNPs, the phenotypic annotations of the corresponding

diseases were compared to each other with the extended

Jaccard index (Figure S1). Randomly chosen disease com-

parisons from the existing pool of MeSH diseases displayed

a significantly lower overlap of 0:130 5 0:094 ( p ¼
2:29310�57, paired t test). Our results show a pervasive

phenotypic sharing among complex diseases that are also

associated with the same SNP. As an example, we show an

excerpt of thephenotype-SNPnetwork centeredonautoim-
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mune phenotypes. Ten phenotypic abnormalities observed

inpersonswith thesediseases are showntogetherwithSNPs

associated with one or more diseases displaying these fea-

tures, such as Sjögren syndrome (MIM: 270150) and sys-

temic lupus erythematosus (MIM: 152700). It can be seen

that there is a dense interconnected network of phenotypes

and SNPs (Figure 4). These results extend recent findings

concerning a human disease-symptom network based on

322 individual symptoms extracted from MeSH.53 We pro-

vide a CDN browser that allows users to navigate through

the network of common diseases that are interconnected

by phenotypic similarity (Figure S7).

Phenotypic and Genetic Overlap across Complex and

Mendelian Diseases

Numerous, highly penetrant mutations in individual

genes have been identified in thousands of Mendelian dis-

eases. Common variants associated with complex diseases

are enriched in genes mutated in Mendelian diseases.54 For

instance, certain mutations in presenilin 1 (PSEN1) cose-

gregate with early-onset familial Alzheimer disease55

(MIM: 607822), whereas variants in the PSEN1 promoter

are associated with increased risk for complex (non-Men-

delian) Alzheimer disease.56 Similarly, common polymor-

phisms associated with blood lipoprotein concentrations

are often located in the genomic vicinity of genes
15



Table 1. Phenotypic Overlap between Rare and Complex Disorders

Gene: Associated Rare Disease Reference SNP: Complex Disease Common HPO Terms

CD247: immunodeficiency due to defect in CD3-z
(MIM: 610163)

rs840016: rheumatoid arthritis59 edema (HP: 0000969),
arthralgia (HP: 0002829),
arthritis (HP: 0001369),
autoimmunity (HP: 0002960)

FSHR: ovarian hyperstimulation syndrome (MIM: 608115)
and ovarian dysgenesis 1 (MIM: 233300)

rs2268361: polycystic ovary syndrome60 abnormality of the ovary (HP: 0000137),
decreased fertility (HP: 0000144),
primary amenorrhea (HP: 0000786)

PPARG: lipodystrophy, familial partial, type 3 (MIM: 604367) rs13081389: type 2 diabetes mellitus61 hyperglycemia (HP: 0003074),
hyperinsulinemia (HP: 0000842),
hypertension (HP: 0000822)

LPL: type I hyperlipoproteinemia (MIM: 238600) rs295: metabolic syndrome X62 hypercholesterolemia (HP: 0003124),
hyperlipoproteinemia (HP: 0010980),
coronary artery disease (HP: 0001677),
pancreatitis (HP: 0001733)

LRRK2: Parkinson disease 8 (MIM: 607060) rs34778348: Parkinson disease63 rigidity (HP: 0002063),
bradykinesia (HP: 0002067),
dementia (HP: 0000726),
resting tremor (HP: 0002322)

HCN4: sick sinus syndrome 2 (MIM: 163800) rs7164883: atrial fibrillation arrhythmia (HP: 0011675),
tachycardia (HP: 0001649),
sinus brachycardia (HP: 0001688)

HYDIN: ciliary dyskinesia, primary, 5 (MIM: 608647) rs12149070: COPD64 respiratory tract infection (HP: 0011947),
respiratory insufficiency (HP: 0002093),
bronchiectasis (HP: 0011947)

GWAS hits localized in the vicinity of Mendelian-disease-associated genes could be associated with common diseases that have phenotypic overlaps with the
corresponding Mendelian diseases. Seven examples in which common and rare diseases linked to neighboring loci and showed substantial phenotypic overlap
were manually chosen. The protein-coding gene associated with the rare disease, as well as the accession number of the polymorphism located in non-coding
sequence near the gene, is shown. The following abbreviation is used: COPD, chronic obstructive pulmonary disease.
associated with Mendelian disorders of lipoprotein meta-

bolism, such as ABCG8, LCAT, APOB, LDLR, PCSK9,

CETP, LPL, LIPC, and ABCA1.57,58 We therefore reasoned

that the phenotypic-genetic overlap might be a general

tendency for rare and common diseases located at the

same genetic locus. As per the method described above,

we examined 485 genes shared between the complex-

(GWAS) and rare-disease datasets. GWAS SNPs were previ-

ously mapped to genes with SCAN.44 In a manner similar

to that used in the common-disease-phenotype experi-

ment, we then measured the phenotypic overlap between

the complex diseases from GWAS Central33 and rare, Men-

delian diseases associated with the genes in question. The

overlap measure used in the experiments was the Jaccard

index and was computed in the same manner as in the

case of the complex-disease overlap. This resulted in a

mean value of 0:02750:032, which was higher than the

corresponding value for randomized pairs of common

and rare disease (same procedure as above), 0.021 5

0.023 ( p ¼ 1:6310�7, paired t test). Table 1 shows some ex-

amples of GWAS hits that are linked to genes in which mu-

tations cause Mendelian diseases with phenotypic overlap.
Discussion

Translational research in Mendelian diseases has benefited

enormously from databases of the phenotypic features
The A
associated with individual diseases, such as OMIM,65

Orphanet,66 and more recently the HPO.1,2 Analysis of

such data has led to the idea that diseases that display

similar phenotypic features are caused by mutations in

functionally related genes. For instance, genetically hetero-

geneous diseases such as Fanconi anemia, Bardet-Biedl syn-

drome, or Usher syndrome are related to mutations in

genes of a single biological module. Such modules can be

a multiprotein complex, a pathway, or a single cellular or

subcellular organelle.67–70 To date, however, it has been

difficult to perform analogous research on complex-disease

phenotypes because resources to carry out comparable an-

alyses have been lacking.

GWASs emerged in the first decade of the new

millennium as a powerful tool for elucidating the genetic

architecture of common disease.33,35 The advent of clinical

whole-genome sequencing71 (WGS) is promising to lead to

personalized genomic medicine. It is becoming apparent

that precise phenotype analysis can substantially improve

the ability to interpret the results of NGS. In rare diseases,

for instance, diagnostic NGS yields plausible candidate var-

iants in several genes, and making diagnoses will require

that the consequences of these variants be analyzed and

integrated with clinical findings.72 In fact, using the HPO

to analyze phenotypic data has been shown by multiple

groups to improve the ability of NGS-based methods to

identify candidate disease-associated genes and make clin-

ical diagnoses.5–11,21 These methods have been tested on
merican Journal of Human Genetics 97, 111–124, July 2, 2015 119



exomes and large NGS gene panels. In contrast, WGS pro-

vides a nearly comprehensive view on non-coding varia-

tions, a class of variation that makes up the majority of

known risk factors for common disease.35 WGS currently

cannot be used reliably for the prediction of common

disease in a clinical diagnostic setting.73 However, this

is increasingly becoming a topic of bioinformatics

research37,74,75 and is likely to increase in importance as

large-scale efforts such as the UK’s 100,000 Genomes Proj-

ect begin to produce and interpret data. We speculate that

phenotype analysis will be just as beneficial to WGS-based

diagnostics of common disease as it has been shown to

be for rare disease.5–11,76,77 One area of particular interest

stems from the observation that genes harboring common

variants associatedwith a commondiseasemight also carry

large-effect mutations in a subset of individuals at the ex-

tremes of the trait. For instance, the polymorphism

rs6817105, which is located about 167,000 nt upstream of

PITX2, was found to be associated with atrial fibrilla-

tion.78 More recently, a de novo nucleotide substitution

in the promoter region of PITX2 (319 nucleotides upstream

of the transcription start site)was identified inan individual

with severe atrial fibrillation.79 Observations such as this

and those summarized in Table 1 suggest that rare-disease

phenotypes will be extremely useful in evaluating the

findings of WGS performed on individuals with common,

complex diseases and underline the utility of annotating

rare and common diseases with a common phenotype

ontology.

To generate the resource, we developed a statistical

framework to evaluate the pattern of co-occurrences of

HPO terms (phenotypic features) and diseases in PubMed

abstracts. Previous efforts in the field of clinical text min-

ing have shown the enormous promise of data extraction

from articles or electronic health records (EHRs) for trans-

lational research; one of the keys to tapping this resource

lies in the ability to reliably extract clinical information

from the EHRs by text mining and other methods.80

For instance, phenome-wide association scans (PheWASs)

search EHRs for disease-gene associations by using the In-

ternational Classification of Disease (ICD9) billing codes,

which are available in most EHR systems, and have

been shown to be able to replicate findings of traditional

GWASs and identify novel associations.81,82 Other groups

have used EHR data to detect adverse medication interac-

tions.83 The project presented here had different goals, in

that we developed a statistical model to infer the spectrum

of phenotypic abnormalities that characterize diseases

rather than to classify individuals’ records according to

whether a certain disease was present or not (as has been

the case for the majority of the PheWASs and similar

studies published to date; we note that many of these

studies utilized the word ‘‘phenotype’’ to refer to a disease

entity, whereas our study has examined the individual

phenotypic features of diseases).

The algorithms we developed to derive disease models

from the annotation patterns of PubMed abstracts com-
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bined a number of components, including (1) semantic

CR (Bio-LarK40); (2) an adaptation of the TFIDF method,

whereby diseases take the place of documents, and the

‘‘document frequency’’ of individual HPO terms is calcu-

lated from the number of abstracts containing the term;

(3) an evaluation of the IC of individual HPO terms for

calculating the semantic similarity84,85 between terms;

and (4) a heuristic graph clustering method that attempts

to extend seed terms with particularly high TFIDF values

to create a dense phenotypic network. This allowed us to

develop annotations for over 3,000 common, complex dis-

eases, and we demonstrated the potential utility of the

resource by an analysis of phenotypic overlap between

common and rare disease, as well as between complex dis-

eases that share one or more genetic associations. The plat-

form we have made available, together with the data, is in

itself a valuable resource for the community. In addition to

providing a way to download the data in a tab-separated

form, or to access it programmatically via application pro-

gramming interfaces, the website also enables a pheno-

type- and disorder-centric browsing of MEDLINE abstracts

and browsing within the CDN (Figure S7). This resource

could be useful for physicians who are caring for persons

with a given disease and who present with a particular

manifestation or complication of that disease (denoted

by an HPO term). The browser will present all PubMed ab-

stracts that were identified in our study and that describe

both the disease and the phenotypic manifestation, which

might provide information that could be helpful in clinical

management.

There are several limitations of the common-disease an-

notations that we have presented here. First and foremost,

the annotations were derived by a computational CR (text-

mining) process and contain both false-positive and false-

negative annotations. The HPO project, which is being

developed as a part of the Monarch Initiative, will be

actively revising and expanding the annotations and

developing new areas of the ontology itself as needed for

the analysis of common disease, much as it has been doing

in the field of rare diseases since 2007.1,2 Several character-

istics of particular importance to common diseases, such as

the past medical history and the time course of disease, are

not currently well captured by the computational data

structures and algorithms that have been developed for

rare disease and will need to be established in future

work. The results of the analysis of phenotypic overlaps

are highly statistically significant but do not provide proof

of a common pathophysiological basis of the diseases

involved. However, we contend that the results we have

presented in this manuscript demonstrate that the com-

mon-disease HPO annotations can be used for the compu-

tational analysis of phenotypic abnormalities across a pre-

viously unheard-of range of rare and common diseases,

including over 7,000 rare diseases and 3,145 common dis-

eases. To the best of our knowledge, there is no comparable

computational resource that provides both an extensive

phenotype ontology and annotations to over 10,000
15



diseases, as well as an algorithmic basis for calculating the

similarity between arbitrary sets of phenotypic abnormal-

ities and specific diseases3 and a foundation for transla-

tional research on topics such as cross-species phenotype

mapping.6,23

The HPO project has been under development since

2007 and hasmainly focused on rare and primarilyMende-

lian diseases.1,2 The work presented here provides users

with over 132,000 phenotypic annotations for 3,145 com-

mon diseases derived via text mining. It is hoped that these

annotations, as well as the underlying HPO terms, will be

useful for both clinicians and researchers. Future work

will include biocuration efforts to validate and extend

the current set of annotations, to add metadata such as

the age of onset, severity, clinical course, and response to

treatments, and to extend the HPO to provide an even

broader range of terms for the manifestations of complex

disease, with the intention of providing a comprehensive

resource for translational bioinformatics across the entire

spectrum of human disease.
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