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Medical diagnosis can be performed in an automatic way with the use of computer-based systems or algorithms. Such systems
are usually called diagnostic decision support systems (DDSSs) or medical diagnosis systems (MDSs). An evaluation of the
performance of a DDSS called ML-DDSS has been performed in this paper. The methodology is based on clinical case resolution
performed by physicians which is then used to evaluate the behavior of ML-DDSS. This methodology allows the calculation of
values for several well-known metrics such as precision, recall, accuracy, specificity, and Matthews correlation coefficient (MCC).
Analysis of the behavior of ML-DDSS reveals interesting results about the behavior of the system and of the physicians who took
part in the evaluation process. Global results show how the ML-DDSS system would have significant utility if used in medical
practice. The MCC metric reveals an improvement of about 30% in comparison with the experts, and with respect to sensitivity
the system returns better results than the experts.

1. Introduction

In medical practice, “differential diagnosis” is a systematic
approach to determine, based on evidence, the underlying
cause of a set of observed symptoms where there are several
plausible alternative explanations, and/or to reduce the list of
possible diagnoses.

Medical diagnosis can be performed in an automatic
way with the use of computer-based systems or algorithms.
Such systems are usually called diagnostic decision support
systems (DDSSs) or medical diagnosis systems (MDSs),
which fall under the more general category of clinical
decision support system (CDSS). The aim of these types of
systems is to guide the physicians through the systematic
differential diagnosis process. Many CDSS systems are able
to provide results even when data is lacking, that is,

under uncertainty, and most importantly, they are not
limited in the amount of information they can store and
are designed to compute results in a few seconds. While
previous CDSS systems have often been highly specialized,
able to provide differential diagnoses about specific types
of diseases, infections, or disorders, this has also been their
limitation; they often cannot take into account symptoms or
observations outside of those they were designed to examine.
However, current computational capacity and the wealth of
readily available medical knowledge online make it plausible
to create more generalized knowledge bases containing a
wider range of medical facts, thus offering the opportunity
to create novel CDSS systems that provide diagnoses which
take into account a much broader range of observations than
traditional systems, and potentially even beyond those of a
specialist physician.
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It is known that errors occur at several stages of the
diagnostic process [1–3]. As such, the implementation of
DDSS is an important tool to support physicians dealing with
a broad range of diagnostic puzzles. However, if a DDSS is
used in real medical practice, and if a physician is expected
to rely on it to guide his own diagnoses, it is important to
ensure that the accuracy of the system is also sufficiently
high. As per Miller et al. [4], a critical area relevant to all
medical diagnosis decision systems (MDDSs) is validation,
evaluation, and ongoing quality assurance, with accuracy
being the most important metric to be evaluated [5, 6].

In this paper we present an evaluation of multilevel
diagnosis decision support system (ML-DDSS). ML-DDSS
was developed with the aim of demonstrating the application
of semantic technologies [7] to the creation of medical
expert systems. The system is capable of dealing with
multilevel diagnoses and provides accurate results based
on the evaluation performed here. The system has been
designed with the aim of providing diagnoses even in
unfavorable conditions, for example, when the number of
available observations is limiting, and as such ML-DDSS
represents a high-sensitivity medical diagnosis system. This
analysis is focused on the results provided by the system,
the implication of those results, and a comparison of those
results with expert clinical diagnoses of the same cases. A
deeper evaluation of the system is conducted using four
specific diseases (two common and two less common) which
are contained in the knowledge base of ML-DDSS.

The remainder of the paper is organized as follows.
Section 2 outlines relevant literature in the area, focusing
on case studies of medical diagnosis systems. In Section 3,
ML-DDSS is introduced with a brief explanation about the
internal behavior of the system. Section 4 presents the main
results obtained in the evaluation of the system, and these
are discussed in comparison with results provided by the
physicians involved in the evaluation process. Conclusions
and future work are discussed in Section 5.

2. State of the Art

Many case studies of medical diagnosis systems have been
reported in the literature. The first prominent computer-
based clinical consultation system was MYCIN [8] which was
designed to function as an aid for infectious disease diagnosis
and therapy selection, with an initial emphasis on bacter-
aemias. Subsequently, other researchers developed medical
diagnosis systems such as INTERNIST-I [9], DXplain [10],
Isabel [11], Iliad [12], MDX [13], DiagnosisPro [14], and
DiagnosMD [15]. These latter medical diagnosis systems
explored multiple and complex diagnoses spanning a variety
of different medical fields. For example, INTERNIST-I and
Iliad are a computer-assisted diagnosis system for internal
medicine; DXplain provides access to a medical diagnosis
knowledge base via a nationwide computer communications
network; Isabel is a recent Web-based clinical decision
support system designed to suggest the correct diagnosis in
complex medical cases involving adults; MDX is an experi-
mental medical diagnosis system, which currently diagnoses

the syndrome called cholestasis; DiagnosisPro is a Web-
based medical diagnosis system that provides diagnostic
possibilities for 11,000 diseases and 30,000 findings; finally
DiagnosisMD attempts medical diagnosis by combining a
set of data (symptoms, signs, abnormal test results, Rx
data, among others) together with the country, gender, and
age of the patient, offering a list of possible diseases using
artificial intelligence techniques to refine the diagnosis. In the
majority of the aforementioned medical diagnosis systems,
different tests were applied in order to measure criterion
such as accuracy and sensitivity (to mention only two);
however the results suggested that the resulting diagnoses
were not sufficiently reliable for clinical applications. The
MYCYN therapy recommendations met Stanford experts’
standards of acceptable practice only 90.9% of the time,
with some variation noted both among individual experts
and between Stanford experts and others. INTERNIST-I
presented specific deficiencies that needed to be overcome,
such as the program’s inability to reason anatomically or
temporally, explain its reasoning process, and its failure to
construct differential diagnoses spanning multiple problem
areas. Among the more successful, Isabel suggested correct
diagnosis in 48 of 50 cases (96%) with a response time of 2-
3 seconds. Moreover, Isabel suggested the correct diagnosis
in almost all complex cases involved, particularly with key
finding entry. Conversely, tests carried out on Iliad revealed
that medical students made fewer diagnostic errors than
the automated system and more conclusively confirmed
their diagnostic hypotheses when they were tested in their
trained domain. However, there is not any information about
multilevel diagnosis capabilities of this system.

Outside of accuracy measurements, other studies mea-
sure the acceptance, performance, and evaluation of the use
of medical diagnosis systems. In [16] the results indicated
that physicians are accepting these kinds of applications
that enhance their patient management capabilities, but
tend to oppose applications in which they perceived an
infringement on their management role. In [17] controlled
clinical trials assessing the effects of computer-based clinical
decision support systems (CDSSs) on physician performance
and patient outcomes were systematically reviewed. In [18]
a study was carried out to examine how the information
provided by a diagnostic decision support system, for clinical
cases of varying diagnostic difficulty, affects physicians’
diagnostic performance. In the aforementioned studies, the
results emphasize two disparate aspects regarding the use
of CDSSs: (1) the physicians’ diagnostic performance can
be strongly influenced by the quality of information and
the type of cases involved, and (2) there is a need for
human-like interactive capabilities in the CDSS to improve
acceptance and use. In [19] a performance evaluation
was conducted between four computer-based diagnostic
systems. This evaluation was carried out against a set of 105
diagnostically challenging clinical case summaries involving
actual patients from ten clinicians. The evaluation results
provided a profile of the strengths and limitations of these
computer programs. As limitations, the physicians noted the
difficulty in identifying the relevant information provided
by the systems and filtering the irrelevant information
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Figure 1: DCM model.

produced. Another study evaluating the performance of
diagnosis systems was described in [20] where the authors
analyzed the use of Google as a diagnostic aid tool. The
results reveal that Google was capable of finding a correct
diagnosis in 15 (58%, 95% confidence interval 38% to 77%)
cases from the 26 evaluated. In [21], the authors examined
how effectively the information provided by a diagnostic
system influences the diagnostic performance of a physician.
This analysis was performed with a sample of 67 internists
using the QMR decision support system to assist them in the
diagnosis process of existing clinical cases. The results reveal
that diagnostic performance of physicians was significantly
higher (P < 0.01) on the easy clinical cases and on those cases
in which QMR could provide high-quality information.

Over the last years, other works have approached the
development of medical differential diagnosis and therapy
systems using computational intelligence techniques [22].
These include combined techniques such as neurofuzzy
methods [23] that derive fuzzy rules from a set of training
data, the application of genetic algorithms (GAs) for rule
selection [24], or the unification of genetic algorithms with
fuzzy clustering techniques [25]. Nevertheless, few systems
address the problem of multilevel diagnosis. Of those that do,
the ADONIS approach [26] presents a partial solution to the
multilevel diagnosis problem based on the use of description
logics, with interesting results but several limitations of the
diagnosis process such as not being able to perform normal
diagnosis because of the modifications done to perform
multilevel diagnosis. The SEDELO approach [27] is similar
to ADONIS in that it offers solutions based on description
logics, but puts a special emphasis on measurement of the
temporal efficiency, as well as addressing the aforementioned
limitations of ADONIS.

As can be seen from these related works, there remains
a lack of systems and evaluations of systems which provide
multilevel diagnosis decision support. In this work we pro-
vide an evaluative case study of the application of a recently
created multilevel diagnostic system, ML-DDSS, paying
special attention to the implications of the evaluation results
from both the perspective of potential users (physicians) as
well as from the design of the system itself.

3. ML-DDSS

The main aim of ML-DDSS is to demonstrate the application
of semantic technologies to the creation of expert systems
applied to the medical diagnostic process. As described
in detail previously [28] ML-DDSS was developed using
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Figure 2: Multilevel DCM model.

a knowledge base where the main entities in the diagnos-
tic process included findings (signs and symptoms) and
diagnostic tests. The use of such clinical entities is shared
with a wide variety of other medical knowledge bases and
ontologies [29–31]. However, in addition, the ML-DDSS
system takes into account additional clinical features such
as the drug regime of the patient in order to calculate
which diagnostic alternatives could be discarded due to, for
example, drug interactions [32]. While other data elements
such as clinical history are certainly relevant to the diagnosis
model, these three items—findings (symptoms and signs),
tests, and drugs—are considered particularly relevant for
performing accurate diagnosis [33]. The internal behavior
of the system has been previously explained and discussed
[27, 33, 34].

3.1. Multilevel. The ability to deal with multilevel diagnosis
is one of the most interesting aspects of ML-DDSS. The
concept of multilevel diagnosis emerges when a disease
can be assumed to be a diagnostic element of another
disease (acting as a finding). To clarify this, Figures 1 and
2 compare a simple DCM (diagnostic criteria model) with
a multilevel DCM. Figure 2 diagrams the case where the
diagnostic criterion of a disease can include combinations of
other diseases, along with additional findings and diagnostic
results.

As a concrete example, Figure 3 shows a reduced (but
realistic) multilevel representation of the model of common
cold, where laryngitis is a diagnostic indicator of common
cold, but in turn has its own diagnostic observations such as
sore throat, cough, and aphonia.

In Figure 3, we have a multilevel representation of a
disease where the maximum level of depth is n = 2, given
that we start at level 0 in the main disease (common cold)
and we go one level in depth through the laryngitis.

In this paper, we evaluate a system that bases its
diagnostic rationale on the assumption that, from a medical
perspective, a disease (container) can contain another disease
(content) as diagnostic criteria (or contain the findings
indicative of that content, which is equivalent). In this case,
there is a degree of uncertainty about whether a finding
is present or not, and as such, it is necessary to create a
mechanism that allows diagnosis of a disease through the
findings of another disease. Hence, multilevel diagnosis is
one of the main features of this study because it mirrors
the true nature of diseases and their associated findings. The
ability to create models and systems which can deal with this
problem is very important in order to be able to develop
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Figure 3: Real representation of multilevel approach.

accurate diagnosis systems. The current model and system
have been designed with this aim as a primary goal.

3.2. Sensitivity. High sensitivity refers to the ability of the
system to return results even when the number of inputs is
at a minimum (n >= 1). High sensitivity systems identify
all possible solutions matching the input parameters, even
when these solutions have a very low probability. These
characteristics are advantageous in clinical settings where,
in practice, not all data are available to the diagnostic
system, and a treatment decision must nevertheless be made;
however, such systems have some obvious disadvantages.
In particular, with a low number of inputs, and or if
those inputs are of low diagnostic specificity (e.g., fever or
headache among others), the number of outputs that the
system will produce can be very large and therefore of little
value in determining the correct diagnosis. This drawback,
however, can be addressed using several techniques, the most
common being a probabilistic classification of the results
[35].

3.3. Evaluation Methodology. The methodology used to
evaluate the system is based on the solution of clinical cases,
using physicians’ diagnosis as a gold standard. Figure 4 shows
a graphical representation of the evaluation process.

In Figure 4, a set of evaluative clinical cases are created
by the researchers who developed ML-DDSS. The general
format and content of the cases is represented by the
following specific case.

A 50-year-old man arrived to the medical center referring
symptoms of asthenia, diarrhea, nausea, and vomiting. The
patient also suffers vitiligo and hypoglycemia. The patient
has lost weight in the last weeks. In the medical center a
blood-pressure measurement is done, giving as result a low
blood pressure. The diagnostic tests did indicate a decrease in
the levels of sodium in the blood, chloride, and bicarbonate
and an increase of the potassium. Finally, a hormonal
analytics indicates that there is a deficit in aldosterone and
in the cortisol basal levels.

Once the cases are created, they are validated by an
expert (a physician), who ensures that the cases have been
correctly represented. Once the cases have been validated,
the researchers assign the clinical cases using a random
process (based on randomized controlled trial principles)

Table 1: Metrics calculus.

System/assessor

Positive Negative

Arbitration
Positive A (TP) C (FN)

Negative B (FP) D (TN)

to a set of assessors (physicians), who provide a differential
diagnosis for each clinical case, and the time involved to
reach this diagnosis. These results are first verified to ensure
that the diagnoses of the diseases provided by the assessors
are in the knowledge base of the system. This verification is
required because the knowledge base of ML-DDSS contains
a sample of only 24 diseases that could be diagnosed. Once
the verification process is completed, the diagnoses provided
by the assessors and the diagnosis provided by the ML-DDSS
system are provided to a set of referees. These referees are
then responsible for validating the diagnoses, marking each
one as either correct or incorrect. The final step is the analysis
and generation of the evaluation results, which is done
applying precision, recall (Sensitivity), accuracy, specificity,
and MCC (Matthews correlation coefficient [36, 37]). These
statistics can be applied over four combinations of data:
(1) results validated by referee 1 (R1), (2) results validated
by referee 2 (R2), (3) results validated by both referees
(intersection R1 ∩ R2), and (4) results validated by one of
the referees (union R1∪ R2).

The calculation of the different metrics is based on the
results provided by the system/assessors and the arbitration
process using a confusion matrix as provided in Table 1.

The calculus of these metrics is done using the following
formulas:

(i) Precision = TP/(TP + FP) = A/(A + B).

(ii) Recall = TP/(TP + FN) = A/(A + C).

(iii) Specificity = TN/(TN + FP) = D/(D + B).

(iv) Accuracy = (TP+TN)/(TP+TN+FP+FN) = A/(A+
B + C + D).

(v) MCC = (TP × TN − FP × FN)/((TP + FP) × (TP +
FN)× (TN + FP)× (TN + FN)).
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4. Evaluation Results

Twenty clinical cases were generated for the evaluation. The
evaluation process involved 5 assessors and 2 referees. Each
clinical case was assigned to three assessors. So, in summary,
the parameters of the evaluation were

(i) clinical cases: 20

(ii) number of assessors: 5

(iii) number of assessors per case: 3

(iv) cases per assessor: 12

(v) number of referees: 2.

The full results obtained from the evaluation can be
found online at [38]. A value of N/A in the tables is
interpreted as not applicable. In some circumstances, there
are diseases which were neither diagnosed by the assessors
nor the ML-DDSS system and therefore have no calculable
parameters.

4.1. Results of Entire Knowledge Base. Figure 5 summarizes
the results, showing the values obtained for the entire
system, in comparison with the five assessors (anonymized
as EX-NNNN in the figure columns). Given that the most
constrained calculation for the system is when the values
are calculated for the intersection of the arbitration, we have
used these as representative values.

When the accuracy is used as a traditional quality metric,
the system performs similarly to the best experts. However,
the results are quite different from one another, reinforcing
the need to use additional metrics in the evaluation. When
looking at the MCC, another value that tries to summarize
the overall quality, there is a difference of 30% between
system and experts. Although the global quality is being
measured, the MCC takes into account balance between
accuracy and specificity, which is worse in the experts than
in the system.

Although the experts were able to provide as many
diagnoses as they saw fit, their sensitivity is lower than the
automated system. The experts, however, performed better
than the system in the specificity metric. However, given that
both results are near 95% in the system, it is easier to perform
statistically worse than to perform statistically better. This
explains the fact that experts have a slight advantage in
specificity, while having an important disadvantage in the
sensitivity metric.

These results suggest that the system would be beneficial
as a supporting tool for experts, where the system can suggest
diagnostics and the experts can confirm them. This would be
similar to, for example, a pair of experts where one has the
highest sensitivity and the other has the highest specificity;
the combination would likely generate better diagnostics
than a lone expert. Finally, the precision is much lower
for the experts than for the system. Mathematically, this is
because the quotient TN (true negative)/TP (true positive) is
larger for the experts than for the system, which in practice
is because the number of TP is greater for the system (as
shown by higher sensitivity values). This has the unexpected

consequence that positive predictions from the system are
more likely to be true.

To determine if the observed differences are statistically
significant (�), Table 2 shows the results of applying a t-
test to the metrics. The differences between the assessors and
the system in precision, accuracy, and specificity were not
significant (�).

The conclusions are supported by small confidence
intervals for the system, indicating enough data has been
gathered to accurately perform the evaluation. It is difficult
to extract information about the precision given the wide
interval and overlap between experts and system. However,
it is possible to extract some conclusions from the MCC and
recall metrics, even with wide confidence intervals for the
experts, as they do not overlap. More experts or diagnostic
cases will be useful in order to narrow those intervals; but
the data is useful enough in its current form to draw several
conclusions.

4.2. Results for Common Diseases. For more frequent dis-
eases, the system can perform as well as experts, in some
cases with 100% accuracy as shown for influenza (Figure 6).
However, for gastroenteritis (Figure 7), the expert failed to
provide the diagnosis in some cases, as sensitivity does not
reach 100%. This can probably be attributed to rare cases
of the disease, as some experts missed the same cases. The
modeling may also be at fault; with only three symptoms
in the diagnostic rules for gastroenteritis, it is particularly
sensitive to a lack of evidentiary symptoms.

There are also important differences among the assessors,
particularly with respect to the MCC and precision metrics,
which suggests that the panel of physician evaluators have
different levels of familiarity with these diseases. These
interevaluator differences were consistent among most of the
common diseases, where the best experts in the influenza
case match the best in the gastroenteritis case. However, they
do not match the global results, which suggest that these
experts are worse at diagnosing less common diseases.

The specificity metric is the focal point of the analysis for
common diseases; high sensitivity is expected because these
diseases are almost always considered during an expert’s
differential diagnosis. Often, it is more preferable to have a
high specificity, in order to rapidly start considering other
options in the case where a common disease does not match.
Here, the system has surprisingly good results, showing
that experts may be biased towards overdiagnosing these
common diseases.

4.3. Results for Less Common Diseases. As predicted, there is
much less correlation among experts in the rare diseases case,
where experts tend to over, or underdiagnose the disease,
shown by dramatic differences between sensitivity (recall)
and specificity, depending on expert and disease. The results
of this behavior are shown for pneumonia (Figure 8) and
pyelonephritis (Figure 9). For both diseases, there was an
expert whose diagnoses closely matched the system.

It is possible to interpret these results as being indicative
of “niche” knowledge, where experts in that niche can
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System EX-KS0L EX-SK4V EX-KV8H EX-VH7Q EX-HQ3T
Precision 80.71% 66.74% 62.15% 65.63% 68.75% 64.03%
Recall 97.92% 77.43% 69.44% 67.01% 66.67% 71.32%

Accuracy 95.21% 91.67% 94.1% 95.14% 93.75% 90.63%

Specificity 94.65% 94.43% 97.96% 99.19% 99.62% 94.62%

MCC 93.59% 68.82% 57.64% 56.42% 60.48% 63.64%
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Figure 5: Results of the evaluation (comparison between system and all the assessors).

System EX-KS0L EX-SK4V EX-KV8H EX-VH7Q EX-HQ3T

Precision 100% 75% 100% 100% 100% 40%

Recall 100% 75% 100% 75% 100% 66.67%

Accuracy 100% 83.33% 100% 91.67% 100% 66.67%

Specificity 100% 87.5% 100% 100% 100% 66.67%

MCC 100% 81.25% 100% 90.82% 100% 64.64%
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Figure 6: Results for influenza.
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Table 2: Statistical results.

Mean Std. dev. Confidence interval t-test
Significant
differences

Precision
System

Assessors mean
0.8071
0.6546

0.29042
0.28082

0.6858–0.9285
0.5372–0.7719

(t(46) = −1.850, P < 0.05) �

Recall
System

Assessors mean
0.9792
0.7038

0.07058
0.31920

0.9497–1.0000
0.5704–0.8371

(t(46) = −4.127, P < 0.05) �

Accuracy
System

Assessors mean
0.9521
0.9306

0.06833
0.06997

0.9235–0.9806
0.9013–0.9598

(t(46) = −1.078, P < 0.05) �

Specifity
System

Assessors mean
0.9465
0.9716

0.08515
0.03590

0.911–0.9821
0.9566–0.9866

(t(46) = 1.331, P < 0.05) �

MCC
System

Assessors mean
0.9359
0.6187

0.08975
0.36329

0.8984–0.9734
0.4501–0.7873

(t(46) = −4.065, P < 0.05) �

System EX-KS0L EX-SK4V EX-KV8H EX-VH7Q EX-HQ3T

Precision 100% 50% 75% 100% 100% 66.67%

Recall 75% 100% 100% 66.67% 100% 100%

Accuracy 95% 83.33% 91.67% 91.67% 100% 91.67%

Specificity 100% 80% 88.89% 100% 100% 90%

MCC 92.01% 81.62% 90.82% 88.73% 100% 88.73%
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Figure 7: Results for gastroenteritis.

accurately diagnose the disease better than other experts.
Additionally, the system’s overall behavior is very similar to
the best expert for each disease, making it comparable to a
team of experts covering all disciplines.

Specificity and precision for these rare diseases are
generally high, as they usually require more symptoms to be
diagnosed, but surprisingly the experts do not rank much
higher than the system (which was designed to diagnose
a disease with just one matching symptom). The more
interesting metric for these diseases is sensitivity, as they can
be easily overlooked. In this case, the system shows a clear
advantage over the experts.

It is necessary to remark that these results are based
on the diseases presented in the examples. Sometimes, rare
diseases are characterized for having one or two findings
that show the real diagnosis, which means that if you know
this specific finding, it becomes easier to accurately diagnose,
but if the observation is lacking, then it is more difficult to
diagnose.

5. Conclusions and Future Work

The creation of medical diagnosis systems is a problem that
has been studied since the early 1960s. Several techniques
and technologies have been used in this field, including both

knowledge representation tools and algorithms that perform
the diagnosis. Most of the approaches are based on the
creation of expert systems which capture the knowledge of
a set of medical doctors in order to create a clinical decision
support system.

While multilevel diagnosis is a well-known approach in
the medical field, there are few computational approaches
paying special attention to this approach. In this paper we
provide an analysis of the results provided by a DDSS system,
paying special attention to the metrics that estimate the total
accuracy of the system.

The global results show how the DDSS system would
have significant utility when used in medical practice. The
MCC metric reveals an improvement of about 30% in
comparison with the experts. With respect to sensitivity it
is also interesting to note that the system returns better
results than the experts. As has been stated before, the results
confirm that the system would be a good companion for
experts, where the system can suggest diagnoses and the
experts can confirm them.

A more detailed analysis was conducted using four
diseases contained in the knowledge base of ML-DDSS.
Influenza and gastroenteritis, selected as common diseases,
and pneumonia and pyelonephritis selected to represent less
common diseases. Several interesting results were revealed
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System EX-KS0L EX-SK4V EX-KV8H EX-VH7Q EX-HQ3T

Precision 85.71% 66.67% 66.67% 100% 100% 80%

Recall 100% 100% 66.67% 66.67% 50% 100%

Accuracy 95% 83.33% 83.33% 91.67% 83.33% 91.67%

Specificity 92.86% 75% 88.89% 100% 100% 87.5%

MCC 94.61% 85.36% 77.78% 88.73% 81.62% 91.83%
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Figure 8: Results for pneumonia.

System EX-KS0L EX-SK4V EX-KV8H EX-VH7Q EX-HQ3T

Precision 75% 100% 100% 0% 100% 75%

Recall 75% 33.33% 100% 0% 50% 75%

Accuracy 90% 83.33% 100% 91.67% 91.67% 83.33%

Specificity 93.75% 100% 100% 100% 100% 87.5%

MCC 84.38% 76.11% 100% 0% 83.71% 81.25%
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Figure 9: Results for pyelonephritis.

by the analysis of these diseases, including the appearance of
“niche” experts from among the assessors. These individual
results, therefore, could be used to put together customized
diagnostic teams; the analysis of each disease returns very
valuable information about how proficient a specific physi-
cian is in diagnosing a specific disease. With this information,
it would be possible to create cooperative teams based on
their individual ability to diagnose a set of diseases.

Future research will be focused on individual analysis of
the diseases which make up the knowledge base to improve
the quality of the system. Such analyses would provide
valuable information that will allow modification of the
system’s inference rules to improve its accuracy.

References

[1] J. Kalra, “Medical errors: an introduction to concepts,” Clinical
Biochemistry, vol. 37, no. 12, pp. 1043–1051, 2004.

[2] J. Kalra, “Medical errors: impact on clinical laboratories and
other critical areas,” Clinical Biochemistry, vol. 37, no. 12, pp.
1052–1062, 2004.

[3] E. S. Berner and M. L. Graber, “Overconfidence as a Cause of
Diagnostic Error in Medicine,” American Journal of Medicine,
vol. 121, no. 5, pp. S2–S23, 2008.

[4] R. A. Miller, H. E. Pople Jr., and J. D. Myers, “Internist-
I, an experimental computer-based diagnostic consultant
for general internal medicine,” The New England Journal of
Medicine, vol. 307, no. 8, pp. 468–476, 1982.

[5] J. A. Swets, “Measuring the accuracy of diagnostic systems,”
Science, vol. 240, no. 4857, pp. 1285–1293, 1988.

[6] J. Huguet, M. J. Castineiras, and X. Fuentes-Arderiu, “Diag-
nostic accuracy evaluation using ROC curve analysis,” Scandi-
navian Journal of Clinical and Laboratory Investigation, vol. 53,
no. 7, pp. 693–699, 1993.

[7] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[8] V. L. Yua, B. G. Buchananb, E. H. Shortliffe et al., “Evaluating
the performance of a computer-based consultant,” Computer
Programs in Biomedicine, vol. 9, no. 1, pp. 95–102, 1979.

[9] R. A. Miller, H. E. Pople, and J. D. Myers, “Internist-I,
an experimental computer-based diagnostic consultant for
general internal medicine,” The New England Journal of
Medicine, vol. 307, no. 8, pp. 468–476, 1982.



Computational and Mathematical Methods in Medicine 9

[10] G. O. Barnett, J. J. Cimino, J. A. Hupp, and E. P. Hoffer,
“DXplain: experience with knowledge acquisition and pro-
gram evaluation,” Proceedings of the Annual Symposium on
Computer Application in Medical Care, no. 4, pp. 150–154,
1987.

[11] M. L. Graber and A. Mathew, “Performance of a web-based
clinical diagnosis support system for internists,” Journal of
General Internal Medicine, vol. 23, Supplement 1, pp. 37–40,
2008.

[12] M. J. Lincoln, C. W. Turner, P. J. Haug et al., “Iliad training
enhances medical students’ diagnostic skills,” Journal of Medi-
cal Systems, vol. 15, no. 1, pp. 93–110, 1991.

[13] S. Mittal, B. Chandrasekaran, and J. Smith, “Overview of
MDX-A system for medical diagnosis,” Proceedings of the
Annual Symposium on Computer Application in Medical Care,
no. 17, pp. 34–46, 1979.

[14] A. Aronson, “DiagnosisPro: the ultimate differential diagnosis
assistant,” Journal of the American Medical Association, vol.
277, no. 5, p. 426, 1997.

[15] DiagnosMD, “Software DiagnosMD,” 2012, http://www.diag-
nosmd.com/index.php.

[16] R. L. Teach and E. H. Shortliffe, “An analysis of physician
attitudes regarding computer-based clinical consultation sys-
tems,” Computers and Biomedical Research, vol. 14, no. 6, pp.
542–558, 1981.

[17] D. L. Hunt, R. B. Haynes, S. E. Hanna, and K. Smith,
“Effects of computer-based clinical decision support systems
on physician performance and patient outcomes: a systematic
review,” Journal of the American Medical Association, vol. 280,
no. 15, pp. 1339–1346, 1998.

[18] E. S. Berner, R. S. Maisiak, C. G. Cobbs, and O. D. Taunton,
“Effects of a decision support system on physicians’ diagnostic
performance,” Journal of the American Medical Informatics
Association, vol. 6, no. 5, pp. 420–427, 1999.

[19] E. S. Berner, G. D. Webster, A. A. Shugerman et al., “Perfor-
mance of four computer-based diagnostic systems,” The New
England Journal of Medicine, vol. 330, no. 25, pp. 1792–1796,
1994.

[20] H. Tang and J. H. K. Ng, “Googling for a diagnosis—use
of Google as a diagnostic aid: internet based study,” British
Medical Journal, vol. 333, no. 7579, pp. 1143–1145, 2006.

[21] E. S. Berner, R. S. Maisiak, C. G. Cobbs, and O. D. Taunton,
“Effects of a decision support system on physicians’ diagnostic
performance,” Journal of the American Medical Informatics
Association, vol. 6, no. 5, pp. 420–427, 1999.

[22] W. Zhao, H. Yanxiang, and J. Hui, “A model of intelligent
distributed medical diagnosis and therapy system based
on mobile agent and ontology,” in Proceedings of the 8th
International Conference on High-Performance Computing in
Asia-Pacific Region (HPC ’05), pp. 582–587, December 2005.

[23] D. Nauck and R. Kruse, “A neuro-fuzzy method to learn fuzzy
classification rules from data,” Fuzzy Sets and Systems, vol. 89,
no. 3, pp. 277–288, 1997.

[24] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance
evaluation of fuzzy classifier systems for multidimensional
pattern classification problems,” IEEE Transactions on Systems,
Man, and Cybernetics B, vol. 29, no. 5, pp. 601–618, 1999.

[25] M. Setnes and R. Babuska, “Fuzzy relational classifier trained
by fuzzy clustering,” IEEE Transactions on Systems, Man, and
Cybernetics B, vol. 29, no. 5, pp. 619–625, 1999.
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