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Optimal disinfection protocols are fundamental to minimize bacterial resistance to the

compound applied, or cross-resistance to other antimicrobials such as antibiotics. The

objective is twofold: guarantee safe levels of pathogens and minimize the excess of

disinfectant after a treatment. In this work, the disinfectant dose is optimized based on a

mathematical model. The model explains and predicts the interplay between disinfectant

and pathogen at different initial microbial densities (inocula) and dose concentrations. The

study focuses on the disinfection of Escherichia coliwith benzalkonium chloride, themost

common quaternary ammonium compound. Interestingly, the specific benzalkonium

chloride uptake (mean uptake per cell) decreases exponentially when the inoculum

concentration increases. As a consequence, the optimal disinfectant dose increases

exponentially with the initial bacterial concentration.

Keywords: benzalkonium chloride (alkyldimethylbenzylammonium chloride), Escherichia coli, disinfection,

inactivation, kinetic modeling, inoculum effect

1. INTRODUCTION

Quaternary ammonium compounds (QACs) are chemicals produced at high volumes with low
toxicity that may induce resistance to disinfectants or cross-resistance to other antimicrobials
(Langsrud et al., 2003; Tezel and Pavlostathis, 2015). They are widely used in medical-related
facilities, and in the food and pharmaceutical industries.

QACs differ from common disinfectants in water treatments as they are not chemically
transformed during their application and may be released and diluted in the environment.
Most QACs are only degraded under aerobic conditions by bacterial species in the genera of
Xanthomonas, Aeromonas, and Pseudomonas. The impact of the degraders is still a matter of
controversy. Tezel and Pavlostathis (2011) claim that this biodegradation creates sub-inhibitory
concentrations in environmental media such as surface water and soil where susceptible species
may develop bacterial resistance. That effect is not significant for some authors that restrict
the environmental consequences to a change in bacterial tolerance to antimicrobials but not to
resistance (Gerba, 2015). In any case, QACs degraders proliferate and may eventually cause public
health problems (Tezel and Pavlostathis, 2015).
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Optimal disinfection protocols are critical to minimizing
QACs excess after a treatment while assuring safety levels of
pathogens. Disinfectant dose concentrations smaller than the
optimum are insufficient to achieve the necessary inactivation
level and may induce resistance to the disinfectant applied.
Larger doses guarantee that most pathogens are inactivated but
may induce resistance in surrounding areas where disinfection
concentration is lower because of partial coverage (Holah
et al., 2002). Moreover, active chemicals may end up in the
environment after the treatment and induce cross-resistance to
other antimicrobials, including relevant antibiotics. In addition
to reducing environmental impact, optimal doses contribute to
minimizing the cost of the disinfection treatment.

Nowadays, QACs disinfection is mostly based on minimum
inhibitory numbers without any advanced optimization due to
the lack of appropriate models. Let us consider for example
alkyldimethylbenzylammonium chloride, commonly known as
benzalkonium chloride (BAC). This compound is a widely
used “over-the-counter” surface disinfectant that may increase
tolerance to antibiotics in E. coli (Bore et al., 2007). Kinetic
models are scarce and mostly limited to time-kill curves
without considering the concentration of BAC during the
treatment (Ioannou et al., 2007). The few exceptions considering
sophisticated models are not focused on the disinfection
itself, but on subsequent BAC biodegradation (Zhang et al.,
2011; Hajaya and Pavlostathis, 2013). From the authors’
knowledge, only Lambert and Johnston (2001) modeled the BAC
inhibition of a specific pathogen, in this case Staphylococcus
aureus. This work is crucial to understand disinfection with
soil contamination, but the model cannot be exploited for
optimization since BAC after the treatment is not quantified.
However, the work presents interesting observations about the
dependence of the disinfection effectiveness with the inoculum
concentration that requires further research.

In food microbiology, predictive kinetic models are well
established with ad-hoc software tools that can be exploited to
determine optimal operational conditions, but they are primarily
focused on non-chemical (abiotic) disinfection (Geeraerd et al.,
2005; Garre et al., 2017). Most works modeling the antimicrobial
effect describe the inhibition of microbial growth without
considering the antimicrobial kinetics. The exception is the
research by Reichart (1994). This work develops kinetic
models of microbial inactivation together with the dynamics
of molecules responsible for the lethal effect. The theory,
however, departs from the standard models on water treatment,
instead of using standard modeling approaches in food
microbiology.

Models considering chemical disinfection are common in
water treatment, but disinfectant kinetics are still neglected or
too simplistic to study QACs. Most models assume demand-
free conditions, that is, the disinfectant is far in excess and
remains constant during the treatment. Figure 1 shows a nested
model including common autonomous (without an explicit
dependence with time in their derivative form) disinfection
models under this demand-free condition. They are extremely
useful and flexible to model different inactivation curves, but
inadequate when the disinfectant is not constant during the

treatment, i.e., in demanding conditions. Most disinfectants in
water treatment are volatile and therefore themodel modification
consists of assuming first-order decay kinetics (Lambert and
Johnston, 2000). The few exceptions are the model by Hunt
and Mariñas (1999) using second-order kinetics and the
model by Fernando (2009) assuming that the specific chemical
demand (α) depends on the microorganism density during the
treatment.

Another drawback that prevents the direct application
of water treatment models (Figure 1) is that they assume
proportionality between disinfectant and inoculum
concentration. They are based on survival or time-kill curves
defined in relative terms of log reductions (Ioannou et al.,
2007), where the absolute number of active cells is divided by
the inoculum concentration. It is therefore implicitly assumed
proportionality, i.e., that a 1 log reduction requires the same
amount of disinfectant independently of the cell concentration.
In other words, if the inoculum doubles, the amount of
disinfectant also doubles and therefore the Minimum Inhibitory
Concentration (MIC) is proportional to the initial inoculum.
However, that contradicts MIC estimations for quaternary
ammonium compounds in the literature (Lambert and Johnston,
2001; Ioannou et al., 2007).

This inoculum effect is well-known in antibiotic resistance
(Sabath et al., 1975; Thomson and Moland, 2001; Egervärn
et al., 2007; Tan et al., 2012; Karslake et al., 2016) with specific
descriptions using mathematical models (Udekwu et al., 2009;
Bhagunde et al., 2010; Bulitta et al., 2010). Nevertheless, from the
author’s knowledge, models of the inoculum effect in chemical
disinfection are still scarce (Haas and Kaymak, 2003; Kaymak
and Haas, 2008) and limited to Lambert and Johnston (2001) for
QACs.

In this work, the inoculum effect is studied based on the
specific disinfectant uptake, i.e., the mean amount of QACs that
is uptaken per cell, that links the pathogen and QAC kinetics.
Under the common assumption of proportionality between dose
and inoculum concentration, this value is constant with respect
to the initial experimental conditions.

The case of study is the optimization E. coli inactivation
by BAC. The work is organized into three parts: (1) the
quantification of the dependence of the specific BAC uptake with
respect to the BAC dose and inoculum concentrations; (2) the fit,
validation and optimization of the the kinetic model to find the
best BAC dose concentration that minimizes the excess of BAC
after a treatment and (3) the postulation of possible mechanisms
behind the inoculum effect.

2. MATERIALS AND METHODS

2.1. Experimental Materials and Methods
2.1.1. Bacterial Strain and Culturing Conditions
Escherichia coli CECT 4622 was purchased from the Spanish
Type Culture Collection. Stock cultures were kept at −80 ◦C in
Brain Heart Infusion Broth (BHI; Biolife, Milan, Italy) containing
50% glycerol 1:1 (v/v). Work cultures were kept at −20 ◦C
in Trypticase Soy Broth (TSB; Cultimed, Barcelona, Spain)
containing 50% glycerol 1:1 (v/v). Before the experiments, 100 µL
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FIGURE 1 | Classical models under disinfectant demand-free conditions assume constant disinfectant concentration and are a special case of the Generalized

Differential Rate Law (Gyürék and Finch, 1998; Hunt and Mariñas, 1999). The Integrated form of most of these models can be seen in Gyürék and Finch (1998).

Common models using disinfectant demand conditions assume decay independent on the microorganism density: first order decay (Lambert and Johnston, 2000)

and second-order rate (Hunt and Mariñas, 1999). Only Fernando (2009) considers that disinfectant decay depends on the microorganism density.

of work cultures was grown overnight at 37 ◦C in 5mL of TSB
and subcultured overnight in the same conditions so as to ensure
proper growth.

2.1.2. Inoculum Preparation
Once activated, the culture was centrifuged (4 min, 8,600g.
centrifuge: Sigma, 2-16PK) and the precipitated cells were
resuspended in 0.85% (w/v) NaCl. Resuspended cells were
adjusted to Abs700 = 0.7 ± 0.001 in 0.85%(w/v) NaCl using
a Cecil3000 scanning spectrophotometer (Cecil Instruments,
Cambridge, England), corresponding to a concentration of
109CFU/mL. This cell suspension was directly used as inoculum
in the experiments or serially diluted in sterile 0.85% NaCl
to achieve 108–107CFU/mL the final viable according to the
experimental design.

2.1.3. Dynamics of E. coli Inactivation With

Benzalkonium Chloride
Benzalkonium chloride solutions (Sigma-Aldrich) were prepared
in sterile deionized water at three different concentrations for
modeling purposes (100, 200, and 300 mg L−1) and two more

BAC concentrations for the validation experiments (75 and
250mg L−1).

Experimental series were prepared by adding 1mL of BAC to
sterile glass vials containing 1mL of E. coli inoculum and allowed
to act for 1, 5, 10, 15, and 20min at 25 ◦C without shaking.
Negative controls were running in parallel by adding NaCl 0.85%
(w/v) instead of BAC.

After each time interval of exposition, 500 µL of the culture
were neutralized by adding 500 µL of neutralizing solution
(composition L-1:10mL of a 34 g l-1 KH2PO4 buffer (pH7.2);
3 g soybean lecithin; 30mL Tween 80; 5 g Na2S2O3; 1 g L-
histidine) during 10min at room temperature and used to
determine the number of viable cultivable cells. Quantification
of viable counts was carried out by serially diluting the
bacterial culture and spreading in triplicate onto Trytone
Soy Agar (TSA; Cultimed, Barcelona, Spain). Plates were
incubated at 37 ◦C during 24 h and results were expressed as
log CFU/mL.

The rest of the culture (1,500 µL was filter sterilized through
a 0.2 µm syringe filter (Sartorius, Gottingen, Germany) and the
filtrate was used to determine the concentration of BAC outside
the cells following the method described by Scott (1968).
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2.2. Kinetic Model and Computational
Methods
2.2.1. Kinetic Modeling
The model simulates E. coli inactivation and BAC decay kinetics.
The inactivation kinetics are based on the generalized Rate Law
model by Gyürék and Finch (1998) with m = 1. This expression
includes most models with demand-free conditions in water
treatment (Figure 1). BAC kinetics are modeled assuming that
each cell adsorbs a certain quantity α of BAC before dying (see
section 3 for details). Therefore the final model tested was:

dN

dt
= −kNxCn

dC

dt
= −α kNxCn

(1)

where t is the contact time in minutes, N is the density of
viable E. coli cells in CFU/ml, C is the concentration of BAC
in ppm, k is the inactivation rate constant, n the dilution
concentration and x an empirical constant used in the rational
model.

This a deterministic model that can only be applied when
the density of viable cells is sufficient to neglect stochastic
fluctuations. Stochastic models are scarce in the literature and
usually focused on growth dynamics (Augustin et al., 2015;
García et al., 2018) or in thermal, but not chemical, inactivation
(Nicolaï and Van Impe, 1996). In this work, the dynamics are
assumed deterministic by defining a detection limit of 100 cells.
This determines the zone where experimental data present large
variability and model simulations large uncertainty to be useful.
Therefore any value (simulated or experimental) below this limit
will be considered as ≤100, without specifying any numerical
value.

Integrative forms of these equations are only available for
simple cases that can be seen in (Gyürék and Finch, 1998), but not
for the case described in this work (BAC decay depends on the
inoculum concentration). Therefore the model should be solved
using appropriate numerical methods for Ordinary Differential
Equations (ODEs).

2.2.2. Computational Methods
Different computational methods are required in this work
to simulate model in Equation (1), estimate the unknown
parameters from available experimental data and optimize the
BAC dose concentration as a function of the inoculum numbers.
In this work, AMIGO (Advanced Model Identification using
Global Optimization) software was used for the simulation
and parameter estimation. This is a multi-platform toolbox
implemented in Matlab (Balsa-Canto et al., 2016b). The
dose optimization was implemented outside of this toolbox
but with the same simulation and optimization methods.
CVODES (Hindmarsh et al., 2005) was selected to simulate
the model and to evaluate the parametric sensitivities. This
solver allows us to calculate the confidence intervals of
the parameters. For optimization, a global optimizer based
on scatter search (eSS, Enhanced Scatter Search) was used
(Egea et al., 2010).

Parameter estimation is based on the maximization of the
log-likelihood function (LLF). The idea is to find the vector of
parameters that gives the highest likelihood to the measured data
Balsa-Canto et al. (2016a). For independent measurements with
Gaussian noise the problem becomes to minimize the minimum
square error weighted with the standard deviations associated
with each measurement:

J =

nt
∑

i= 1

(log 10(Ni)− log 10(N̂i))
2

σ 2
N

+

nt
∑

i= 1

(Ci − Ĉi)
2

σ 2
C

whereNi andCi are each of the timemeasurements for E. coli and
BAC and N̂i and Ĉi their respective estimations using model 1
and nt is the number of time measurements for all experiments.
To avoid computational problems derived from the different
orders of magnitude a logarithmic scale was used for the viable
cells (García et al., 2017b). To solve this optimization problem
the standard deviations for E. coli (σN) and BAC (σC) were
previously estimated from replicates (2 and 4 replicates for each
measurement of viable E. coli and one replicate for most of the
BAC measurements).

The performance of the estimation is measured using two
standard indexes based on mean square errors between model
and experimental data for each type of measurements. The first
index is the root-mean-square error (RMSE) defined as:

RMSE =

√

√

√

√

(

1

nt

nt
∑

i=1

(yi − ŷi)2

)

where yi can be referred to BAC or to E. coli viable cells. However,
BAC and E. coli have different orders of magnitude and for a
comparison between their fits the coefficient of variation of the
RMSE, CV(RMSE), is preferred:

CV(RMSE) =
RMSD

y

where y = (1/nt)
∑nt

i=1 yi is the mean of the data values for each
type of measurements.

The confidence intervals for the parameters are estimated by:

±t
γ

α/2

√

Cii

where Cii are the diagonal elements of the confidence matrix,
t
γ

α/2 is given by Student’s t-distribution with γ the number of
degrees of freedom and (1 − α)100% selected to 95%. For non-
linear system the Cramér-Rao inequality to compute a bound fo
the confidence matrix using the Fisher information matrix (Vilas
et al., 2018):

C ≥ F ≡ E

{

(

∂J

∂2

)T (
∂J

∂2

)

}

where 2 is the vector of unknown parameters. Relative
confidence intervals (calculated by dividing confidence intervals
by the estimated value of the parameter) are also calculated
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since they are useful when parameters have different orders of
magnitude (García et al., 2017a).

To compare the performance among nested models with
a different number of parameters, the Akaike Information
Criterion (AIC) is used. Its definition using the LFF reads:

AIC = 2nk − 2LLK

being nk the number of unknown parameters. The preferred
model is the one with the minimum AIC value (Akaike, 1970).

Validations are performed simulating the model for a new set
of data or using the cross-validation method. The latter consists
of fitting the available data setting aside some experiment or
subset of data (Elsner et al., 1994). The obtained model with its
estimated parameters is used to predict the data set aside. The
process is repeated until all set of data are validated.

3. RESULTS AND DISCUSSION

Modeling allows us to systematically reproduce and optimize
complex systems and to motivate new experiments to improve
our knowledge. Kinetics of bacterial inactivation are well-
known, with several alternatives that are special cases of
the generalized model in Figure 1. That is not usually the
case for the disinfectant kinetics, and particularly for stable
chemicals as QACs. Therefore, next section starts studying
BAC uptake at different inoculum and dose concentrations.
Section 3.2 focused on the modeling including the description
of the mathematical equations, the estimation of the unknown
parameters, the assessment of the model predictive capabilities
and the optimization of the BAC dose concentrations. Model
files, experimental data and scripts to reproduce results can
be found in a public repository https://doi.org/10.5281/zenodo.
1207616. Finally in section 3.3 the possible mechanisms behind
the inoculum effect are discussed and compared with current
works in the literature.

3.1. Understanding BAC Uptake for
Different Inoculum and Dose
Concentrations
3.1.1. BAC Disinfection Is Under Demanding

Conditions
To model the chemical demand of BAC by E. coli, E. coli
viable cells and extracellular BAC concentration are
measured in six experiment with two different inoculum
(log10(N0) ≈ 9logs, 7logs) and three different BAC dose
concentrations (C0 = 100, 200, 300 ppm). Figure 2 shows the
results arranged in six panels with two columns and three
rows. Left and right columns show E. coli inactivation and BAC
decay, respectively. Different dose concentrations are depicted
in different rows. Each panel shows two responses for the two
inoculum concentrations tested (blue and red for high and low
inoculum concentrations, respectively).

Experiments reveal that BAC is in excess and in demanding
conditions for all experiments. After a fast and sharp decay of
extracellular BAC, the disinfectant remains constant with values
for some cases larger than half the initial dose concentration.
Therefore models considering demand-free conditions in

Figure 1 are not valid. They assume that the disinfectant
extracellular concentration is constant during the process and
independent of the bacterial concentrations.

3.1.2. BAC Uptake Depends on the Inoculum

Concentration and Disinfectant Dose
Experiments suggest that the BAC residual at final times (C∗)
depends on the dose and inoculum considered. It should be noted
that BAC residual is different for each experiment, designed with
different inoculum and dose concentrations. Therefore, BAC
dynamics cannot be explained using models of first-order decay,
so common in water treatment with volatile disinfectants, and a
new model has to be proposed.

The objective is to understand how BAC uptake changes
as a function of the inoculum concentration and disinfectant
dose. The analysis of the disinfectant uptake into the bacterial
population is fundamental to understand disinfection in
demanding conditions with stable chemicals. Total BAC uptake
can be estimated by subtracting the extracellular residual BAC
at the end of the experiment C∗ from the dose concentration
applied C0, i.e., total BAC uptake is C0 − C∗. Here it is assumed
that (Assumption 1) BAC extracellular decay is only due to its
uptake into E. coli cells. This assumption is supported by the
observation that volatilization of QACs is negligible and those
compounds are not chemically transformed after application
(Tezel and Pavlostathis, 2011).

Unfortunately, total BAC uptake does not show a clear trend
with respect to the applied dose. Figure 3A shows the calculated
BAC uptake with respect to the inoculum concentration. Each
circle corresponds to a total uptake of an experiment in Figure 2,
and different inoculum concentrations are represented with
different colors. The trend is not trivial, cannot be estimated
from only three points and it is different for each inoculum
concentration.

To detect the dependence of BAC uptake with the inoculum
concentration new experiments, depicted in Figure 3B, were
designed. Note that in Figure 3A total BAC uptake is larger for
larger inoculum concentrations for all cases except for BAC dose
of 200 ppm. Results show that total BAC uptake also increases
with the inoculum concentration for treatments with 200 ppm.
This increase seems to asymptotically approach a saturation
level. This trend resembles the one found by Nagai et al. (2003)
who estimated extracellular BAC with the Orange II-chloroform
method, but for Pseudomonas fluorescens.

The use of standard adsorption isotherms to understand
BAC uptake was also explored. For both tested inoculum
concentrations, as shown in Figure 3C, BAC uptake seems
to follow a non-linear trend with a maximum uptake. Those
patterns differ from the isotherms found by Ioannou et al.
(2007) for BAC and didecyldimethylammonium chloride (a
similar quaternary ammonium compound). In the latter work,
the uptake increased with the equilibrium concentration, was
highly dependent on the chemical used and was analyzed only
for low dose concentrations. Probably, the isotherms in this work
differ because it was analyzed for high dose concentrations, where
there are multiple effects that cannot be cast into an isotherm of
adsorption.
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FIGURE 2 | Evolution of E. coli viable counts and extracellular BAC concentration with contact time under demanding conditions at different inoculum and dose

concentrations. Left and right columns show E. coli inactivation and BAC decay, respectively, while each row corresponds to a different dose concentration (100, 200,

and 300 ppm). Each panel shows the dynamics with high and low inoculum concentration in, respectively, blue and red. Replicates are represented with asterisks for

viable counts, and lines go through their mean values. Detection limit (2 logs) for viable counts is represented with ≤ 2 and gathers all results below this limit. (A,C,D)

show E. coli inactivation by 100, 200 and 300ppm of initial BAC concentration respectively. (B–D) despite BAC decay for the same dose concentration (100, 200 and

300ppm).

With the data available is not possible to find simple trends of
total BAC uptake with inoculum and dose concentrations. The
following section describes the use of the specific disinfectant
uptake as a better descriptor for chemical-demanding conditions
than total BAC uptake or BAC isotherms of adsorption.

3.1.3. Specific BAC Uptake Exhibits a Clear Trend

With Respect to the Inoculum and Dose

Concentration
Specific BAC uptake (α) is a relative measure of the uptake
with respect to the inoculum concentration. Its estimation can
be calculated by dividing the total consumption of BAC by the
number of cells in the inoculum:

specific disinfectant (BAC) uptake = α =
C0 − C∗

N0
(2)

where N0 is the number of cells in the initial inoculum in CFU
per ml. To use this expression it is assumed that (Assumption

2) BAC dose is sufficiently large to kill most of the population.
To confirm that the inactivation is complete for the experimental
conditions considered in Figure 2, it was verified that there were
not viable cells after 24 h for the experiment with the highest
inocula and lowest dosage (blue lines in panels Figures 2A,B).
A long time after the exposure was considered because BAC is
uptaken within the first minutes and cells can become non-viable
with some delay.

Making an analogy with a chemical reaction, the specific
BAC uptake (α) represents the stoichiometric coefficient, i.e., a
constant relating the dynamics of E. coli and BAC interplay:

N + αC → N̂Cα (3)

where N represents CFU per ml and C is the extracellular
concentration of BAC. The complex N̂Cα symbolizes
concentration of non-viable cells.
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FIGURE 3 | Dependence of BAC uptake and specific BAC uptake (first and second rows of panels respectively) with inoculum size and disinfectant dosage.

(A) shows the dependence of BAC uptake with dose concentrations at two different inoculum concentrations for experiments in Figure 2. (B) depicts the

dependence of BAC uptake with the inoculum concentration for a set of new experiments. (C) shows the isotherms of uptake for experiments in Figure 2. (D) The

dependence of specific BAC uptake with dose concentrations at two different inoculum concentrations for experiments in Figure 2. (E) depicts the correlation

between inoculum and specific BAC uptake for the new experiments at different inocula. Finally (F) shows the proposed correlation to explain specific BAC uptake at

different inoculum and dose concentrations.

In the experiments, the specific BAC uptake cannot be
constant, unlike in pure chemical reactions, and depends on the
inoculum and dose concentrations. If the specific BAC update
is constant, the total uptake of BAC would increase linearly
with respect to the number of cells in the inoculum. That
contradicts the results in Figure 3B. Another way of noting that
the specific BAC uptake is not constant is analyzing experiments
in Figure 2B. The total uptake of BAC is 80 ppm for an inoculum
of 9 logs and 50 ppm for an inoculum of 7 logs. Note that
whereas the inoculum size changes two orders of magnitude,
total the order of magnitude of BAC uptake remains the
same.

The dependence of the specific BAC uptake with respect to the
dose concentration for different inocula is depicted in Figure 3D.
Specific BAC uptake varies several orders of and, contrary to the
total BAC uptake in Figure 3A, follows the same trend for both
inocula. The major differences are because of the inoculum size,
although there are also changes with the BAC dosage.

As shown in Figure 3E, the specific BAC uptake (α) in
logarithmic scale (log10(α)) is clearly inversely proportional
to the inoculum concentration. Data were the same used in
Figure 3B. This means that for low inoculum concentrations,
each cell uptakes more BAC than in those experiments with high
inoculum concentrations. Note that in all cases the uptake is
sufficient to make the cell non-viable.

The information from previous figures can be exploited to
calculate specific BAC uptake as a function of the BAC dose and
inoculum concentrations. Among the different options tested,

the best model consisted assumed a linear dependence of the
logarithm of α with respect to C0

N0
. As shown in Figure 3, this

functionality resulted in a R2 coefficient very close to one.

log10 (α) = a+ b log10
C0

N0
(4)

meaning that

α = 10−a

(

C0

N0

)b

(5)

This model predicts that the specific BAC uptake increases
with the dose concentration and decreases with the inoculum
concentration. The first observation is expected. Higher
concentrations of the disinfectant imply larger concentrations of
disinfectant uptake. However, the mechanism by which each cell
uptakes less disinfectant when population numbers are large is
not obvious. Although it seems to be a common pattern observed
for different QACs and bacterial strains as it will be discussed in
the last section.

3.2. Developing the Predictive Kinetic
Model to Optimize BAC Treatment
3.2.1. The Kinetic Model Reproduces Experiments

Under Different Dose and Inoculum Concentrations
Models in chemical disinfection are mostly focused on
inactivation kinetics of relevantmicroorganisms. The generalized
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differential rate law, in Equation (1), is used to describe the
velocity of this reaction. As described in materials and methods,
this is a nested model including most of the relevant autonomous
models in chemical disinfection.

BAC kinetics are critical to minimize the chemical residuals
after a treatment and are calculated from E. coli inactivation using
the functionality found for the specific BAC uptake in (5). Final
dynamic model reads

dN

dt
= −kNxCn

dC

dt
= α kNxCn = 10−a

(

C0

N0

)b

kNxCn (6)

where the set of unknown parameters is:

θ = [a, b, k, x, n].

Despite there is a rough estimation of a and b using correlations
in previous sections, it is preferable to estimate the whole set

of unknown parameters in a single step using all data of E. coli
and BAC dynamics. This allows us to find the best parameters
also to represent the dynamics and mitigates estimation errors
due to measurement errors in the residual concentration of BAC
(C∗). For considering that specific BAC uptake is constant, the
parameter b is fixed to zero being therefore α = 10−a.

Comparisons between experimental and simulated data reveal
how critical is to assume a dependence of the specific BAC
uptake with the inoculum and dose concentrations. Figure 4
shows the best fit of model (6) assuming that either the
specific BAC uptake is constant (dashed line) or depends on the
initial experimental conditions (continuous lines). The model
reproduces the E. coli inactivation kinetics better considering
the dependence of specific BAC uptake with the inoculum
and dose concentration, but the major differences are in terms
of BAC decay. The model assuming that the specific BAC
uptake is an invariant stoichiometric coefficient, as in chemical
reactions, is not able to reproduce the BAC dynamics for most
of the cases, especially for those experiments with low inoculum
concentration.

FIGURE 4 | Best fits for model (6) assuming that specific BAC uptake is constant (dashed line) or depends on inoculum and dose concentrations (continuous line).

Experimental data marked with asterisks correspond with the results shown in Figure 2. High and low inoculum concentration are shown in blue and red, respectively.

The model with specific BAC uptake of the form α = 10−a(C0/N0)
b fits the data considerably better than the model assuming α = 10−a = cte with b = 0. (A,C,D)

show model simulations and data of E. coli inactivation by 100, 200 and 300ppm of initial BAC concentration, respectively. (B–D) model simulations and data of BAC

decay for the same dose concentration (100, 200 and 300ppm).
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Standard methods, used to quantify the model ability
to reproduce the data, confirm that the proposed model
outperforms the model with the classical assumption of constant
specific uptake. Table 1 shows those methods (see Materials and
Methods for details) together with the estimated parameters
for both models. The root-mean-square error (RMSE), and its
coefficient of variation [CV(RMSE)], quantifies how good the
model reproduces the data (fit) in absolute and relative terms,
respectively. Note that E. coli and BAC measurements are of
different nature and of different orders of magnitude. Therefore
the CV(RMSE) provides a better description of the goodness
of fit. As observed in Figure 4, and expected due to the larger
uncertainty in E. coli measurements, the model reproduces the
data better for BAC than for E. coli and always better than
the alternative model. The worse fit for the proposed model
is for E. coli inactivation at low inoculum and low dose since
data in this experiment is close to the detection limit for most
times, and therefore with the larger uncertainty. Another way to
quantify the model performance is the log-likelihood function
(LLF) that is maximized to estimate the parameters. For the type
of measured error assumed in this work, it is equivalent to the
RMSE weighted with the inverse of the square of the standard
deviations. Again, the maximum LLF is observed for the model
with specific BAC uptake dependent on dose and inoculum
concentrations.

The proposed model reproduces the data without incurring
in overparametrization: a usual problem in modeling where fits
improve at the expenses of fitting the data noise, outliers and
others experimental artifacts (Vilas et al., 2018). To discard
overparametrization there are methods considering the model
performance as a function of the parameters to be estimated.
The Akaike Information Criterion (AIC) is a standard tool to
compare nested kinetic models. The proposed model has the

TABLE 1 | Different criteria to assess the capabilities of both models to reproduce

the experimental data.

Proposed model (6) Model (6) with contant α

with α = 10−a
(

C0
N0

)b
(i.e., b = 0)

Parameters k 3.75 ± 0.13 (3.41%) 3.22 ± 0.13 (3.86%)

x 1.25 ± 0.15 (12.00%) 1.34 ± 0.21 (16%)

n 1.69 ± 0.20 (11.64%) 1.08 ± 0.23 (21.3%)

a 1.18 ± 0.04 (3.68%) 6.74 ± 0.07 (0.11%)

b 0.83 ± 0.01 (0.84%) –

RMSE E. coli 0.54 0.79

BAC 9.70 60.09

CV(RMSE) E. coli 0.13 0.28

BAC 0.09 0.57

LLF −18.09 −42.32

AIC 46.17 94.63

Unknown parameters are shown as: estimation±confidence interval (relative confidence

interval). Root-mean-square error, RMSE, and its coefficient of variation, CV(RMSE), are

included for E. coli and BAC. Additionally the performance of both models in terms of the

log likelihood function (LLF) and the Akaike criterion (AIC) are shown. Last one allows to

compare models with different number of estimated parameters.

minimumAkaike index (Table 1) and the best relative confidence
intervals for all parameters. The most uncertain parameters,
in relative terms, are the dilution term n and the constant of
the rational model x. That agrees with the observed variability
of the data that is much larger for the numbers of bacterial
inactivation than for the extracellular BAC concentration. The
parameter with more confidence is b that models the dependence
of the specific BAC uptake with the inoculum and dose
concentration. Another evidence of the necessity to consider this
dependence.

3.2.2. The Model Predicts New Data
Model-based optimization requires a model with predictive
capabilities. Tests in the previous section help us to confirm
that the model follows the experimental data used for estimating
the unknown parameters (fit). However, for optimization, it is
critical to validate if the model with the estimated parameters
can predict new data (validation). New data can be inside the
rage of the designed experiments for the fit (interpolation), in
this work between 7 and 9 logs of inoculum concentration and
between 100 and 300 ppm of BAC, or outside (extrapolation).
Empirical models commonly predict only interpolation data
while mechanistic models or semi-mechanistic models are better
reproducing new data outside the range used for the fit.

The proposed model combines mechanistic and empirical
arguments. For example, it is based on assumptions 1 and 2
and thanks to this the BAC kinetics are defined. However, the
dependence of the specific BAC uptake with the inoculum and
dose concentrations is empirical, based on the experimental
observations. In this work, the predictive capabilities are tested
using the cross-validationmethod and with two new experiments
inside and outside the range of experimental data used for the fit
(interpolation and extrapolation).

The experiments in Figure 2, six experiments with three BAC
dose and two inoculum concentrations, are used to compute
the cross-validation. At each step, five experiments of the six
are used for the fit and the remaining one for the validation.
In the following step, a different experiment is set aside. After
the computation, see Table 2, there are six sets of estimated
parameters and six validation experiments. This technique has
the advantage of not requiring new experiments and that it helps
to identify problems (if there are) with some subset of data.

Estimated parameters (and confidence intervals) for the cross-
validation are similar to the those obtained fitting the six
experiments. Larger deviations with respect to the estimated
parameters in Table 1 are, as expected, for extrapolation
experiments, like experiment 1 with the lower dose concentration
(100 ppm) and high inoculum concentration (9 logs).

The validation experiments of the cross-validation confirm
that the proposed model has good prediction capabilities. RMSE
and CV(RMSE) are similar and lower for the interpolation
experiments (3 and 4). Worse validations are for experiment
1 in terms of E. coli CV(RMSE) and experiment 2 for BAC
CV(RMSE). But even for those experiments, their kinetics are
not so far from the experimental data as shown in the Figure S1
in Supplemental Data. It should be stressed that validation
experiments are obtained with estimated parameters from other
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TABLE 2 | Cross validation of final model with experiments in Figure 2.

Fit for experiments [2,3,4,5,6] [1,3,4,5,6] [1,2,4,5,6] [1,2,3,5,6] [1,2,3,4,6] [1,2,3,4,5]

k 4.87 ± 0.14 2.94 ± 0.12 4.95 ± 0.12 3.61 ± 0.15 3.64 ± 0.13 3.45 ± 0.18

x 1.23 ± 0.49 1.18 ± 0.15 1.38 ± 0.27 1.25 ± 0.15 1.19 ± 0.16 1.24 ± 0.19

n 2.31 ± 0.53 1.49 ± 0.21 2.01 ± 0.29 1.61 ± 0.22 1.79 ± 0.23 1.56 ± 0.29

a 1.17 ± 0.04 1.24 ± 0.05 1.18 ± 0.04 1.22 ± 0.05 1.12 ± 0.05 1.03 ± 0.06

b 0.83 ± 0.01 0.82 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.84 ± 0.01 0.86 ± 0.01

Validation Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

RMSE E. coli 1.31 0.74 0.95 0.32 1.08 0.60

RMSE BAC 4.26 11.21 11.90 7.59 15.95 22.06

CV(RMSE) E. coli 0.22 0.20 0.19 0.11 0.21 0.21

CV(RMSE) BAC 0.17 0.21 0.15 0.05 0.15 0.10

This includes experiments at different BAC dose concentrations: 100 ppm (1 and 2), 200 ppm (3 and 4), and 300 ppm (5 and 6) and with two inoculum concentrations (odd and

even numbers correspond to high and low inoculum concentrations, respectively). Table shows the six sets of estimated parameters removing one different experiment each time that

is used for the validation. The indexes RMSE and CV(RMSE) are used for analyzing the performance of the validations.

experiments, and therefore their behavior, as well as the RMSE
and CV(RMSE), are rarely better than same indexes for the fit
and should be carefully compared with results in Table 1.

Two additional experiments are carried out to further test
the predictive capabilities and weakness of the model. The
interpolation consists on a concentration similar to 8 logs for
the inoculum and 250 ppm for the BAC dose. The extrapolation
experiment was designed with 8 logs for inoculum and 75 ppm
for BAC dose concentration.

The model predicts both experiments, especially for BAC
decay and interpolation data. First row in Figure 5 shows the
predicted BAC and E. coli kinetics. Results are considered
satisfactory since BAC decay is predicted particularly good. It
should be noted that BAC dynamics are more relevant in the
context of this work as for the dose concentrations used a
complete inactivation of E. coli is assumed, and the prediction
always overestimates the E. coli numbers being in the safest
scenario.

3.2.3. The Model Allows to Optimize Dose

Concentration
Model-based optimization also requires, in addition to a
predictive model, that the estimated parameters do not change
with the experimental conditions. That is a common problem
with other models in the literature fitting the data separately for
each experiment. Those models also require more data to assume
good confidence intervals of the parameter.

For the proposed model, the parameters are the same
independently on the inoculum and dose concentration and can
be used to optimize doses for a given inoculum. The formal
description of the problem is as follows:

min
C0

(C∗)2 (7)

subject to N∗ <= 100 (detection limit) (8)

where C∗ and N∗ is the BAC and E. coli numbers at the final
time and C0 is the dose concentration. A final number of E. coli

less than 100 is required for being the detection limit of the
data and knowing that the model tends to overestimate this
number, but other criteria can be easily selected. Three scenarios
are considered: 5, 30 min, and 24 h to illustrate how optimal
treatments change with contact time.

The second-row panel in Figure 5 shows the minimum
BAC dose to reduce the population to 100 viable cells for
different inoculum concentrations. The black vertical bars define
the range of data used for the fit, and therefore where the
model confidence is greater. Data shows how the dose increases
exponentially with the inoculum concentration. Probably this
is an overestimation of the BAC dose required for inoculum
concentrations greater than 9 logs where the model has not been
tested.

3.3. Discussing the Mechanisms in BAC
Disinfection and the Relevance of
Quantifying the Inoculum Effect
3.3.1. Mechanisms Behind the Specific BAC Uptake
Salton’s theory, from the sixties, is still the reference when
studying the mechanisms behind QACs disinfection (Salton,
1968). This work proposed the following series of events:
(i) QAC adsorption to and penetration of the cell wall;
(ii) reaction with the cytoplasmic membrane followed by
membrane disorganization; (iii) leakage of intracellular lower-
weight material; (iv) degradation of proteins and nucleic acids;
and (v) cell wall lysis caused by autolytic enzymes.

In the context of Salton’s theory, the specific BAC uptake
quantified in this work represents the equilibrium between the
influx (BAC adsorption or penetration) and the efflux (BAC
leaking or cell wall lysis).

It should be stressed that, if efflux is relevant, it occurs at
the time scales of the influx and leakage seems to be the main
mechanism. Extracellular BAC quickly decays in the experiments
within first minutes (Figure 4), suggesting that the equilibrium
between influx and efflux is fast. On the other hand, attending to
some observations while setting-up the methodology to measure
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FIGURE 5 | New data prediction (first row) and optimal BAC dose concentration (second row).

extracellular BAC, leakage seems more relevant than cell lysis.
Even for high BAC doses, extracellular BAC concentration was
substantially larger when cells were separated by centrifugation
than by filtering. Since cells are supporting a major pressure with
centrifugation, this may indicate that cell membrane retains the
BAC (without lysis) and the intracellularmaterial only leaks when
sufficient pressure is applied.

However, BAC leakage cannot be fully understood with the
available model and data. Overparametrized models have been
obtained when trying to expand the model to explicitly consider
the influx and efflux of BAC. For a proper definition of the
leakage, it is critical to measure another representative variable
of this mechanism. A possibility, to be considered for future
works, could be to measure an energy-dependent variable linked
to efflux pumps, such as in Nagai et al. (2003).

3.3.2. Mechanisms Behind the Inoculum

Concentration
The main difficulty to understand the inoculum effect is that
it depends on the microbial species and strain and on the
antimicrobial type and compound (Udekwu et al., 2009; Karslake
et al., 2016).

The effect is critical in drug treatments, where infections
exceeding a critical inoculum concentration survive otherwise

effective treatments. Works studying antibiotic susceptibility
usually postulate that the medium is modulated by the number
of bacteria in the population. For example, Karslake et al. (2016)
proposed a mechanism based on pH media changes and Datta
and Benjamin (1999) in fluctuations of the medium acidity.
Other mechanisms such as a decrease in per-cell antibiotic
concentration are also being proposed (Udekwu et al., 2009).

Nevertheless, only a few works, from the author’s knowledge,
have quantified the inoculum effect with BAC (Lambert and
Johnston, 2001; Ioannou et al., 2007). This research found that
the relationship between the required disinfectant dose and the
inoculum level, such as with antibiotics and in this work, was not
proportional.

Lambert and Johnston (2001) quantified the inoculum effect
when studying inactivation of Staphylococcus aureus with BAC
using the fractional area. The work found that BAC dose has
to be inversely proportional to the inoculum concentration to
the power of 0.44. For a similar expression, a value of 0.83 is
estimated in this work. It may be speculated that the discrepancy
is due to the differences between E. coli and Staphylococcus
aureus or because cell inactivation is measured with different
methodologies (viable cells and optical density). Moreover, the
proposed model in this work includes other effects, such as the
dose concentration, that may cause the differences. In any case,
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a similar trend, and therefore quantification, for the inoculum
effect was observed in both cases.

On the other hand, Ioannou et al. (2007) proposes the
use of the adsorption isotherms to quantify this effect for
Staphylococcus aureus. Extracellular BAC decay seems too
fast for an energy-dependent mechanism and Ioannou et al.
(2007) assumed that uptake is mainly because of adsorption.
Whereas their results resemble a Langmuir isotherm, data in
this work fits better to a C-shaped isotherm (Figure 3C). The
differences may be again attributed to the microbial species
considered. However, it should be also stressed that the BAC
doses used in this work were more aggressive than in Ioannou
et al. (2007) and therefore other mechanisms could become
relevant, such as BAC penetration and leakage, in addition to
adsorption.

In fact, experiments in this work using high concentrations
of BAC indicates that the specific BAC uptake could be a
better descriptor than adsorption isotherms. Note that both are
related, but specific BAC uptake may better incorporate other
mechanisms that are relevant at significant concentrations of
the disinfectant and in antibiotic treatments, such as leakage or
pump efflux. Moreover, it directly links the interplay between
disinfectant and bacterial inactivation in a simple matter for
modeling that can be used as an analogy of a biochemical
reaction (3).

It should also be mentioned the theoretical work by Fernando
(2009), who also uses the concept of specific disinfectant
update (α). However, it assumes that this quantity may
change during the treatment because the cell may become less
susceptible to the chemical agent. In that case, BAC uptake
per cell cannot be calculated using (2). An alternative model
was tested (data not shown) assuming a similar dependence
of α with viable cells. Good fits were obtained for this
case but without improvements. Probably the disinfection
process is too fast to observe any change in susceptibility or
resistance during the treatment. Also, dependence on initial
inoculum, instead of viable cells, has more sense as disinfectant
can be adsorbed or enter the cells even if cells are not
viable.

Experiments in this work may suggest that the observed
differences in specific BAC uptake (or adsorption) are because
cells aggregate forming clusters for dense populations, and
therefore less membrane surface is exposed to BAC. That
would explain results (Figure 3B) showing that the specific
BAC uptake (BAC uptake per cell) decreased with the
number of cells. To test the hypothesis a population of
8 log bacteria was observed by acquiring phase-contrast
images, see the Figure S2 in Supplemental Data. Unfortunately,
only cells while and just after division where attached to
each other. Therefore the inoculum effect cannot be the
attributed to a decrease of membrane exposure for dense
populations.

Quorum sensing could be also a plausible explanation of the
observed inoculum effect. Quorum sensing circuits regulate gene
expression through extracellular signal molecules proportional to
the cell density (Miller and Bassler, 2001). Therefore, different
inoculum sizes obtained from a stationary phase culture have

different concentrations of signal molecules (autoinducers), and
different behavior of the bacterial population. In this work,
specific BAC uptake changes with the inoculum. This uptake
may depend on multidrug resistance efflux pumps, for example,
that are regulated by quorum sensing in several bacterial
genera, such as P. aeruginosa (Köhler et al., 2001) and E. coli
(Yang et al., 2006).

4. CONCLUDING REMARKS

In this work, the inoculum effect for E. coli inactivation by
BAC has been quantified. The equation describing the effect is
combined with a kinetic model of BAC and E. coli to determine
the treatment that inactivates most of the population with a
minimum dose concentration. Interestingly this optimum dose is
not proportional to the inoculum concentration, but it increases
exponentially (Figure 5). The reason behind is that each cell
uptakes less BAC when the inoculum concentration increases.
Possible mechanisms are discussed, but more research is
needed.

The predictive model of the characteristics here developed
allows analyzing different effects, such as the contact time. It may
also set the basis to develop a theory for the inoculum effect
applicable to other pairs of bacteria-antimicrobials. This will,
ultimately, guide the search for the relevant causes of this effect.
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Figure S1 | Capabilities of the model to predict dynamics inside the range

considered during calibration. Each of the dynamics is calculated from the

estimated parameters (Table 2) by calibrating the other experiments. The model is

able to predict situations not considered during calibration but in the range of the

experiments considered for the calibration
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Figure S2 | Phase-contrast images of a population of E. coli with a density of 8

logs per milliliter.

Supplemental Data
Cross-Validation
The model cross-validation is shown in Figure S1.
Note that results are validation experiments, i.e.,
the parameters to simulate the kinetics were
determined without considering this set of experimental
data.

Code to Reproduce the Computational Results
Model files, experimental data and scripts to reproduce results
can be found in a public repository https://doi.org/10.5281/
zenodo.1207616.

Phase-Contrast Image of a 8 log Population
To test if aggregation is a plausible explanation for the inoculum
effect, a population of 8logs was observed using a DMX1200
camera mounted on an Eclipse TE2000-S inverted microscope,
Nikon Japan, with a 40×/0.75 NA objective.
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