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Dark state with counter-rotating 
dissipative channels
Zheng-Yang Zhou1,2, Mi Chen1,2, Lian-Ao Wu3,4, Ting Yu2,5 & J. Q. You2,6

Dark state as a consequence of interference between different quantum states has great importance in 
the fields of chip-scale atomic clock and quantum information. For the Λ-type three-level system, this 
dark state is generally regarded as being dissipation-free because it is a superposition of two lowest 
states without dipole transition between them. However, previous studies are based on the rotating-
wave approximation (RWA) by neglecting the counter-rotating terms in the system-environment 
interaction. In this work, we study non-Markovian quantum dynamics of the dark state in a Λ-type 
three-level system coupled to two bosonic baths and reveal the effect of counter-rotating terms on the 
dark state. In contrast to the dark state within the RWA, leakage of the dark state occurs even at zero 
temperature, as a result of these counter-rotating terms. Also, we present a method to restore the 
quantum coherence of the dark state by applying a leakage elimination operator to the system.

Electromagnetically induced transparency discovered in quantum optics has long been an important effect in 
physics (see, e.g. ref. 1, for a review). This phenomenon of absorption cancelation is interpreted as the appearance 
of dark state or coherent population trapping. In addition to the atomic systems, dark state has also been observed 
in a number of solid-state systems including quantum dots2, 3, nitrogen-vacancy center4 and silicon-vacancy 
center in diamond5, 6. In fact, dark state can have different applications in physics. The atomic clocks based on 
coherent population trapping7–10 make the high-precision time estimation possible using the chip-scale and 
low-power devices. The state transfer can be done with the adiabatic passage of the dark state11–13. Operations on 
the quantum states like squeezing14 or decay suppression15, 16 can also be conducted with the help of dark state. 
Moreover, dark state can have important applications to the slow light17 and photocell18.

For the Λ-type three-level system, one of the advantages of the dark state is that it is composed of two lowest 
states without dipole transition between them. Within the framework of rotating-wave approximation (RWA) for 
the interaction between the system and the environment, the dark state is dissipation-free at a low enough tem-
perature. For instance, the dark state is not influenced by the spontaneous emission1. Studies in two-level systems 
have shown that the counter-rotating terms can change the ground state19–21, but there were few studies regarding 
the influence of the counter-rotating terms on the dark state22. When the coupling between the system and the 
environment becomes strong, the counter-rotating terms cannot be neglected. Thus, interesting phenomena with 
the quantum dynamics of the dark state are expected even at zero temperature, because now the ground state 
within the framework of RWA is no longer the ground state of the system when including the counter-rotating 
terms.

In this article, we study the quantum dynamics of the dark state beyond the RWA, where the Λ-type three-level 
system couples to two bosonic baths at zero temperature and the couplings between the system and the two baths 
contain both rotating and counter-rotating terms. We derive a non-Markovoian quantum Bloch equation for 
the dark state using a quantum Langevin approach. In contrast to the dark state within the RWA, leakage of the 
dark state occurs due to the counter-rotating terms in the system-bath interaction, revealing the breakdown of 
the dissipation-free dark state at the zero temperature. To suppress the leakage, we apply a leakage elimination 
operator to the system, which plays the role of keeping the upper level of the Λ-type three-level system empty. 
Indeed, the leakage of the dark state can be much reduced when applying the elimination operator, as shown 
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in our numerical results. This study provides a method to restore the quantum coherence of the dark state with 
counter-rotating dissipative channels.

Results
The model Hamiltonian.  We study a Λ-type three-level system driven by two pump fields [see Fig. 1(a)]. 
The Hamiltonian of this three-level system is given by (setting ħ = 1)

ω ω ω= | | + | | + | |

+ Ω | | + Ω | | + . .ω ω− −

H

e e

1 1 2 2 3 3 ,

( 3 1 3 2 H c ), (1)i t i t
sys 1 2 3

1 2
a b

where ω1, ω2, and ω3 are the three energy levels of the system and the frequencies of the two pumping fields are ωa 
and ωb, respectively, with Ω1 and Ω2 characterizing their coupling strengths to the three-level system. To focus on 
the effect of the counter-rotating dissipative channels, we take Ω1 and Ω2 to be independent of time. Also, the 
effects like dephasing channels or non-adiabatic transitions are not included here because they were well stud-
ied13. Here we consider the resonant pumping case with ω ω ω= −a 3 1 and ω ω ω= −b 3 2. This Λ-type three-level 
system has a dark state1,

=
Ω
Ω

−
Ω
Ω
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with Ω = Ω + Ω1
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2
2 , which is a solution of the Schrödinger equation, = −∂

∂
D t iH D t( ) ( )

t yss . When the 
three-level system is in this state, it remains in the subspace spanned by | |{ 1 , 2 }, even in the presence of the two 
pumping fields.

To study the effect of the environments on the dark state, we use two independent bosonic baths modeled by 
ω ω= ∑ + ∑† †H a a b bk a k k k k b k k kbath , , . The interaction between the system and the two baths is
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where ak and bk are annihilation operators of the bosonic modes of the two baths. Note that both rotating and 
counter-rotating terms are included in this interaction Hamiltonian. The dipole transition between |1  and |2  is 
forbidden in the considered Λ-type three-level system, so we omit this channel here. Under the RWA (i.e., only 
the rotating terms are considered), Eq. (3) is reduced to

∑= + + . .H g a g b( 3 1 3 2 ) H c
(4)k

a k k b k kRWA , ,

Let the two bosonic baths be in the vacuum state | ≡ | ⊗ |0 0 0a b, which corresponds to the zero temperature 
for each bath. It is easy to check that + ⊗ | =H H D t( ) ( ) 0 0RWA bath . Thus,

∂
∂

⊗ = − + + ⊗
t

D t i H H H D t( ) 0 ( ) ( ) 0 , (5)sys RWA bath

i.e., the dark state can persist even when the three-level system couples to the two baths. However, the 
counter-rotating terms in Eq. (3) can make the dark state transition to the state |3 , so ⊗ |D t( ) 0  is not a solution 
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Figure 1.  (a) A Λ-type three-level system driven by two fields with frequencies ωa and ωb, respectively. The field 
on the left (right), which drives the transition between |1〉 (|2〉) and |3〉, has a coupling strength Ω1 (Ω2) with 
this transition. The three-level system is also coupled to two bosonic baths, with the coupling strengths 
characterized by Γa and Γb. (b) Schematic illustration of the applied control pulses, where τ is the period of the 
pulses, Δ is the duration of each pulse, and h is the strength of the pulse.
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of the Schrödinger equation, Ψ = − Ψ∂
∂

iH
t ott , where = + +H H H Htot sys int bath is the total Hamiltonian of the 

system.
Below we show how the two baths affect the quantum coherence of the dark state when the interaction 

Hamiltonian is Hint, so as to reveal the effect of the counter-rotating terms in the interaction Hamiltonian. Then, 
we present a method to restore the quantum coherence of the dark state by applying a leakage elimination oper-
ator to the system.

Non-Markovian quantum Bloch equation.  The reduced density operator of the system can be written as

∑ρ ρ=t t i j( ) ( ) ,
(6)i j

ijsys
,

(sys)

where =i j, 1, 2, 3, and the reduced density matrix elements are given by

ρ ρ= .t i r t j( ) T ( ) (7)ij nv
(sys)

e

Here ρ t( ) is the density operator of the total system and Trenv denotes the trace over the degrees of freedom of the 
environments. These reduced density matrix elements can be rewritten as
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where Tr denotes the trace over the degrees of freedom of the total system. Thus, ρ t( )ij
(sys)  is just the expectation 

value of the system operator j i  and it can also be written, in the Heisenberg picture, as

ρ = Ψ Ψ
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t t j i t
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with

≡ †j i t U t j i U t( ) ( ) ( ), (10)

where j i t( ) is a system operator represented in the Heisenberg picture and j i  is this operator at the initial 
time t = 0, while U(t) is the evolution operator,

∫= −U t Te( ) , (11)i H s ds( )
t

0
tot

with T being the time-ordering operator. Here we study the case with the initial state of the total system given 
Ψ ≡ ⊗ |D(0) 00 .

To conveniently see the dynamical behavior of the system from non-Markovian to Markovian, we choose the 
correlation functions α ≡ ∑ | | ω− −t s g e( , )i k i k

i t s
,

2 ( )k  of the two baths as the typical Ornstein-Uhlenbeck correlation 
functions, α =

γ γΓ − | − |t s e( , )i
t s

2
i i i , where i = a, b. The non-Markovian to Markovian transition can be demonstrated 

by tuning the parameters γi, i.e., the inverse of the correlation times of the two baths. The coupling strength 
between the system and the ith bath is given by Γi which corresponds to the decay rate under Markovian approx-
imation23. Using the Heisenberg equation, we can derive the following non-Markovian quantum Bloch equation 
for the expectation values of the system operators (see method):

A H A L A L A∂
∂

= + +
t

t t t t t( ) ( ) ( ) ( ) ( ), (12)a b
(1,0) (0,1)

where ≡t t( ) ( ( ))ij  , with =i j, 1, 2, 3, and ρ= Ψ Ψ ≡t i j t t( ) ( ) ( )ij ij0 0
(sys) . In Eq. (12),  t( ), a  and b are 

given by
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i ti3 . The non-Markovianity of the quantum 

dynamics of the three-level system is reflected in both t( )(1,0)  and t( )(0,1) , which are solved via the hierarchical 
equation
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where =t( ) 0m n( , )  if m or n < 0,  ≡t t( ) ( )(0,0) , and the initial condition is  =(0) 0m n( , )  for m or ≠n 0.
With the reduced density operator ρ t( )sys  obtained by choosing the initial state of the total system as 

Ψ ≡ ⊗ |D(0) 00 , the fidelity of the dark state of the three-level system can be written as

 ρ≡ .t D t t D t( ) ( ) ( ) ( ) (16)sys

This quantity can be used to characterize the leakage of the dark state to other levels.

Breakdown of the dark state.  As shown in Eq. (5), for the interaction Hamiltonian HRWA with only the 
rotating terms, the dark state persists when the three-level system couples to two zero-temperature baths. Thus, 

=t( ) 1  in this case. Below we demonstrate the dynamical evolution of the fidelity  t( ) of the dark state when the 
counter-rotating terms are included in the interaction Hamiltonian. For simplicity, we choose the same parame-
ters for the two baths, i.e., α α= = γ γΓ − −t s t s e( , ) ( , )a b

t s
2

. We also choose the level of state |3〉 to be the zero point 
of the energy. The energy difference between |1〉 and |3〉 is taken as ω ω ω− = = 13 1 . Other parameters with the 
frequency unit are expressed as the ratio to ω. To numerically calculate the quantum dynamics of the system, we 
need to truncate Eq. (15) at a given hierarchical order   so that =t( 0)m n( , )  for + >m n . As shown in 
Fig. 2(a), the numerical results at = 4  (blue curve) are very close to the result at = 10  (read dots), indicating 
that the results converge rapidly with the hierarchical order  . In this case, we choose Γ = 1. Note that the cou-
pling strength between the system and the bath can be characterized by Γ which corresponds to the decay rate of 
the system under Markovian approximation23. To distinguish different regimes of interactions between the system 
and the bath, we define Γ = 1 to be the deep-strong coupling regime, because the corresponding Markovian decay 
rate is now comparable to the system frequencies. Consequently, Γ = 0.01 and 0.1 are defined as the strong and 
ultrastrong coupling regimes, respectively. When Γ < 1, more accurate results are obtained at the same 
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hierarchical order due to the even faster convergence of the numerical results in the weak coupling regime 
between the system and the baths. Thus, the truncation of Eq. (15) at  = 4 can already give reliable results for 
the model that we study here. However, we choose  = 10 in our following calculations to have the obtained 
results more accurate. Also, Fig. 2(b) and (c) show the difference between the results of  = 10 and = 20 . It is 
found that the difference is below 10−5, further indicating that the truncation is reliable.

In Fig. 2(d), we show the fidelity evolution of the dark state by varying the coupling strength Γ between the sys-
tem and the two baths. When Γ = 1, the fidelity of the dark state decays fast and then quickly reaches the station-
ary oscillations in this strong system-bath coupling regime. These stationary oscillations correspond to a dynamic 
equilibrium of the dark state under the combined actions of the drive fields and the baths. When decreasing the 
coupling strength Γ, the fidelity of the dark state decays slowly and takes a long time to reach the stationary oscil-
lations. However, with a given correlation time (inverse of γ) of the two baths, the dark state has already exhibited 
appreciable leakage at Γ = 0.01 [see the blue curve in Fig. 2(d)]. In Fig. 2(e), we also show the effect of the envi-
ronment correlation time (i.e., γ) on the fidelity evolution of the dark state. For the non-Markovian environment, 
which has a longer correlation time (i.e., smaller γ), the fidelity of the dark state decays slowly with the evolution 
t, in comparison with the Markovian environment with a shorter correlation time (i.e., larger γ). This reveals that 
the dark state leaks to other levels more slowly when it is coupled to a non-Markovian environment. The physical 
intuition for why the Markovian environment leads to a faster decay in fidelity may be related to the memory 
effect of the environment. Actually, owing to the memory effect of the environment, some information that is 
leaked into the bath can come back to the system in the non-Markovian case. Moreover, similar to Fig. 2(d), the 
fidelity of the dark state exhibits stationary oscillations at longer times even in the Markovian limit (large γ) of the 
baths. These oscillations are also due to the persistent drive applied to the system.

From our results above, we can conclude that when the coupling strength between the system and the bath 
becomes strong, the dark state is unstable under the influence of the counter-rotating terms even when the envi-
ronments are at zero temperature. Thus, owing to the counter-rotating terms in the interaction Hamiltonian, the 

Figure 2.  Fidelity evolution of the dark state. (a) Fidelity of the dark state calculated at different order   of the 
hierarchical equation in Eq. (15). The parameters of the two baths are Γ = 1 and γ = 0.6. (b) and (c) Fidelity 
difference ∆ ≡ −F F F10 20 at different values of the bath parameters, where F10 (F20) is the fidelity of the dark 
state calculated using the hierarchical equation up to the order of  = 10 (20). (d) Fidelity of the dark state 
calculated at different values of Γ, where γ = 0.6 and = 10 . (e) Fidelity of the dark state calculated at different 
values of γ, where Γ = 0.1 and  = 10. In this figure and the following one, the parameters of the three-level 
system are ω = −11 , ω = − .1 22 , ω = 03 , Ω = .0 51 , and Ω = .0 22 .
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environment-induced effect on the dynamical evolution of the dark state cannot be eliminated by simply lowering 
the temperature of the environments.

Leakage reduction of the dark state.  To reduce the leakage of the dark state, we introduce a leakage 
elimination operator24–30. When this leakage elimination operator is added, the total Hamiltonian of the open 
system becomes

= + + +H H H H R t( ), (17)tot sys bath int

where

= − | | + | |R t c t( ) ( )( 1 1 2 2 ) (18)

is the leakage elimination operator that suppresses leakage from the system to the environment. In numerical 
calculations, we use the rectangular control pulse c t( ) as an example, which has a period of τ [see Fig. 1(b)]. 
Within the time intervals τ τ≤ < + ∆l t l , where l is a positive integer to identify the pulse is in the lth period, 
the control pulse is switched on and has an intensity of h. For other times, the control pulse is turned off.

From Fig. 3(a), it can be seen that when the control pulse is applied, the fidelity of the dark state (gray and 
brown curves) decreases much slowly with the evolution time, in sharp contrast with the fidelity without the 
control pulse (red curve). Thus, the leakage elimination operator works quite effectively in reducing the leakage of 
the dark state. Also, the brown curve has a higher fidelity than the gray one, implying that a higher pulse intensity 
yields better control effect for suppressing the state leakage. Figure 3(b) presents the effect of the period of the 
control pulse on the leakage elimination. It is clear that the fidelity of dark state increases when decreasing the 
period of the control pulse. Therefore, both higher intensity and frequency of the control pulse can strengthen the 
effect of the leakage elimination on the dark state. In Fig. 3(c) and (d), we further show the effect of the inverse 
of the correlation time γ. Compared with Fig. 2(c), it can be seen that the leakage of the dark state is much elim-
inated for very non-Markovian baths with small values of γ. This is the distinct advantage of the non-Markovian 
baths.

Figure 3.  Fidelity evolution of the dark state in the presence of the control pulses. (a) Fidelity of the dark state 
when varying the strength of the pulse, where the period of the pulses is τ = .0 2 and the duration of each pulse 
is ∆ = .0 1. The parameters of the two baths are Γ = 0.1 and γ = 0.6. (b) Fidelity of the dark state when varying 
the period of the pulses, where the strength of the pulse is = . ∆h 0 6/  and the duration is chosen to be τ∆= .0 5 . 
The parameters of the two baths are also Γ = 0.1 and γ = 0.6. (c) Fidelity of the dark state when varying the 
inverse of the bath correlation time γ, where the strength of the pulse is h = 6, the period of the pulses is τ = 0.2, 
and the duration of each pulse is ∆= .0 1. The coupling strength of each bath is Γ = 0.1. (d) Fidelity of the dark 
state when varying the inverse of the bath correlation time γ, where the coupling strength of each bath to the 
system is Γ = 1. Other parameters are the same as in (c).
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Finally, we discuss more about the leakage elimination operator. Instead of using the eigenstates |1〉, |2〉 and 
|3〉, we can also use the dark state D t( ) , bright state B t( )  and eigenstate |3〉 as the basis states of the Hilbert space 
of the three-level system, where the dark state is given in Eq. (2) and the bright state is

=
Ω
Ω

+
Ω
Ω

.ω ω− −B t e e( ) 1 2 (19)
i t i t1 21 2

With this set of basis states, we can rewrite the interaction Hamiltonian in Eq. (3) as
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From Eq. (20), it follows that there is no direct leakage from the dark state to the bright state, so the leakage of the 
dark state occurs only via the excited state |3〉. If the state |3〉 is kept unoccupied, the leakage of the dark state can 
be prevented. That is why we can use the leakage elimination operator in Eq. (18) to restore the quantum coher-
ence of the dark state. As shown in refs 31–34, counterdiabatic driving usually introduces an additional term to 
cancel the effect of the nonadiabatic transition, while the leakage elimination operator can effectively enlarge the 
energy difference of the system. According to the adiabatic condition [see, e.g., Eq. (5) in ref. 32], this leakage 
elimination operator can have the similar effect as the counterdiabatic driving.

Discussion
We have studied the non-Markovian quantum dynamics of the dark state in a Λ-type three-level system coupled 
to two bosonic baths and revealed the effect of the counter-rotating terms in the system-bath coupling on the dark 
state. Due to these counter-rotating terms, the dark state leaks to other states even at zero temperature, in sharp 
contrast to the dark state within the RWA. Thus, whether the dark state is really dark or not depends on the valid-
ity of the RWA in the considered system. Actually, our numerical results have shown that the counter-rotating 
terms cannot be neglected for a strong system-bath interaction, because these terms yield appreciable leakage of 
the dark state in this strong coupling regime. To restore the quantum coherence of the dark state, we propose to 
apply a leakage elimination operator to the system. Our numerical results indicate that the leakage of the dark 
state can indeed be greatly suppressed with the help of this leakage elimination operator.

Our study reveals a possible mechanism for the dark state to leak and a way to fight against it. This may 
improve the precision of the experiments related to the dark state. While the studies of quantum dynamics 
beyond the RWA mainly focus on the two-level systems, our work provides insights into the dynamics of the 
three-level system beyond the RWA.

Methods
From the total Hamiltonian Htot given in Sec. II, it follows that the Heisenberg equations for the field operators ak 
and bk are given by

ω

ω

= − − +

= − − +

⁎

⁎

d
dt

a t i a t ig t t

d
dt

b t i b t ig t t

( ) ( ) ( 1 3 ( ) 3 1 ( )),

( ) ( ) ( 2 3 ( ) 3 2 ( )),
(21)

k k k a k

k k k b k

,

,

were ≡ †a t U t a U t( ) ( ) ( )k k  and ≡ †b t U t b U t( ) ( ) ( )k k , with U t( ) given in Eq. (11). Equation (21) can be formally 
solved as

∫

∫

= − +

= − + .

ω ω

ω ω

− − −

− − −

⁎

⁎

a t e a ig dse s s

b t e b ig dse s s

( ) [ 1 3 ( ) 3 1 ( )],

( ) [ 2 3 ( ) 3 2 ( )] (22)

k
i t

k a k

t i t s

k
i t

k b k

t i t s

, 0

( )

, 0

( )

k k

k k

Similar to Eq. (21), we can also derive the Heisenberg equations for the system operators i j , with 
=i j, 1, 2, 3. Then, substituting Eq. (22) into the Heisenberg equations for the system operators, we have
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ξ ξ

ξ ξ

ξ ξ

ξ ξ

ω ω

ξ

ξ ξ ξ

ω ω

ξ

ξ ξ ξ

ω ω

ξ ξ ξ ξ

= Ω | | − Ω | | + | |

− | | +

= Ω | | − Ω | | + | |

− | | +

= Ω | | − Ω | | + Ω | |

− Ω | | + | | − | | +

+ | | − | | +

= − | | + Ω | | − | |

+ Ω | | + | | − | |

+ + | | +

= − | | + Ω | | − | |

+ Ω | | + | | − | |

+ + | | +

= − | | + Ω | | − Ω | |

+ | | + − | | +

ω ω ω ω

ω ω ω ω

ω ω ω ω ω ω

ω ω

ω ω

ω ω

ω ω

ω ω

ω ω ω ω

− − −

− − −

− − − −

− −

−

−

−

−

− − −

⁎

†

⁎

†

⁎ ⁎

†

†

⁎

⁎

† †

⁎

⁎

† †

⁎

† †

d
dt

t i e t i e t i t

t t t
d
dt

t i e t i e t i t

t t t
d
dt

t i e t i e t i e t

i e t i t t t t

i t t t t
d
dt

t i t i e t t

i e t i t t t

t i t t t
d
dt

t i t i e t t

i e t i t t t

t i t t t
d
dt

t i t i e t i e t

i t t t i t t t

1 1 ( ) 3 1 ( ) 1 3 ( ) ( 3 1 ( )

3 1 ( ))( ( ) ( )),

2 2 ( ) 3 2 ( ) 2 3 ( ) ( 3 2 ( )

2 3 ( ))( ( ) ( )),

3 3 ( ) 1 3 ( ) 3 1 ( ) 2 3 ( )

3 2 ( ) ( 1 3 ( ) 3 1 ( ))( ( ) ( ))

( 2 3 ( ) 3 2 ( ))( ( ) ( )),

3 1 ( ) ( ) 3 1 ( ) ( 1 1 ( ) 3 3 ( ))

2 1 ( ) ( 1 1 ( ) 3 3 ( ))( ( )

( )) 2 1 ( )( ( ) ( )),

3 2 ( ) ( ) 3 2 ( ) ( 2 2 ( ) 3 3 ( ))

1 2 ( ) ( 2 2 ( ) 3 3 ( ))( ( )

( )) 1 2 ( )( ( ) ( )),

2 1 ( ) ( ) 2 1 ( ) 3 1 ( ) 2 3 ( )

3 1 ( )( ( ) ( )) 2 3 ( )( ( ) ( )), (23)

i t i t

a a

i t i t

b b

i t i t i t

i t
a a

b b

i t

i t
a

a b b

i t

i t
b

b a a

i i t

b b a a

1
( )

1
( )

2
( )

2
( )

1
( )

1
( )

2
( )

2
( )

3 1 1
( )

2
( )

3 2 2
( )

1
( )

2 1 2
( )

1
( )

3 1 3 1

3 2 3 2

3 1 3 1 3 2

3 2

3 1

3 2

3 2

3 1

3 2 3 1

with.., | | t2 3 ( ), and | | t2 1 ( ) equal to the conjugates of | | t3 1 ( ), | | t3 2 ( ), and | | t1 2 ( ), respectively. Here 
≡ †i j t U t i j U t( ) ( ) ( ), and the noise operators ξ t( )a  and ξ t( )b  are defined as ξ ≡ ∑ ω−t g e a( )a k a k

i t
k,

k  and 
ξ ≡ ∑ ω−t g e b( )b k b k

i t
k,

k . Also, we have considered the resonant case with ω ω ω= −a 3 1 and ω ω ω= −b 3 2. Note 
that Eq. (23) is just the quantum Langvin equation of the system.

Let us introduce the Bargmann coherent states for the two bosonic baths,

≡ ⊗ =
∑ ∑+† †

z z e 0 ,
(24)k

k
z a z b

k
ak k

k
bk k

which satisfies

= =
∂

∂
= =

∂
∂

.† †a z z z a z
z

z b z z z b z
z

z, , ,
(25)k ak k

ak
k bk k

bk

As in ref. 35 for the spin-boson model, we project Eq. (23) onto the Bargmann coherent states and take the 
expectation value for each operator. Then, we convert the quantum Langevin equation in Eq. (23) to

∫ ∫α
δ

δ
α

δ
δ

∂
∂

= +




 +





 +





 +





t

t z t t z z ds t s
z

t z z ds t s
z

t z( , ) ( ) ( , ) ( , ) ( , ) ( , ) ( , ),
(26)

at
t

a
as

a bt
t

b
bs

b
0 0

A H A L A L A

where ≡t z t z t z t z t z t z t z t z t z t z( , ) ( ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ))T11 22 33 31 32 21 13 23 12          , 
with T denoting the transpose of a matrix and ≡ Ψ Ψt z i j t z z( , ) ( )ij 0 0 . The matrix  t( ) is given in Eq. 
(13), and the matrices a and b are given in Eq. (14). Also, in deriving Eq. (26), we have used the functional chain 
rule

∫
δ

δ
∂

∂
=

∂
∂z

ds z
z z

,
(27)k

s

k s

and defined the noise functions,

∑ ∑= = .ω ω− −z g e z z g e z,
(28)at

k
a k

i t
ak bt

k
b k

i t
bk, ,

k k

Below we solve Eq. (26) using a hierarchical-equation appraoch36. We extend the limits of integrals in Eq. (26) 
to infinity and define ∫ α≡ δ

δ−∞

+∞D t s( , )a a zas
 and ∫ α≡ δ

δ−∞

+∞D t s( , )b b zbs
. According to Eq. (26), t z( , )  only con-

tains the noise for ≤ <s t0 . Then, for other values of s, we have  =δ
δ

t z( , ) 0
zis

, where =i a b, . Thus, the exten-
sion of the integral limit is exact. Now Eq. (26) can be expressed as
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A H A L A L A∂
∂

= + + + + .
t

t z t t z z D t z z D t z( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) (29)at a a bt b b

We further define  ≡t z D D t z( , ) ( , )m n
a
m

b
n( , )  and consider the Ornstein-Uhlenbeck correlation functions 

α =
γ γΓ − −t s e( , )i

t s
2
i i i , with =i a b, . Then, it follows that

∫ ∫

∫ ∫

α δ
δ

α δ
δ

γ γ

α δ
δ

α δ
δ

γ γ

∂
∂

=
∂
∂

























= − +

+
























∂
∂

.

= − + +
∂
∂

.

−∞

∞

−∞

∞

−∞

∞

−∞

∞

t
t z

t
ds t s

z
ds t s

z
t z

m n t z

ds t s
z

ds t s
z t

t z

m n t z D D
t

t z

( , ) ( , ) ( , ) ( , )

( ) ( , )

( , ) ( , ) ( , )

( ) ( , ) ( , )
(30)

m n
a

as

m

b
bs

n

a b
m n

a
as

m

b
bs

n

a b
m n

a
m

b
n

( , )

( , )

( , )

 





 

Using Eq. (29), we obtain

A H A L A L A

L A L A
H A L A
L A
L A L A

H A L A

L A L A

L A L A

L A

H A L A

L A L A L A

L A L A

γ

γ

γ

γ

∂
∂

= + +

+ +
= +

+
+ +

= +
Γ

+ +

+
Γ

+

+

= +
Γ

+ + +
Γ

+ + .

−

+

−

+

−

+ −

+

D D
t

t z D D t t z z t z D t z

z t z D t z
D D t t z D D z t z

D D D t z
D D z t z D D D t z

t t z m D D t z

z t z D D t z

n D D t z z D D t z

D D t z

t t z m t z

z t z t z n t z

z t z t z

( , ) [ ( ) ( , ) ( , ) ( , )

( , ) ( , )]
( ) ( , ) ( , )

( , )
( , ) ( , )

( ) ( , )
2

( , )

( , ) ( , )

2
( , ) ( , )

( , )

( ) ( , )
2

( , )

( , ) ( , )
2

( , )

( , ) ( , ) (31)

a
m

b
n

a
m

b
n

at a a at

bt b b bt

at
m

bt
n

at
m

bt
n

at a

at
m

bt
n

a at

at
m

bt
n

bt b at
m

bt
n

b bt

m n a a
a at

m
bt
n

at a
m n

a at
m

bt
n

b b
b at

m
bt
n

bt b at
m

bt
n

b at
m

bt
n

m n a a
a

m n

at a
m n

a
m n b b

b
m n

bt b
m n

b
m n

( , ) 1

( , ) 1

1

1

( , ) ( 1, )

( , ) ( 1, ) ( , 1)

( , ) ( , 1)

Substitution of Eq. (31) into Eq. (30) gives

γ γ

γ

γ

∂
∂

= − + +

+
Γ

+

+ +
Γ

+ + .

−

+ −

+

t
t z m n t z t t z

m t z z t z

t z n t z

z t z t z

( , ) ( ) ( , ) ( ) ( , )

2
( , ) ( , )

( , )
2

( , )

( , ) ( , ) (32)

m n
a b

m n m n

a a
a

m n
at a

m n

a
m n b b

b
m n

bt b
m n

b
m n

( , ) ( , ) ( , )

( 1, ) ( , )

( 1, ) ( , 1)

( , ) ( , 1)

A A H A

L A L A

L A L A

L A L A

This is a stochastic differential equation, because it involves the noise functions zat and zbt.
Let ≡t t z( ) { ( , )}m n m n( , ) ( , )A M A , where the statistical average is defined as

∫∏
π

… ≡ … .− −d z d z e{ } { }
(33)k

ak bk z z
2 2

2
ak bk

2 2


It follows from Eq. (32) that

A M A

M L A M L A

A H A L A

L A L A L A

γ γ
γ

γ

∂
∂

=
∂
∂

= +

− + + +
Γ

+ +
Γ

+ .

−

+ − +

{ }t
t

t
t z

z t z z t z

m n t t t m t

t n t t

( ) ( , )

{ ( , )} { ( , )}

( ) ( ) ( ) ( )
2

( )

( )
2

( ) ( )
(34)

m n m n

at a
m n

bt b
m n

a b
m n m n a a

a
m n

a
m n b b

b
m n

b
m n

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( 1, )

( 1, ) ( , 1) ( , 1)
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For an arbitrary element t z( , )ij
m n( , )  of  t z( , )m n( , ) ,

ξ ξ ξ

ξ ξ ξ

= Ψ Ψ

= Ψ Ψ

= Ψ Ψ
=

† †

† †

{ }z t z z D D i j t z z

i j t t t t z z

i j t t t t

( , ) { ( ) }

{ ( )[ ( )] [ ( )] ( ) }

( )[ ( )] [ ( )] ( )
0,

at ij
m n

at at
m

bt
n

a
m

b
n

a

a
m

b
n

a

( , )
0 0

0 0

0 0

M A M

M

because ξ Ψ = ∑ ⊗ = ∑ ⊗ ⊗ =ω ω− −t g e a D g e a D( ) (0) 0 (0) 0 0 0a k a k
i t

k k a k
i t

k a b0 , ,
k k .  Thus, we have 

M L A =z t z{ ( , )} 0at a
m n( , ) . Similarly, because ξ Ψ = ∑ ⊗ =ω−t g e b D( ) (0) 0 0b k b k

i t
k0 ,

k , we can also derive that 
M L A =z t z{ ( , )} 0bt b

m n( , ) . Therefore, Eq. (34) is simplified as

A A H A L A

L A L A L A

γ γ
γ

γ

∂
∂

= − + + +
Γ

+ +
Γ

+

−

+ − +

t
t m n t t t m t

t n t t

( ) ( ) ( ) ( ) ( )
2

( )

( )
2

( ) ( ),
(35)

m n
a b

m n m n a a
a

m n

a
m n b b

b
m n

b
m n

( , ) ( , ) ( , ) ( 1, )

( 1, ) ( , 1) ( , 1)

where  =t( ) 0m n( , )  if m or n < 0. This is the hierarchical equation given in Eq. (15).
Moreover, there is the relation that

ξ ξ

ξ ξ

=

= Ψ Ψ

= Ψ Ψ

= Ψ Ψ .

† †

† †

t t z

D D i j t z z

i j t t t z z

i j t t t

( ) { ( , )}

{ ( ) }

{ ( )[ ( )] [ ( )] }

( )[ ( )] [ ( )]

ij
m n

ij
m n

at
m

bt
n

a
m

b
n

a
m

b
n

( , ) ( , )

0 0

0 0

0 0

A M A

M

M

Because ξ |Ψ =(0) 0a 0 , and ξ |Ψ =(0) 0b 0 , then ξ ξ= Ψ Ψ =† †i j(0) [ (0)] [ (0)] 0ij
m n

a
m

b
n( , )

0 0 , if m or ≠n 0. 
Therefore, the initial condition of Eq. (35) is  =(0) 0m n( , )  for m or...

Note that

A M A A A∫∏
π

= = ≡− −t t z d z d z e t z t( ) { ( , )} ( , ) ( ),
(36)k

ak bk z z(0,0)
2 2

2
ak bk

2 2

where  ≡t t( ) ( ( ))ij , with =i j, 1, 2, 3, and  = Ψ Ψt i j t( ) ( )ij 0 0 . From Eq. (35), we get

A H A L A L A∂
∂

= + +
t

t t t t t( ) ( ) ( ) ( ) ( ), (37)a b
(1,0) (0,1)

which is the non-Markovian quantum Bloch equation in Eq. (12).
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