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Cancer clinical trials typically generate detailed patient toxicity data. The most
common measure used to summarize patient toxicity is the maximum grade
among all toxicities and it does not fully represent the toxicity burden expe-
rienced by patients. In this article, we study the mathematical and statistical
properties of the toxicity index (TI), in an effort to address this deficiency. We
introduce a total ordering, (T-rank), that allows us to fully rank the patients
according to how frequently they exhibit toxicities, and show that TI is the
only measure that preserves the T-rank among its competitors. Moreover, we
propose a Poisson-Limit model for sparse toxicity data. Under this model, we
develop a general two-sample test, which can be applied to any summary mea-
sure for detecting differences among two population of toxicity data. We derive
the asymptotic power function of this class as well as the asymptotic relative
efficiency (ARE) of the members of the class. We evaluate the ARE formula
empirically and show that if the data are drawn from a random Poisson-Limit
model, the TI is more efficient, with high probability, than the maximum and
the average summary measures. Finally, we evaluate our method on clinical trial
toxicity data and show that TI has a higher power in detecting the differences
in toxicity profile among treatments. The results of this article can be applied
beyond toxicity modeling, to any problem where one observes a sparse array of
scores on subjects and a ranking based on extreme scores is desirable.
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1 INTRODUCTION

Adverse event reporting has become a crucial step in the assessment of therapies in clinical trials since the first recom-
mendation for grading toxicities was presented, following the efforts of the World Health Organization to standardize
cancer treatment reports in the late 1970s.1,2 An adverse event (AE), or a toxicity, is any unfavorable and unintended
sign, symptom, or disease temporally associated with the use of a medical treatment or procedure that may or may not be
considered related to the medical treatment or procedure.3 The National Cancer Institute (NCI) published the common
toxicity criteria (CTC) in 1983, providing a standardized list of AE terms commonly encountered in oncology to guide
investigators in identifying and documenting toxicities.4,5
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The CTC has evolved over the last decades to the current and wide-spread common terminology criteria for adverse
events,3 which is organized in 26 system organ classes, such that each AE term is defined and classified into grades
of severity denoted as 0, 1, … , 5 with 0 corresponding to no symptoms, 1 corresponding to a mild symptom, up to 5
indicating death. While CTCAE allows investigators to assess and document toxicities in a systematized manner, it also
creates a challenge in summarizing a large amount of data at the patient level. Each patient can experience more than one
AE term from different organ systems and different grades of the same AE term during several cycles of treatment resulting
in a vector of integers, the toxicity profile, of varying length containing all toxicities grades per patient. In recognition
of deficiencies in toxicity reporting, NCI launched a Cancer Moonshot funding opportunity6 to accelerate research on
improved approaches to evaluating the tolerability of cancer treatments.

Currently, the most used approach in phase III trials to summarize multiple toxicities per patient is the
maximum-grade (max-grade).7-9 Other approaches such as those of References 10-12 have been proposed in the litera-
ture to address the lack of representation of the toxicity burden experienced by patients when the max-grade method is
applied. In particular, a longitudinal approach (Tox-T)12 incorporating low-grade toxicities and their duration using the
average as a summary measure was introduced. Even though Tox-T better represents the toxicity burden, the average grade
is hard to interpret clinically by investigators. In the setting of dose finding in early phase cancer trials, many authors
proposed statistical models and dose escalation designs that take into account all grades and types of toxicities with the
goal of improving the safety and efficiency of the trial.13-18 Some of these methods use multivariate models for charac-
terizing the relationship between different grades of toxicities and dose while others, such as the Q-TWIST,19 summarize
the information from all toxicity grades into a continuous score. In general, under some scenarios for the location of the
true maximum tolerated dose (MTD), a modest gain in the precision of the estimate of the MTD is achieved when includ-
ing information from all toxicities relative to models that use a binary indicator of toxicity (a.k.a. dose limiting toxicity),
without compromising the safety of the trial.

The toxicity index (TI), proposed in Reference 20, is a summary measure that preserves the highest grade while incorpo-
rating lower grade toxicities. The TI can avoid the loss of information and improve clinical interpretability. It was recently
shown that TI is more powerful than other common toxicity summaries in detecting differences among treatments21 in
the National Surgical Adjuvant Breast and Bowel Project clinical trial (NSABP R0-4).22,23 To quantify the information loss,
power curves were empirically estimated by resampling the available data, showing the relative performance of different
toxicity summaries in comparing treatments.

While the TI was introduced more than a decade ago, its mathematical and statistical properties have never been stud-
ied. In this article, we report on the novel characteristics of TI as a summary measure and its effectiveness in comparing
treatments. We also develop a framework for modeling and ranking toxicity data, which as discussed below, is applicable
beyond drug toxicity problems. Our contributions in this article are as follows:

1. We propose a framework for modeling the data in experiments where scores on multiple events are recorded for a
collection of subjects. In particular, the model is applicable to n× d arrays of scores on n subject and d adverse events,
where each entry is a score in {0, 1, … , K}. We refer to the elements of the latter set as grades. We consider sparse arrays
where most of the scores are zero, and argue in favor of a Poisson-Limit model that simplifies downstream analysis.
The model can be equivalently expressed in terms of the reduced frequency vectors (RFV) of the subjects where, for
each subject, one records the frequency of each observed grade except zero.

2. We introduce a total ordering, referred to as the T-order, on the space of RFVs, that allows for comparing them based on
how frequently they exhibit extreme grades. Since the T-order is a total order (ie, every pair of vectors are comparable),
it induces a full ranking among RFVs which we call the T-rank. This, for example, allows one to fully rank subjects
(or treatments), strictly and without ties, except when the RFV vectors are exactly equal. The T-rank, in particular, is
relevant to drug toxicity trials where one wants to emphasize differences in extreme toxicity. The ranking is also useful
in any application where variations in the extreme scores among subjects or treatments are of concern.

3. We consider two-sample testing based on score data coming from two different Poisson-Limit models. We propose
a general test that compares the two treatments by looking at the difference in mean between values of a summary
measure g(⋅) applied to each subject in each treatment. We study three candidates for g(⋅): the TI, the average, and the
maximum score. We derive exact expressions for the mean and variance of the test statistic under the Poisson-Limit
model, allowing us to analytically set the critical region of the test with guarantees on the asymptotic significance level.

4. Our result also provides an approximate analytical formula for the power function for each test, as well as an exact
expression for the slope of the test as defined by Vaart24(chapter 14). The slopes allow us to analytically calculate the
asymptotic relative efficiency (ARE) of the three summary measures with respect to each other. We evaluate these
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ARE expressions empirically, showing that in the majority of the cases, TI is more efficient than the maximum and
much more efficient than the average.

5. We demonstrate our theoretical results on the two-sample test by fitting the Poisson-Limit model to real data from a
clinical trial and evaluating the power function for tests based on the three summary measures. The resulting plots
complement those of Reference 21 which are obtained based on resampling the data, and confirm the superiority of
TI in detecting the differences in toxicity profile among drugs.

The organization of the rest of the article is as follows: Section 2 provides background on the toxicity data and the
summary measures. We then introduce the Poisson-Limit model for such data. In Section 3, we derive mathematical
properties of TI, including monotonicity with respect to the T-rank. Deficiencies of competing summary measures in
preserving the ranks are also discussed here. Section 4 develops our two-sample test and presents analytical results on
the power function and test slopes. The methodology is illustrated with simulations in Section 5 and conclude with a
discussion in Section 7.

Notation. We use Z for the set of integers, R+ for the set of nonnegative real numbers, and Z+ for the set of nonnegative
integers. We write [K]= {1, … , K} and [K]* = {0, 1, … , K}. The indicator of a set A is denoted as 1{x ∈A}, evaluating to 1
if x ∈A and 0 otherwise.

2 DATA, MODELS, AND SUMMARY MEASURES

Assume that we have a collection of d AEs that we represent as {1, … , d}. For each subject in a given period of time (one
cycle or multiple cycles combined), we observe a toxicity profile that can be viewed as a vector Y = (Y1,Y2, … ,Yd) ∈ Z

d
+,

where Y i represents the toxicity grade of AE i. Generally, we assume that there is a maximum possible grade K, so that
we can assume Y ∈ [K]d

∗, where we recall that [K]* = {0, 1 … , K}. We assume that the corresponding grades for different
AEs are equivalent, that is, grade 1 in Y 1 is equivalent to grade 1 in Y 2, and so on. The toxicity index is an example of a
summary measure that maps Y to a scalar grade. More precisely, let Y (1) ≥Y (2) ≥ · · ·≥Y (d) be the order statistic of Y . The
toxicity index was originally defined as a function 𝜏 ∶ Z

d
+ → R+ given by:20

𝜏(Y ) ∶=
d∑

i=1

Y(i)

wi(Y )
, where wi(Y ) ∶=

i−1∏
j=1

(1 + Y(j)). (1)

Besides the toxicity index, there are other summary measures, which are often defined in terms of the frequency
vector of the grades, that is, X* = (X0, X1, X2, … , XK) where Xr =

∑d
j=1 1{Yj = r}. Since we are mainly interested in sparse

toxicity profiles, level 0 has a special status. We will work with the reduced frequency vector X = (X1, … , XK) that only
retains the frequency of nonzero levels. Let us write X+ =

∑K
r=1 Xr and note that X0 = d−X+, that is, there is no loss of

information working with X instead of X*.
Common summary measures can be stated in terms of the reduced frequency vector X . The following two examples

are of particular interest:

1. The mean index which can be represented as

avg(X) =
∑K

r=1 rXr∑K
r=1 Xr

1{X+ > 0}. (2)

2. The maximum index which is given by

mx(X) = max{r ∈ [K] ∶ Xr > 0}, (3)

where we interpret the maximum of the empty set as 0.

Throughout, maximum index, mx, and max-grade will be used interchangeably.
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2.1 The Poisson-Limit model

To study the statistical properties of the summary measures, we propose a model for the toxicity data. We start with
a model, where each entry of Y is an i.i.d. draw from a categorical variable with levels in [K]*. That is, {Y j} are i.i.d.,
with P(Yj = r) = pr for r ∈ [K]* and j∈ [d]. In the absence of prior knowledge about toxicities, the i.i.d. assumption is a
reasonable first approximation. It follows that the frequency vector X* has a multinomial distribution with parameter d
and p* = (p0, p1, … , pK). Formally, X* ∼Mult(d, p*).

Under the above model, we denote the distribution of the reduced frequency vector X , as Mult|0⟨(d, p) where
p= (p1, … , pK). In other words, X ∼Mult|0⟨(d, p) if

(d − X+,X) ∼ Mult(d, (1 − p+, p)),

where X+ =
∑K

r=1 Xr and p+ =
∑K

r=1 pr. We are interested in the cases where the toxicity profile is sparse, that is, many of
{Y j} are often zero. In those cases, it is reasonable to assume that pr = 𝜆r∕d for r ∈ [K]. Letting 𝜆 = (𝜆1, … , 𝜆K), our model
is equivalent to

X ∼ Mult|0⟨ (d, 𝜆
d

)
. (4)

As shown in the Appendix (Section A0.1), X converges in distribution to a product of Poisson distributions, that is,

X ⇝ Poi(𝜆) ∶=
K∏

r=1
Poi(𝜆r), d → ∞. (5)

We will use this limiting distribution in our statistical analysis. It is a good approximation for large sparse toxicity
profiles and allows us to derive explicit analytical expressions for various statistical quantities of interest. We refer to (5)
as the Poisson-Limit model.

Remark 1. Even when the distributions of the AEs are allowed to be different, that is, P(Yj = r) = qjr with qjr potentially
varying with j, we still have a Poisson-Binomial distribution for each marginal (ie, the distribution of

∑d
j=1 1{Yj = r} for a

given r), which can be approximated by a Poisson distribution in the sparse case.

3 TOXICITY INDEX PRESERVES T-RANK

In this section, We derive some analytical properties of the toxicity index. We first show how the toxicity index can be
computed based only on the reduced frequency vector (RFV) of the observations. We define a total ordering, referred to as
the T-rank, on the space of RFVs and show that the toxicity index preserves this ordering in a strict sense. A consequence
of this result is that the toxicity index is a one-to-one mapping on the RFV space, hence there is no loss of information
when summarizing the toxicity profile this way.

3.1 Closed-form representation

Recall that Y ∈ [K]d
∗ represents the toxicity profile of a patient. Consider the truncated toxicity index:

𝜏k(Y ) ∶=
d∑

i=1

Y(i)

wi(Y )
1{Y(i) ≤ k}

which only considers toxicities of grades k or lower. We have 𝜏(Y ) = 𝜏K(Y ) where K is the maximum toxicity grade
observed in Y .

Let x = x(Y ) ∈ RK be the reduced frequency vector of Y : xk = xk(Y ) =
∑n

i=1 1{Yi = k} for all k= 1, … , K. The
following proposition provides a recursive formula for 𝜏k(⋅) in terms of x:



RAZAEE et al. 1539

Proposition 1. For any x ∈ RK, let gk(x) =
∏K

i=k (1 + i)−xi for k= 2, … , K and gK + 1(x)= 1. We have, for k= 1, … , K,

𝜏k(Y ) − 𝜏k−1(Y ) = (k + 1)gk+1(x)[1 − (1 + k)−xk ],

where x = x(Y ) is the reduced frequency vector of Y and 𝜏0(⋅) ∶= 0.

It follows from Proposition 1 that the toxicity index 𝜏, defined in (1), has the following closed form in terms of the
frequency vector: 𝜏(Y ) = TI(x(Y )) where

TI(x) ∶=
K+1∑
k=2

kgk(x)(1 − k−xk−1 ). (6)

Letting gk(x) ∶= 1 − gk(x), we can write TI(⋅) alternatively as follows:

TI(x) =
K+1∑
k=2

k[gk(x) − gk−1(x)] = 2g1(x) +
K∑

k=2
gk(x).

For K = 5, with x = (x1, x2, x3, x4, x5), one can also rewrite (6) as

TI(x) = 6 − 6−x5(1 + 5−x4) − 2−2x3−x5 3−x2−x5 5−x4(1 + 3x2 + 21−x1) (7)

which could be faster for computations. In the sequel, we also refer to TI(⋅) as the toxicity index, based on the equivalence
just established.

3.2 Monotonicity and T-rank preservation

We now introduce a total order on the space of reduced frequency vectors (RFVs). In fact, the total order can be defined
over all real-valued K-dimensional vectors:

Definition 1 (T-order). For x, y ∈ RK , we write x≻ y or y≺ x if x ≠ y and

xi(x,y) > yi(x,y), where i(x, y) ∶= max{i ∶ xi ≠ yi}.

In words, for any two vectors x and y that are not equal, we let i(x, y) be the largest grade (last position) on which they
differ and say that x≻ y if the coordinate of x at i(x, y) is larger than the corresponding coordinate of y. We write x≽ y if
either x = y or x≻ y, and similarly for x≼ y.

The T-order, defined by ≽, is a total order on RK , that is, we can compare any pair of vectors in RK . To see this, it is
enough to verify the transitivity property:

Lemma 1 (T-order is transitive). If x≻ y and y≻ z, then x≻ z.

Recall that the toxicity index can be written as a function TI(⋅) of the reduced frequency vector; see (6). The toxicity
index TI(⋅) is (strictly) increasing on Z

K
+, with respect to the T-order:

Theorem 1. Let K ≥ 2. For any x, y ∈ Z
K
+ , if x≻ y, then TI(x)>TI(y).

Since the T-order is a total order, it provides a ranking of all elements of Z
K
+. We refer to this ranking as the T-rank.

Theorem 1 shows that the toxicity index preserves the T-rank. Theorem 1 also shows that TI(⋅) is injective (ie, one-to-one)
on Z

K
+. The significance of the T-order, and the associated T-rank, is that it is sensitive to the highest grade on which the

two RFVs x and y differ. This is the desired way to compare RFVs derived from toxicity profiles, since the highest grade
toxicities are the most important. The two other common summary measures, namely, mx(⋅) and avg(⋅) do not preserve
the T-rank:

The max-grade mx(x) is a nondecreasing function w.r.t. the T-rank but is not one-to-one, that is, we can have x≻ y but
g(x)= g(y). The average function avg(x) is neither monotone w.r.t. to the T-rank nor one-to-one. For example, consider
K = 2, and take x = (6, 2) and y= (2, 1). Then, x≻ y but avg(x)= 1.25< avg(y)= 1.33. It is also easy to find cases where x≻ y
and avg(x)> avg(y) or avg(x)= avg(y), for example, take x = (2, 2) or x = (4, 2), respectively. Figure 1 illustrates the TI vs
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F I G U R E 1 TI preserves the T-rank while the mx and avg do not. The x-axis is an array, with 37 patients with each column representing
a RVF for an individual, ordered in increasing T-rank. Each cell in the array is the number of AEs experienced at a particular grade for a
given cycle of treatment. The TI exhibits strict monotonicity with respect to this ordering while the mx is nondecreasing and avg is neither
monotone nor nondecreasing [Colour figure can be viewed at wileyonlinelibrary.com]

mx and avg as functions of some sorted vectors based on T-rank showing that TI is both monotone and one-to-one unlike
the mx and avg and thus preserves ranking.

Intuitively, the T-rank is a natural way to order patients according to their toxicity grades. We look at the largest
grade first, and if the frequency of that grade is higher in one patient we rank their toxicity higher. Otherwise (ie, in
case of equality), we look at the second largest grade and compare the frequencies there and so on. As an example, in
the hypothetical dataset, discussed in Section 6.1, the RFVs of patients 7 and 8 are x = (0, 1, 3, 1, 0) and y= (0, 4, 1, 1, 0),
respectively. These two match on grades 5 and 4 but not 3. Then, the largest grade that they differ on is grade 3, that is,
i(x, y)= 3. Since x3 > y3, we conclude that patient 7 has a higher T-rank than patient 8. This way we can rank all patients.
The mx function when plotted against this order looks like a step function while TI always monotonically increases, as
shown in Figure 1. The avg mixes the high and low grades which generally causes the overall grade to go down, hence
misrepresenting the toxicity as determined by the T-rank; this is shown in Figure 1 as average occasionally going down
even when the toxicity rank goes up.

4 STATISTICAL THEORY

In this section, we consider the statistical problem of testing whether two populations of toxicity profiles are different.
This is the central problem of pharmacology where one is interested in determining whether two or more drugs have the
same toxicity effects in patients, or whether a certain drug is more toxic than the other. We present the problem under
the Poisson-Limit model of Section 2.1, and introduce a general two-sample test that can be applied based on any scalar
summary measure. We present an asymptotic analysis of these tests (Theorem 2) and compute the relevant parameters
for the three summary measures: the average, the maximum, and the TI.

4.1 Two-sample tests

Recall the Poisson-Limit model of Section 2.1 for the reduced frequency vectors (RFVs). Assume that we observes RFV
samples from two such populations:

X (1), … ,X (n) ∼ Poi(𝜆), Y (1), … ,Y (m) ∼ Poi(𝛾), (8)

http://wileyonlinelibrary.com
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where 𝜆 = (𝜆r) and 𝛾 = (𝛾r) are vectors in R
K
+. We recall that Poi(𝜆) =

∏
rPoi(𝜆r) is the distribution with independent

Poi(𝜆r) coordinates. Our goal is to test the null hypothesis H0 ∶ 𝜆 = 𝛾 . We consider the general statistic

Sg =
1
n

n∑
i=1

g(X (i)) − 1
m

m∑
i=1

g(Y (i)),

for some mapping g from Rd to R. Let us define

Mg(𝜆) ∶= E𝜆[g(X)], 𝜎2
g (𝜆) ∶= var𝜆(g(X)), (9)

where E𝜆 and var𝜆 denote the expectation and variance, assuming that X ∼ Poi(𝜆). We assume that Mg(𝜆) and 𝜎2
g (𝜆) are

finite for all 𝜆 ∈ R
K
+. Consider the two-sample test that rejects the null hypothesis if

|Sg| > z𝛼∕2

√
𝜎2

g (�̂�)
( 1

n
+ 1

m

)
, (10)

where �̂� is the following estimate

�̂� = 1
m + n

( n∑
i=1

X (i) +
m∑

j=1
Y (j)

)
. (11)

The next theorem describes the asymptotic behavior of this test:

Theorem 2. Let {X (i)}n
i=1 and {Y (i)}m

i=1 be generated from model (8), with some 𝜆, 𝛾 ∈ R
K
+ . Assume that n, m→∞ such

that n∕m → 𝜌 and that 𝜎2
g (⋅) is a continuous function. Then, the two-sample test that rejects the null according to (10), has

asymptotic level 𝛼. Moreover:

(a) If Mg(𝜆) ≠ Mg(𝛾), the test is asymptotically consistent (ie, the power converges to 1).
(b) If Mg(𝜆) = Mg(𝛾), the test is inconsistent and its power converges to

2Q

(
z𝛼∕2

√
1 + 𝜌

1 + 𝜌𝜈

)
,

where 𝜈 = 𝜎2
g (𝛾)∕𝜎2

g (𝜆). In particular, if in addition 𝜎2
g (𝛾) = 𝜎2

g (𝜆), the test is asymptotically powerless (ie, the power
converges to 𝛼).

(c) Assume that Mg(⋅) is continuously differentiable at 𝜆. For the shrinking alternative, 𝛾 = 𝜆 + 𝛿∕
√

n with 𝛿 ∈ RK, the
power of the test converges to

Q(z𝛼∕2 + B) + Q(z𝛼∕2 − B), where B =
⟨∇Mg(𝜆), 𝛿⟩
𝜎g(𝜆)

√
1 + 𝜌

. (12)

The quantity B2, with B given in (12), is the slope of the test in the direction 𝛿. The slope plays a role in determining
the Pitman asymptotic relative efficiency (ARE) of two test with respect to each other. In particular, the ratio of the
slopes for two tests determines the asymptotic ratio of the samples sizes necessary for achieving the same power by two
tests of a given size; see Reference 24, chapter 14 for details. The proof of Theorem 2 also gives the following asymptotic
approximation to the power of the test:

power ≈ Q

(
𝜏 +

√
n𝜇

𝜎

)
+ Q

(
𝜏 −

√
n𝜇

𝜎

)
, for n ≫ 1, (13)

where 𝜇 = Mg(𝛾) − Mg(𝜆), 𝜏 = z𝛼∕2𝜎g(𝜆)
√

1 + 𝜌 and 𝜎2 = 𝜎2
g (𝜆) + 𝜌𝜎2

g (𝛾). Simulations in Section 5 show that this approx-
imate formula is quite accurate even for small n.
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Remark 2. One can replace 𝜎2
g (�̂�) in (10) with any consistent estimate of the variance of the pooled sample (under null).

Theorem 2 still holds for such a test. In particular, we can replace 𝜎2
g (�̂�) with the empirical variance of the pooled sample:

�̂�
2 ∶= 1

m+n−1

[∑n
i=1 (X (i) − �̂�)2 +

∑m
j=1 (Y (j) − �̂�)2

]
. The resulting test will be the usual two-sample t-test and it enjoys the

same asymptotic properties as those of (10). There could be some advantage in using 𝜎2
g (�̂�) vs �̂�2 for small sample sizes,

but it is generally hard to quantify the difference since both estimates quickly approach the true variance under the null.
The main utility of computing the functions 𝜎2

g (⋅) and Mg(⋅) is that they enable us to obtain explicit expressions for the
asymptotic power of the tests and the AREs.

To implement the test (10), one needs the variance function 𝜎2
g (⋅). To compute the slope, we additionally need the

mean function Mg(⋅). Below we derive exact expressions for these quantities for the three summary statistics of Section 2,
that is, g∈ {TI, mx, avg}. To simplify the notation, let 𝜆+ =

∑K
r=1 𝜆r, 𝜆r = 𝜆r∕𝜆+, and 𝜆 = 𝜆∕𝜆+. Note that 𝜆 is a probability

distribution on [K]. Let us denote the first and second moments of this probability distribution as

𝔪1(𝜆) =
∑

r
r𝜆r, 𝔪2(𝜆) =

∑
r

r2𝜆r. (14)

We also define the function

Er(𝜆) ∶= ∫
1

0

e𝜆t − 1
t

dt = Ei(𝜆) − log 𝜆 − 𝛾,

where Ei is the exponential integral and 𝛾 is the Euler-Mascheroni constant.

Lemma 2. Under a Poisson model, X ∼ Poi(𝜆), we have

Mavg(𝜆) = (1 − e−𝜆+)𝔪1(𝜆),

𝜎2
avg(𝜆) = e−𝜆+{𝔪2

1(𝜆)(1 − e−𝜆+) + Er(𝜆+)[𝔪2(𝜆) −𝔪2
1(𝜆)]}.

Corollary 1. Assume that 𝜆+ = 𝛾+ and 𝔪1(𝜆) = 𝔪1(𝛾). Then, the test (10) based on g= avg is inconsistent. If in addition,
𝔪2(𝜆) = 𝔪2(𝛾), then the test is powerless.

It is known that 0 ≤ Er(𝜆) − [1 − (3𝜆∕4)] ≤ 11𝜆2∕36 for 𝜆 ≥ 0, hence e−𝜆Er(𝜆) → 0 as 𝜆 → ∞. This implies that for
sufficiently large 𝜆+, the variance 𝜎avg(𝜆) is nearly completely determined by 𝔪1(𝜆). Thus equality of the first moments of
𝜆 and 𝛾 together with 𝜆+ = 𝛾+ ≫ 1 is enough for the mean index test to be almost powerless. Corollary 1, in fact, suggests
that rather that the null hypothesis of H0 ∶ 𝜆 = 𝛾 , the test based on avg is appropriate for testing the following null:

H0 ∶ 𝜆+ = 𝛾+, 𝔪r(𝜆) = 𝔪r(𝛾), for r = 1, 2. (15)

Remark 3. A counterintuitive consequence of Lemma 2 is that there are examples of rate vectors 𝜆 and 𝛾 , such that 𝜆 ≥ 𝛾

coordinatewise, but Mavg(𝜆) < Mavg(𝛾). See Section 6.1 for such an example.

Next, we consider the maximum index: For z= (z1, … , zK , zK + 1), with zK + 1 = 1, define

𝜉(z) ∶=
K∑

k=1
k[e−zk+1 − e−zk ] =

K∑
i=1

(1 − e−zi). (16)

See Section A0.3 for a derivation of the second equality.

Lemma 3. Under a Poisson model, X ∼ Poi(𝜆), we have

Mmx(𝜆) = 𝜉(W∗(𝜆)),

𝜎2
mx(𝜆) =

K∑
k=1

k2[e−Wk+1(𝜆) − e−Wk(𝜆)] − M2
mx(𝜆),

where W∗(𝜆) = (Wk(𝜆))K+1
k=1 with Wk(𝜆) =

∑K
r=k 𝜆r.
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Finally, we consider the TI index. Let ai = i/(i+ 1) and bi = i(i+ 2)/(i+ 1)2, and define

Uk(𝜆) ∶=
K∑

i=k
ai𝜆i, Vk,𝓁(𝜆) ∶=

k∨𝓁−1∑
i=k∧𝓁

ai𝜆i +
K∑

i=k∨𝓁
bi𝜆i.

A sum with lower limit higher than the upper limit evaluates to zero, e.g., UK+1(𝜆) = 0. Let U∗(𝜆) = (Uk(𝜆))K+1
k=1 . We

also define

Γk,𝓁(𝜆) ∶= e−Vk,𝓁(𝜆) − e−[Uk(𝜆)+U𝓁(𝜆)]. (17)

Lemma 4. Under a Poisson model, X ∼ Poi(𝜆), we have

MTI(𝜆) = [1 − e−U1(𝜆)] + 𝜉(U∗(𝜆)), (18)

𝜎2
TI(𝜆) =

K+1∑
k=2

K+1∑
𝓁=2

k𝓁[Γk,𝓁(𝜆) − Γk−1,𝓁(𝜆) − Γk,𝓁−1(𝜆) + Γk−1,𝓁−1(𝜆)]. (19)

4.2 Computing the slope

The slope of the test (10) is B2, where B is defined in (12). To compute the slope, we need the gradient of the mean function.
Let us consider the case of mx. The mean function is of the form Mmx(𝜆) =

∑K
i=1 𝜓([W𝜆]i) where 𝜓(z) = 1 − e−z and W is

a K ×K upper triangular matrix with ith row wT
i = (wij) such that wij = 1 for j≥ i. It follows that

∇Mmx(𝜆) =
K∑

i=1
wi𝜓

′(wT
i 𝜆) = W T𝜓 ′(W𝜆),

where 𝜓 ′(z) = e−z is applied coordinatewise to vector W𝜆. The mean function for the TI statistic has a similar form:
Mf (𝜆) = 2𝜓([U𝜆]1) +

∑K
i=2 𝜓([U𝜆]i), where U = (uij) is an upper triangular matrix with uij = j/(j+ 1) for j≥ i. The rest of

the calculations follow similarly. For the avg, the ith element of the gradient of the mean function is

𝜕Mavg(𝜆)
𝜕𝜆i

= e−𝜆+𝔪1(𝜆) −
i

𝜆
2 (1 − e−𝜆+).

We will use these expressions to empirically evaluate the slopes of the three summary measures, and compare their
asymptotic relative efficiencies.

5 SIMULATIONS

We start by investigating the asymptotic relative efficiency (ARE) of TI w.r.t. the mx and avg summary measures. To do
so, we consider the two-sample Poisson-Limit model (8) with K = 5 and generate the mean vectors, 𝜆 and 𝛾 , randomly as
follows: 𝜆 is drawn from

∏K
i=1 Unif(0.01, 2) and 𝛾 is set equal to 𝜆 + 𝛿, with 𝛿 ∼

∏K
i=1 Unif(0.05, 0.3). We generate 104 such

parameter pairs and for each model, evaluate the ratio of the test slopes for TI vs mx and avg as a measure of the ARE,
that is, we calculate B2

TI∕B2
mx and B2

TI∕B2
avg.

Figure 2 illustrates the resulting histogram for the two slopes. Values above one indicate a higher efficiency for TI
relative to the competing method. The plots show that, in the majority of cases, TI has a higher asymptotic efficiency
compared to mx and avg. The histogram for B2

TI∕B2
avg has a heavier tail than B2

TI∕B2
mx which indicates that there are cases

that TI achieves a much higher efficiency relative to avg (compared with mx). Under our sampling scheme, the probability
that TI has a larger slope than the mx and the avg is 0.97 and 0.99, respectively.

Next, we consider specific values for 𝜆 and 𝛾 , namely 𝜆 = [0.5, 0.75, 1, 0.75, 0.5] and 𝛾 = [0.60, 1.05, 1.50, 1.05, 0.60],
and investigate the receiver operating characteristic (ROC) and the power curves for the three tests. The ROC is obtained
by plotting the true positive rate (TPR) achievable for any given false positive rate (FPR). Note that TPR is an alternative
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F I G U R E 2 Comparison of the asymptotic
relative efficiency, as the ratio of test slopes, for
the TI vs mx (left), and TI vs avg (right). The plots
are the histograms of the ARE under a random
Poisson-Limit model, described in Section 5. The
portions colored red correspond to models where
the ARE of TI is lower than the competitors
[Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 3 ROC curves (left) and the
simulated and asymptotic power plots at significance
level 𝛼 = .05 (right). The dashed lines, in the right
panel, denote the asymptotic power functions
[Colour figure can be viewed at
wileyonlinelibrary.com]

name for the power; similarly, FPR is another name for the test size. The power curves are obtained by plotting the power
of the test of size 𝛼 = .05, against the sample size n. Figure 3 shows the ROC curves of the TI, mx and avg for n= 100 and
also the asymptotic and simulated power plots for 1000 repetitions, illustrated with the dashed and solid lines, respectively.
The values of 𝜆 and 𝛾 are chosen to be close to the setting of Corollary 1. In particular, we have 𝜆+ = 3.5, 𝛾+ = 4.8 and for
the avg test, 𝔪1(𝜆) = 𝔪1(𝛾) = 3, 𝔪2(𝜆) = 10.57, 𝔪2(𝛾) = 10.44. Corollary 1 explains the poor performance of the avg in
this setting, matching what Figure 3 shows: The avg is nearly powerless for this testing problem.

We note the close match between the asymptotic power curves calculated based on (13) and the simulated curves. If
we increase the number of repetitions further, the simulated power perfectly match the asymptotic one. In this example,
TI outperforms the mx and the avg, in terms of power, for all false positive rates, and achieves a given power, at size
𝛼 = .05, with a smaller sample size.

6 TRIAL APPLICATION

In this section, we first demonstrate how the two-sample tests discussed in Section 4 can be implemented using a simple
trial with hypothetical data. Then, we show the results of application to a real clinical trial.

6.1 Hypothetical data

Consider a simple hypothetical trial where n=m= 5 patients were assigned to each of two treatment groups, with tox-
icity data given in Table 1. The data were randomly generated from Poisson-Limit models with 𝜆 = (0, 5, 1, 5, 0) and
𝛾 = (0, 1, 1, 1.5, 0) and the patients are ordered in decreasing T-rank. Note that the first drug is more toxic on average, in
the sense that 𝜆 ≥ 𝛾 coordinatewise, that is, the mean of vector of one distribution dominates the other in every coordinate.
The pooled rate estimate �̂� is obtained by taking the average of each grade column in Table 1, giving �̂� = (0, 3.3, 1.1, 2.9, 0).

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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T A B L E 1 Frequency vector representation for the hypothetical example in Section 6.1

Treatment Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 TI mx avg

Patient 1 1 0 3 0 7 0 5 4 3.40

Patient 2 1 0 5 1 6 0 5 4 3.08

Patient 3 1 0 8 1 4 0 5 4 2.69

Patient 4 1 0 4 3 3 0 4.99 4 2.90

Patient 5 1 0 4 2 3 0 4.99 4 2.89

Patient 6 2 0 1 0 3 0 4.98 4 3.50

Patient 7 2 0 1 3 1 0 4.79 4 3.00

Patient 8 2 0 4 1 1 0 4.75 4 2.50

Patient 9 2 0 2 0 1 0 4.53 4 2.67

Patient 10 2 0 1 0 0 0 2 2 2.00

T A B L E 2 Summary measures for the hypothetical example in Section 6.1

Treatment 1 Treatment 2

Mean Mg(𝝀) 𝝈2
g (𝝀) Mean Mg(𝜸) 𝝈2

g (𝜸) Sg 𝝁 𝝈2 se(Sg)
Sg

se(Sg)
Power

TI 4.996 4.972 0.02 4.210 4.337 1.088 0.786 0.635 1.108 0.251 3.131 0.877

mx 4 3.991 0.0142 3.6 3.634 0.698 0.4 0.357 0.7122 0.212 1.887 0.800

avg 2.992 2.9999 0.0923 2.734 3.0479 0.542 0.258 -0.048 0.6343 0.233 1.107 0.295

The table also shows the TI and mx for each patient. Averaging over the TI column, we obtain mean TI values of 4.996
and 4.210 for the two groups. Hence, STI = 4.996− 4.210= 0.786. The standard error (ie, the estimated standard deviation)
of this statistic is

se(STI) ∶=
√
𝜎2

TI(�̂�)
( 1

n
+ 1

m

)
= 0.251

using the formula in Lemma 4 to calculate 𝜎2
TI(�̂�) = 0.157. At level 𝛼 = .05, the test based on TI rejects the equality of

treatments since STI∕se(STI) = 3.13 > 1.96 = z𝛼∕2. Similar calculations can be performed for the tests based on mx and
avg, as shown in Table 2. Both tests fail to reject the equality of treatments since Smx/se(Smx)= 1.89 and Savg/se(Savg)= 1.07
are both less than z𝛼∕2 = 1.96.

Note, from Table 2, that the standard error of the two statistics STI and Smx are roughly the same in this case. However,
the difference in group means is much larger for TI relative to mx (|STI|≫ |Smx|) due to patients in group 1 having many
more grade 4 toxicities relative to group 2. The TI takes the frequency of grade 4 toxicities into account while the mx
ignores it.

We can also use formula (13) to approximate the power of the tests. The true means are MTI(𝜆) = 4.972 and MTI(𝛾) =
4.337 using the formula from Lemma 4. Considering that the sample size is small, these values are very close to the
empirical means computed from the data. The corresponding true variances are 𝜎2

TI(𝜆) = 0.02 and 𝜎2
TI(𝛾) = 1.088. Note

how small group 1 variance is relative to group 2. The pooled normalized variance (under the alternative) is 𝜎2 = 𝜎2
TI(𝜆) +

𝜌𝜎2
TI(𝛾) = 1.108 (since 𝜌 = m∕n = 1) and the mean difference is 𝜇 = MTI(𝜆) − MTI(𝛾) = 0.635. Plugging-in these values

into (13) we obtain an approximate power of 0.877.
Similarly, for the mx, note how close the true means are to the empirical ones (cf Table 2). The fact that for treatment

1, 𝜆4 is quite large—hence most patients show at least one grade 4 toxicity—is reflected in the small value of the variance
𝜎2

mx(𝜆). That is, for the majority of patients in group 1, mx will be 4, hence its mean will be concentrated near 4. In this
case, we have 𝜎2 = 0.712 and 𝜇 = 0.357 giving an approximate power of 0.800.

For the avg, group 1 variance is higher than both TI and mx, though still quite small relative to group 2. The mean
difference is very small in this case, 𝜇 = −0.048. The negative sign indicates that treatment 1 is less toxic on average than
treatment 2 (in expectation), which is quite counter-intuitive since treatment 1 is more toxic in terms of the extreme
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F I G U R E 4 Power comparisons for
detecting treatment differences in the
NSABP R0-4 clinical trial. The plots are
generated based on the Poisson-Limit
models fitted to each treatment data
[Colour figure can be viewed at
wileyonlinelibrary.com]

grades. Even more surprisingly, we have Mavg(𝜆) < Mavg(𝛾) despite 𝜆 ≥ 𝛾 coordinatewise. That is, the frequency of all the
grades are higher on average for treatment 1, but its expected avg is lower. This can be confirmed empirically, for large n,
by observing that Savg turns out to be negative most of the time. It can be explained by noting that 𝜆2 being much larger
than 𝛾2 biases the avg for group 1 toward lower grades. This shows a clear deficiency of the avg in ordering toxicities.
Plugging-in 𝜇 = −0.048 and 𝜎2 = 0.635 into (13), we obtain an approximate power of 0.295.

6.2 Application to clinical trial data

We use the data from the NSABP R0-4 rectal cancer clinical trial as a case study for comparing the power of the three sum-
mary statistics (TI, mx, and avg) in detecting treatment differences. NSABP R0-4 was a phase 3 trial conducted between
July 2004 and August 2013 (NCT00058474). Eligible patients were diagnosed with surgically resectable stage II or III
rectal adenocarcinoma. Patients were assigned to four different treatments: (1) infusional 5-fluorouracil (5FU); (2) oral
capecitabine (CAPE); (3) combination of 5FU and oxaliplatin (OX); (4) combination of CAPE and Ox. The trial included
1608 participants. From these, 50 patients were ineligible or had missing data. The analytic sample consisted of 1558
individuals. CONSORT diagram is available in Reference 21. Main study description is available in Reference 23.

We use the power analysis to compare the performance of the three methods in detecting treatment differences. We
first fit a Poisson-Limit model (see (5)) to each treatment data which amounts to estimating its rate vector using the
sample mean of the corresponding RFVs; see for example (11), but applied only to a single sample. Once the model for
each treatment is specified, we can compare the methods based on their power in differentiating pairs of treatments. For
each method, we plot the power vs the sample size. These plots can be obtained by simulating from the fitted models (a
form of parametric bootstrap) or by using the asymptotic power formula (13) which, as was shown in the previous section,
gives accurate results even for small sample sizes.

Figure 4 shows the power plots for testing four pairs of treatments that are known to be different. All tests are per-
formed at 5% significance level. The plots show that TI has a greater power in detecting differences between treatments in
all the four cases. That is, using TI, the required number of patients to detect treatment differences is smaller. We note that
Reference 21 performs a similar power analysis on the same dataset. They provide no model for the data and instead use
bootstrap to perform the power analysis. The tests they consider are based on Wilcoxson signed-rank statistic. In contrast,
we provide a model for the data and use parametric bootstrap (or exact asymptotic power curves) to perform the power
analysis. Our test statistics are also different and based on the difference-in-mean statistics. Compared with the results
of Reference 21, Figure 4 shows that the test statistics considered here achieve a given power with a smaller sample size.
We observe a similar relative ranking of TI, average and max-grade as that observed by Gresham et al.21

http://wileyonlinelibrary.com
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7 DISCUSSION

In this article, we studied the mathematical and statistical properties of the toxicity index. We showed that the TI can be
stated solely as a function of the reduced frequency vector, with a tractable closed-form formula. We introduced T-rank
preservation as a desirable property that allows investigators to achieve clinically-meaningful ranking of the toxicity pro-
files. We showed that compared with competing summary measures (ie, the max-grade and the average-grade), TI is the
only measure that preserves the T-rank and is an injective (ie, one-to-one) mapping on the space of toxicity frequencies.
Neither max-grade, nor the average-grade are injective or T-rank preserving. The max-grade loses information in the tox-
icity profile by only looking at the highest grade. The average-grade loses the information about the extreme toxicities by
equally weighting low and high grades.

To statistically compare various toxicity measures, we proposed a Poisson-Limit model for modeling sparse toxicity
data via their reduced (ie, 0-removed) frequency vectors. Under this model, we developed a general two-sample test for
detecting differences among two population of toxicity data. We derived formulas for the asymptotic power of the test,
for the three toxicity measures (TI, max-grade, and average-grade) and calculated their asymptotic relative efficiencies
(AREs). We empirically demonstrated that TI has a higher ARE that the other two summary measures, with high prob-
ability, under a random Poisson-Limit model. We also illustrated that TI achieves a higher power in detecting treatment
differences in a cancer trial, validating the empirical results of Reference 21. The framework we developed in this article
allows investigators to compare toxicity-summary methods in any clinical trial, and to analytically evaluate new proposals
for toxicity summaries.

The TI can be generalized to accommodate noninteger toxicity grades if the clinician believes that a toxicity has a
different impact than the observed grade.11,25 Furthermore, the TI can be used in any risk assessment application with a
grade system similar to CTCAE, provided that the grades for different inputs (eg, items) are equivalent. In Reference 26,
the TI was used to score surgical complications based on the Clavien-Dindo system.27 More broadly, the analysis in this
article applies to any application where integer scores on multiple events are recorded for a collection of subjects, assuming
that the resulting score array is sparse. We are currently investigating the benefits of using TI for patient reported outcomes
(PROs) data,28 extending the TI for multiple cycles and searching for other T-rank preserving summary measures.
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APPENDIX

A.1 Proof of Equation (5)
Recall that X* = (X0, X1 … , Xd)∼Mult(d, p*) where p* = (p0, p1 … , pK). It is well known that the moment-generating

function (MGF) of X* is given by E

[
exp

(∑d
i=0 tiXi

)]
=
(∑d

i=0 pieti

)d
. Setting t0 = 0 and noting that p0 = 1 −

∑K
i=1 pi and
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pi = 𝜆i∕d for i= 1, … , K, we obtain the MGF of X ,

MX (t) = E

[
exp

( d∑
i=1

tiXi

)]
=

(
1 + 1

d

d∑
i=1
𝜆i(eti − 1)

)d

.

We have

MX (t) → exp

( d∑
i=1
𝜆i(eti − 1)

)
=

d∏
i=1

m(ti; 𝜆i), as d → ∞,

where m(x;𝜇) = e𝜆(ex−1) is the MGF of a Poisson random variable with mean 𝜇. The proof is complete.

A.2 Proofs of Section 3

Proof of Proposition 1. Assume that Y i = k for rk ≤ i≤ rk− 1 for k= 1, … , K with 1= rK ≤ · · ·≤ r1 ≤ r0 =n. Note that
xk = rk− 1 − rk + 1. For i∈ ⟦rk, rk− 1⟧, we have

wi(Y ) ∶=
i−1∏
j=1

(1 + Yj) = (1 + k)i−rk

K∏
𝜆=k+1

(1 + 𝜆)x𝜆 = (1 + k)i−rk

gk+1(x)
.

Then,

𝜏k(Y ) − 𝜏k−1(Y ) =
n∑

i=1

Yi

wi(Y )
1{Yi = k}

=
∑

i∈⟦rk ,rk−1⟧
kgk+1(x)
(1 + k)i−rk

= k gk+1(x)
∑

i∈⟦rk ,rk−1⟧
(1 + k)−(i−rk)

= (k gk+1(x))
1 − (1 + k)rk−1−rk+1

1 − (1 + k)−1 = (k + 1) gk+1(x)[1 − (1 + k)−xk ]

which is the desired result. ▪

Proof of Lemma 1. Assume x≻ y and y≻ z. By assumption, x ≠ y and y≠ z. We consider three cases:

(i) i(x, y)= i(y, z)= :𝓁. Then, it is not hard to argue that i(x, z)=𝓁 and since x𝓁 > y𝓁 > z𝓁 , we have x≻ z.
(ii) 𝓁1:= i(x, y)> i(y, z). Then, i(x, z)=𝓁1 and x𝓁1 > y𝓁1 = z𝓁1 . Hence, x≻ z.

(iii) i(x, y)< i(y, z)= :𝓁0. Then, i(x, z)=𝓁0 and x𝓁0 = y𝓁0 > z𝓁0 . Hence, x≻ z.

The proof is complete. ▪

Proof of Theorem 1. Assume K ≥ 2. Consider the following two vectors{
xK = m
xj = 0 j ≠ K

,

{
yK = m − 1
yj = ∞ j < K

.

If is enough to show that TI(x)≥TI(y). In fact, we show equality. To simplify, let us write u= (1+K)−m. Then,

TI(x) = gK+1(x)(K + 1)(1 − (K + 1)−m) = (K + 1)(1 − u).



1550 RAZAEE et al.

Note that all the lower terms are zero in the expansion. On the other hand, we have gK(y) = (1 + K)yK = (1 + K)m−1 and
gk(y)=∞ for k<K. It follows that

TI(y) = gK+1(y)(K + 1)(1 − (K + 1)−m+1) + K gK(y)
= (K + 1)(1 − (K + 1)−m+1) + K(K + 1)−m+1

= (K + 1)[1 − (K + 1)u] + K(K + 1)u.

Then,

TI(x) − TI(y) = (K + 1)[(K + 1)u − u] − K(K + 1)u = 0.

The proof for the general case follows by considering the largest grade on which x and y differ, which without loss of
generality (WLOG) we assume to be K. Assume WLOG that xK > yK . Then, setting xj = 0 for all j≠K only decreases TI(x).
Similarly, increasing yK to xK − 1 and increasing all yj =∞, only increases TI(y). We have shown that even in this worst
case TI(x)≥TI(y). So all the other cases follow. ▪

A.3 Proofs of Section 4

Proof of Theorem 2. For simplicity, and without loss of generality, assume that m = n∕𝜌. Let Tg(X) = 1
n

∑n
i=1 g(X (i)) and

Tg(Y) = 1
m

∑m
i=1 g(Y (i)) so that Sg = Tg(X) − Tg(Y). Then, by the central limit theorem√

n[Tg(X) − Mg(𝜆)] ⇝ N(0, 𝜎2
g (𝜆)),√

n[Tg(Y) − Mg(𝛾)] ⇝ N(0, 𝜌𝜎2
g (𝛾)).

Subtracting, we get √
n(Sg + [Mg(𝛾) − Mg(𝜆)]) ⇝ N(0, 𝜎2

g (𝜆) + 𝜌𝜎2
g (𝛾)).

Under the null distribution, Mg(𝜆) − Mg(𝛾) = 0, and the test that rejects when

|Sg| > z𝛼∕2

√
𝜎2

g (𝜆)(1 + 𝜌)
n

has asymptotic level 𝛼. Since �̂� → 𝜆 and 𝜎2
g (⋅) is continuous, by the continuous mapping theorem, the same result holds

with 𝜆 replaced with �̂�. Let 𝜇 = Mg(𝛾) − Mg(𝜆), 𝜏 = z𝛼∕2𝜎g(𝜆)
√

1 + 𝜌 and 𝜎2 = 𝜎2
g (𝜆) + 𝜌𝜎2

g (𝛾). It follows that for large n,
the power is close to

power = P1

(√
n(Sg + 𝜇)
𝜎

>
𝜏 +

√
n𝜇

𝜎

)
+ P1

(
−
√

n(Sg + 𝜇)
𝜎

>
𝜏 −

√
n𝜇

𝜎

)

≈ Q

(
𝜏 +

√
n𝜇

𝜎

)
+ Q

(
𝜏 −

√
n𝜇

𝜎

)
. (A1)

More precisely, if 𝜇 = 0, then the power of the test converges to 2Q(𝜏∕𝜎) which is the desired result for part (a). If in
addition 𝜎2

g (𝜆) = 𝜎2
g (𝛾), then 𝜏∕𝜎 = z𝛼∕2, hence the power converges to 2Q(z𝛼∕2) = 𝛼.

For part (c), we note that by the Taylor expansion
√

n[Mg(𝛾) − Mg(𝜆)] = ⟨∇Mg(𝜆), 𝛿⟩ + O(n−1∕2), and 𝜎2
g (𝛾) → 𝜎2

g (𝜆)
by the continuity of 𝜎2

g (⋅). Hence, 𝜏∕𝜎 → z𝛼∕2, 𝜎 → 𝜎g(𝜆)
√

1 + 𝜌 and
√

n𝜇 → ⟨∇Mg(𝜆), 𝛿⟩. The result then follows by
considering the asymptotic expression (A1). ▪

Proof of Lemma 2. Under the Poisson model, X|X+ = m ∼ Mult(m, 𝜆) where 𝜆 = 𝜆∕𝜆+. Assuming m≠ 0, we have

E𝜆(avg(X)|X+ = m) = 1
m
∑

r
rE[Xr|X+ = m] = 1

m
∑

r
rm𝜆r = 𝔪1(𝜆).
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We obtain E𝜆[avg(X)|X+] = 𝔪1(𝜆) ⋅ 1{X+ > 0}. Since X+ ∼ Poi(𝜆+), by smoothing,

E𝜆[avg(X)] = 𝔪1(𝜆) P(X+ > 0) = 𝔪1(𝜆)(1 − e−𝜆+),

which is the desired expression. Now, by the law of total variance

𝜎2
var(𝜆) = E[var(avg(X)|X+)] + var(E[avg(X)|X+]).

We have var(E[avg(X)|X+]) = 𝔪2
1(𝜆)var(1{X+ > 0}) = 𝔪2

1(𝜆)p(1 − p) where p = 1 − e−𝜆+ . On the other hand, assuming
m≠ 0, conditioned on X+ =m, we can represent Xr =

∑m
j=1 W (j) where W (j) ∼ Mult(1, 𝜆) drawn i.i.d. Note that

∑
rrW (j) is

categorical variable taking values 1, … , K with probabilities 𝜆1, … , 𝜆K . Hence,

var(avg(X)|X+ = m) = 1
m2 var(

∑
r

rXr)

= 1
m2 var

(∑
j

∑
r

rW (j)
r

)
= 1

m
var

(∑
r

rW (1)
r

)
= 𝔪2(𝜆)

m
,

where 𝔪2(𝜆) =
∑

rr2𝜆r − (
∑

rr𝜆r)2 is the variance of
∑

rrW (1). Hence,

E𝜆[var𝜆(avg(X)|X+)] = E𝜆

(
1{X+ > 0}

X+

)
𝔪2(𝜆).

Since X+ ∼ Poi(𝜆+), we have (cf Reference 29)

E𝜆

(
1{X+ > 0}

X+

)
= e−𝜆+

∞∑
k=1

𝜆k
+

k ⋅ k!
= e−𝜆+Er(𝜆+).

The proof is complete. ▪

Proof of Lemma 3. Let Br = 1{Xr > 0} and pr = P(Xr > 0) = 1 − e−𝜆r . Then, mx(X) = max{r ∶ Br = 1} and we have

P(mx(X) = k) = pk

K∏
r=k+1

(1 − pr) = e−Wk+1(𝜆) − e−Wk(𝜆),

if k≠ 0 which gives the desired result. ▪

Proof of Lemma 4. Assume that X ∼ Poi(𝜆) and let gk = gk(X). Then,

E[f (X)] =
K+1∑
k=2

k(E[gk] − E[gk−1]).

Recall that if N ∼ Poi(𝜆), then E[zN] = e𝜆(z−1). Thus,

E[(1 + i)−Xi] = exp[𝜆i((1 + i)−1 − 1)] = e−ai𝜆i .

By the independence of the coordinates, E[gk] =
∏K

i=k E[(1 + i)−Xi] = e−Uk(𝜆). Equation (18) follows. For the variance, we
note that

E[gkg𝓁] = E

[ K∏
i=k

(1 + i)−Xi

K∏
j=𝓁

(1 + j)−Xj

]
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= E

[k∨𝓁−1∏
i=k∧𝓁

(1 + i)−Xi

K∏
i=k∨𝓁

(1 + i)−2Xi

]
= e−Vk,𝓁(𝜆),

where the final equality is by independence and the definition of Vk,𝓁(𝜆). We have

var(f (X)) =
∑

k

∑
𝓁

k𝓁cov(gk − gk−1, g𝓁 − g𝓁−1).

Noting that cov(gk, g𝓁) = Γk,𝓁(𝜆), Equation (19) follows. ▪

Proof. We have

𝜉(z) =
K∑

k=1

K∑
i=1

1{i ≤ k}[e−zk+1 − e−zk ] =
K∑

i=1

K∑
k=i

[e−zk+1 − e−zk ] =
K∑

i=1
[e−zK+1 − e−zi].

Recalling that zK + 1 = 1 finishes the proof. ▪


