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The N-methyl-D-aspartate receptor (NMDAR) provides a pathway for glutamate-mediated 
inter-cellular communication, best known for its role in the brain but with multiple examples 
of functionality in non-neuronal cells. Data previously published by others and us provided 
ex vivo evidence that NMDARs regulate platelet and red blood cell (RBC) production. 
Here, we summarize what is known about these hematopoietic roles of the NMDAR. 
Types of NMDAR subunits expressed in megakaryocytes (platelet precursors) and erythroid 
cells are more commonly found in the developing rather than adult brain, suggesting 
trophic functions. Nevertheless, similar to their neuronal counterparts, hematopoietic 
NMDARs function as ion channels, and are permeable to calcium ions (Ca2+). Inhibitors 
that block open NMDAR (memantine and MK-801) interfere with megakaryocytic 
maturation and proplatelet formation in primary culture. The effect on proplatelet formation 
appears to involve Ca2+ influx-dependent regulation of the cytoskeletal remodeling. In 
contrast to normal megakaryocytes, NMDAR effects in leukemic Meg-01 cells are diverted 
away from differentiation to increase proliferation. NMDAR hypofunction triggers 
differentiation of Meg-01 cells with the bias toward erythropoiesis. The underlying 
mechanism involves changes in the intracellular Ca2+ homeostasis, cell stress pathways, 
and hematopoietic transcription factors that upon NMDAR inhibition shift from the 
predominance of megakaryocytic toward erythroid regulators. This ability of NMDAR to 
balance both megakaryocytic and erythroid cell fates suggests receptor involvement at 
the level of a bipotential megakaryocyte-erythroid progenitor. In human erythroid precursors 
and circulating RBCs, NMDAR regulates intracellular Ca2+ homeostasis. NMDAR activity 
supports survival of early proerythroblasts, and in mature RBCs NMDARs impact cellular 
hydration state, hemoglobin oxygen affinity, and nitric oxide synthase activity. Overexcitation 
of NMDAR in mature RBCs leads to Ca2+ overload, K+ loss, RBC dehydration, and oxidative 
stress, which may contribute to the pathogenesis of sickle cell disease. In summary, there 
is growing evidence that glutamate-NMDAR signaling regulates megakaryocytic and 
erythroid cells at different stages of maturation, with some intriguing differences emerging 
in NMDAR expression and function between normal and diseased cells. NMDAR signaling 
may provide new therapeutic opportunities in hematological disease, but in vivo applicability 
needs to be confirmed.
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INTRODUCTION

This review summarizes what has been learned about the roles 
of N-methyl-d-aspartate receptor (NMDAR) in megakaryocytic 
and erythroid cells. NMDARs are best known for their functions 
as glutamate-gated cation channels in the central nervous system 
(Traynelis et al., 2010). It appears that the NMDAR ion channel 
functionality is maintained in blood progenitors but NMDAR 
channel properties and its downstream pathways await further 
characterization in these cells. This paper starts with a brief 
overview of glutamate signaling in the brain. On this background, 
we  highlight distinctive features of NMDAR in hematopoietic 
cells. Other glutamate receptors and mature blood cells are 
not discussed in detail but the appropriate background is 
provided to place this emerging field of research in a meaningful 
context. We  describe NMDAR effects on hematopoietic 
differentiation, including some of our recent observations that 
suggest a novel role for the receptor in balancing megakaryocytic 
and erythroid cell fates (Hearn et  al., 2020).

CLASSICAL GLUTAMATE-NMDAR AXIS 
IN THE BRAIN

Glutamate is synthesized from glutamine as a part of normal 
cellular metabolism in all cells (Yelamanchi et  al., 2016). In 
neurons, vesicular glutamate transporters (VGLUT) pump glutamate 
into pre-synaptic vesicles (Daikhin and Yudkoff, 2000; Zhou and 
Danbolt, 2014). Upon membrane depolarization, vesicles fuse 
with the pre-synaptic plasma membrane and glutamate is released 
into the synaptic cleft. This process engages soluble N-ethyl-
maleimide-sensitive factor attachment protein receptor (SNARE) 
proteins that are activated by Ca2+ entry through voltage-gated 
Ca2+ channels. Following release, glutamate concentrations in the 
synaptic cleft increase markedly, from 2–5  μM to approximately 
1.1 mM. While in the synaptic cleft, glutamate activates ionotropic 
and metabotropic receptors located on the post-synaptic plasma 
membrane (Reiner and Levitz, 2018). Ionotropic receptors function 
as ion channels (for Na+, K+, and Ca2+), and metabotropic receptors 
activate G-proteins that modulate ion channels directly and 
indirectly. The main purpose of the ionic flux is to generate 
and propagate action potentials characteristic of excitable tissues. 
The synaptic glutamate signal is terminated by the excitatory 
amino acid transporters (EAAT) present on astrocytes that remove 
glutamate from the synaptic cleft (Featherstone, 2010).

The family of ionotropic glutamate receptors includes 
NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA), and kainate receptors, each named after a 
distinct, synthetic agonist that activates them (Traynelis et al., 
2010). AMPA and kainate receptors respond to glutamate 
first. They mediate intracellular influx of mostly Na+, which 
leads to membrane depolarization and if large enough, triggers 
action potential. Membrane depolarization releases a Mg2+ 
ion blocking the pore of NMDAR, enabling receptor function. 
This order of events highlights that neuronal NMDAR can 
activate only when glutamate binding and membrane 
depolarization coincide (which is named “coincidence 
detection”). NMDAR-mediated Ca2+ influx contributes little 
to membrane depolarization but modifies synaptic strength 
through molecular events related to the Ca2+ role as “second 
messenger” (Traynelis et  al., 2010; Hansen et  al., 2018).

Typical NMDARs are built as tetramers that combine two 
obligate GluN1 subunits with another two GluN2 (A–D) or 
GluN3 (A or B) subunits, in various combinations. It is believed 
that GluN1 subunit is an essential component of all NMDARs, 
and variable GluN2 and GluN3 subunits are modulatory. 
NMDAR activation requires binding of l-glutamate on each 
of the GluN2 subunits, as well as glycine (co-agonist) on the 
GluN1 and GluN3 subunits. The alternative NMDAR ligands 
include d- and l- aspartate, homocysteine, homocysteic acid, 
and d-serine. NMDAR subunit composition varies substantially 
in different areas of the brain, and changes during development 
(Monyer et  al., 1994; Wenzel et  al., 1997). NMDAR subunits 
define the current amplitude and inactivation time, as well as 
cation selectivity and the regulation patterns, such as agonist 
affinity, mechano-sensitivity, Mg2+-sensitivity, and responsiveness 
to polyamines. GluN2A and GluN2B subunits contribute high 
channel conductance and relatively fast de-activation kinetics 
compared to GluN2C- and GluN2D- containing NMDAR 
(Traynelis et  al., 2010). In addition, NMDARs containing 
GluN2C, GluN2D, and GluN3 subunits display low affinity 
for Mg2+ blocking the pore, making activation of such receptors 
independent of membrane depolarization (Monyer et  al., 1994; 
Chatterton et  al., 2002; Wrighton et  al., 2008).

NMDAR sensitivity (EC50) to agonists is high, ranging from 
0.4 to 1.7  μM for glutamate (in GluN1–GluN2D and GluN1–
GluN2A receptors, respectively), and 0.1 to 2.1  μM for glycine 
(in GluN1–GluN2D and GluN1–GluN2A receptors, respectively) 
(Yamakura and Shimoji, 1999). These concentrations lie within 
the range that is normal in an inactive synaptic cleft. However, 
all types of NMDAR are extremely sensitive to the inhibition 
by protons (IC50 around 7.4  μM for most of the subunits) 
(Yamakura and Shimoji, 1999; Low et  al., 2003; Cavara et  al., 
2009), and Zn2+ [IC50 of 10  nM, 1  μM, and 10  μM for the 
NMDAR containing GluN2A, GluN2B, and GluN2D, respectively 
(Gielen et  al., 2009)].

NMDAR-mediated Ca2+ entry activates a number of intracellular 
signaling pathways, including Ca2+/calmodulin-dependent kinase 
(CaMK), mitogen-activated protein kinase (MAPK) [including 
extracellular signal-regulated kinase (ERK), Jun kinase, and p38 
MAPK], and phosphoinositide 3-kinase (PI3K) (Hardingham, 
2006). NMDARs regulate activity-dependent gene expression 

Abbreviations: ADP, adenosine diphosphate; AMPA, α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid; AP5, D-2-amino-5-phosphonopentanoate; CaMK, Ca2+/
calmodulin-dependent kinase; CREB, cAMP response element binding protein; 
EAAT, excitatory amino acid transporters; EC50, the concentration of an agonist 
that gives half-maximal response; EPO, erythropoietin; ER, endoplasmic reticulum; 
ErbB4, epidermal growth factor receptor Erb-B2 receptor tyrosine kinase 4; ERK, 
extracellular signal-regulated kinase; IC50, the concentration of an inhibitor where 
the response (or binding) is reduced by half; MAPK, mitogen-activated protein 
kinase; MEP, megakaryocyte-erythroid progenitor; MK, megakaryocyte; NMDAR, 
N-methyl-d-aspartate receptor; PI3-K, phosphoinositide 3-kinase; PMA, phorbol 
12-myristate 13-acetate; PSD, post-synaptic density; RBC, red blood cell; SNARE, 
soluble N-ethyl maleimide-sensitive factor attachment protein receptor; TPO, 
thrombopoietin; VGLUT, vesicular glutamate transporter.
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through cAMP response element binding protein (CREB) 
transcription factor (Hardingham et  al., 2001). Other mediators 
downstream of NMDAR include Ras, Fyn, striatal-enriched protein 
tyrosine phosphatase, and nitric oxide synthase. Highly coordinated 
(albeit incompletely elucidated) NMDAR signaling plays critical 
roles in embryonic brain development and later, in neuronal 
plasticity, which allows the brain to respond to new experiences 
and changing environment (Traynelis et  al., 2010).

Unexpected Discoveries Outside of  
the Brain
During the past 10–20  years, NMDARs have been reported 
in multiple non-neuronal cell types, including hematopoietic 
(Bozic and Valdivielso, 2015; Hogan-Cann and Anderson, 2016), 
which raised a principal question of why non-excitable cells 
need these receptors. We  admit this area of research is not 
very clear, sometimes even controversial, mainly due to the 
very low abundance of NMDAR in non-neuronal cells. 
Nevertheless, some progress has been achieved in the 
characterization of the subunit composition and currents 
mediated by non-neuronal NMDAR, in particular in red blood 
cells (RBC) (Makhro et  al., 2010), platelets (Kalev-Zylinska 
et  al., 2014), lymphocytes (Fenninger and Jefferies, 2019), and 
hematopoietic precursors, erythroblasts (Makhro et  al., 2013; 
Hanggi et  al., 2014, 2015) and megakaryocytes (Genever et  al., 
1999; Kamal et  al., 2015). Information on the potential 
physiological role of these receptors is accumulating as well, 
including in erythroid cells (Makhro et  al., 2013, 2016), and 
megakaryocytes (Hitchcock et  al., 2003; Green et  al., 2017; 
Kamal et al., 2018; Hearn et al., 2020). The subsequent sections 
will focus on the subunit composition, properties and the roles 
of NMDAR in megakaryocytic and erythroid precursors, and 
their mature progeny, platelets and RBCs.

PLATELET RESPONSIVENESS  
TO GLUTAMATE

Peripheral blood platelets store and respond to a number of 
regulatory molecules best known for their roles in 
neurotransmission, including serotonin, epinephrine, dopamine, 
histamine, γ-aminobutyric acid, and glutamate (Todrick et al., 
1960; Ponomarev, 2018; Canobbio, 2019). In psychiatric patients, 
there is evidence of a crosstalk between abnormal NMDAR 
function in the brain and platelet responsiveness to glutamate 
(Berk et al., 1999). Platelets bind glutamate with similar kinetics 
to neurons (Almazov et  al., 1988), store it in dense granules, 
and express AMPA, kainate, and NMDA receptors (Franconi 
et al., 1996, 1998; Morrell et al., 2008; Sun et al., 2009; Kalev-
Zylinska et  al., 2014; Green et  al., 2017). Although there are 
variations between studies, all main types of ionotropic glutamate 
receptors have now been shown to be  functional in platelets. 
Morrell et  al. demonstrated that AMPA and kainate (but not 
NMDA) receptors amplify platelet activation by contributing 
Na+ influx to membrane depolarization, but not Ca2+ influx 
(Morrell et al., 2008; Sun et al., 2009). Franconi et al. provided 

the first evidence of NMDAR functionality in platelets, 
demonstrating that NMDARs induce Ca2+ influx into platelets 
but inhibit platelet function in the presence of adenosine 
diphosphate (ADP) and arachidonic acid (Franconi et  al., 
1996, 1998). Our own work demonstrated that NMDAR 
inhibitors (memantine, MK-801, and anti-GluN1 antibodies) 
interfere with platelet activation, aggregation and thrombus 
formation ex vivo (Kalev-Zylinska et  al., 2014; Green et  al., 
2017). It is likely that methodological differences contributed 
to variable NMDAR effects between studies.

Intriguingly, in schizophrenia and bipolar disorders that are 
driven by deregulated NMDAR signaling, platelet Ca2+ levels 
are elevated, including in response to glutamate (Berk et  al., 
2000; Ruljancic et al., 2013; Harrison et al., 2019). Schizophrenia 
is characterized by NMDAR hypofunction in the limbic system 
(Coyle, 2012; Nakazawa et  al., 2017), compensated by high 
glutamate levels and NMDAR hypersensitivity in other areas 
of the brain (Merritt et  al., 2016). The fact that platelets from 
patients with schizophrenia also show glutamate hypersensitivity 
further argues that NMDAR functioning in platelets is similar 
to that in neurons (Berk et  al., 2000).

Because platelets have limited protein synthesis, one would 
expect a similar range of glutamate receptors to be  present 
in megakaryocytes. However, most data thus far indicate 
regulation of megakaryocytic differentiation by NMDAR, with 
little or no data on AMPA and kainate receptors (Genever 
et  al., 1999; Hitchcock et  al., 2003; Kamal et  al., 2018). 
Nevertheless, electrophysiological recordings from freshly isolated 
mouse megakaryocytes support expression of functional AMPA 
receptors in megakaryocytes, most likely GluR2-containing and 
Ca2+-impermeable (Morrell et  al., 2008).

GLUTAMATE AND NMDAR IN 
MEGAKARYOCYTIC CELLS

Evidence for NMDAR Functionality in 
Megakaryocytic Cells
The first evidence that NMDARs operate as ion channels in 
megakaryocytes was obtained by demonstrating that [3H]MK-801 
binds to native mouse megakaryocytes in vivo. Mice were injected 
with [3H]MK-801 intracardially, followed by bone marrow 
examination 15 min later (Genever et al., 1999). Because MK-801 
is a non-competitive, use-dependent NMDAR inhibitor that can 
only bind within an open NMDAR pore (Traynelis et al., 2010), 
its labeling of megakaryocytes was consistent with the NMDAR 
function as an ion channel in megakaryocytic cells. Later, 
we  showed that glutamate, NMDA, and glycine induce Ca2+ 
fluxes in Meg-01 cells, and NMDAR antagonists (MK-801, 
memantine, and AP5 [d-2-amino-5-phosphonopentanoate]) 
counteract this effect, indicating that NMDARs operate as Ca2+ 
channels in these cells (Kamal et  al., 2015, 2018).

Table 1 provides a summary of the NMDAR subunit expression 
in megakaryocytic and erythroid cells, reported at either protein 
or transcript level. Unfortunately, testing for GluN proteins in 
hematopoietic cells has been difficult due to (a) very low 
abundance, (b) various protein isoforms and post-translational 
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modifications, and (c) the lack of antibodies optimized for use 
in non-neuronal cells. Human megakaryocytes were first shown 
to express GluN1 using immunocytochemistry and Western 
blotting, the latter indicated that GluN1 was non-glycosylated, 
which may affect NMDAR distribution in the plasma membrane 
(Genever et  al., 1999). Our group demonstrated expression of 
GluN1, GluN2A, and GluN2D in Meg-01, K-562, and Set-2 
cells using flow cytometry and a modified Western blotting 
procedure that employed membrane enrichment and high-
sensitivity peroxidase substrates (Kamal et  al., 2015).

The composition of NMDAR in megakaryocytes differs from 
that in neurons. In the brain, NMDARs are built mostly from 
GluN1, GluN2A, and/or GluN2B subunits, but human, native 
and culture-derived megakaryocytes express predominantly 
GluN2D, with some GluN2A and GluN1 (Table  1; Genever 
et  al., 1999; Hitchcock et  al., 2003; Kamal et  al., 2015, 2018). 
The dominant expression of GluN2D in normal megakaryocytes 
will affect NMDAR functioning, however no electrophysiological 
recordings are available from these cells to document the effect. 
In other systems, GluN2D-containing NMDAR displays the 
following differences compared with GluN2A and GluN2B 
containing receptors: approximately 5-fold higher sensitivity 
to glutamate, 10-fold higher sensitivity to glycine, 100-fold 
longer deactivation time, lower conductance, lower Ca2+ 
permeability and weaker Mg2+ block (Paoletti et al., 2013; Wyllie 
et al., 2013; Hansen et al., 2018). The weak Mg2+ block suggests 
that NMDAR in megakaryocytes may not require membrane 
depolarization to become active; meaning the principle of 
“coincidence detection” may not apply. The unique functionality 
of the GluN2D subunit is underscored by its dominant expression 
in the embryonic and postnatal brain; however, the mechanism 
through which GluN2D subunits provide trophic effects remains 
incompletely understood (Watanabe et al., 1992; Akazawa et al., 
1994).

For those of us working with mouse models, it is relevant 
to note that there are differences in the NMDAR expression 

patterns between human and mouse cells. In contrast to human 
megakaryocytes (that express only GluN1, GluN2A, and GluN2D), 
mouse megakaryocytes also express GluN2C and GluN3B 
(Table  1; Kamal et  al., 2018). Small numbers of other, yet 
un-identified mononuclear cells in the mouse bone marrow 
also express NMDAR, but there is no documented expression 
in mouse erythroid precursors or mature RBCs (Genever et  al., 
1999), which differs from human cells (Table 1; Makhro et al., 2013; 
Hanggi et  al., 2014, 2015).

In contrast to normal megakaryocytes, patient-derived 
leukemic megakaryoblasts and megakaryocyte leukemia cell 
lines (Meg-01, K-562, and Set-2) carry all possible NMDAR 
subunits, including GluN2B, GluN3A, and GluN3B (Table  1; 
Kamal et  al., 2015). Meg-01 and K-562 cell lines are derived 
from patients with chronic myeloid leukemia in megakaryocytic 
and myeloid blast crisis respectively, and carry oncogenic 
BCR-ABL1 gene fusion (Lozzio and Lozzio, 1975; Ogura 
et  al., 1985). Both Meg-01 and K-562 cell lines express 
thrombopoietin (TPO) and erythropoietin (EPO) receptors 
and can be  induced to differentiate into megakaryocytic 
(Ogura et  al., 1988, Herrera et  al., 1998) and erythroid cells 
(Andersson et  al., 1979; Morle et  al., 1992), thus providing 
experimental models of bipotential megakaryocyte-erythroid 
progenitors. Set-2 cell line is derived from a leukemic 
transformation of essential thrombocythemia and carries JAK2 
V617F mutation, an established driver in myeloproliferative 
neoplasms. Set-2 differentiates spontaneously into 
megakaryocyte-like cells (Uozumi et  al., 2000). Biological 
characteristics of leukemic cell lines are obviously very different 
from normal progenitors, which we  should keep in mind 
while interpreting cell line data.

We found that Meg-01 cells are better suited for  
studies of NMDAR function than K-562 and Set-2 cells, 
mostly because of their higher levels of NMDAR expression. 
Upon differentiation with phorbol-12-myristate-13-acetate 
(PMA), Meg-01 cells up-regulate NMDAR expression further, 

TABLE 1 | Expression of NMDAR subunits documented in megakaryocytic and erythroid cells.

Megakaryocytic cells1 Erythroid cells2 Mature brain 
cortex3

Human Mouse Human Mouse and human
Normal Leukemic Normal Normal – cultured Normal

GluN 
subunit

Whole bone 
marrow

Isolated 
mature MKs

Cell lines Patient-
derived

Isolated 
mature MKs

Early cultured 
MKs

Proerythroblasts Orthochromatic Retics /RBC Neurons

1 +; P − +/++; P + + ++; P + + +; P +++; P
2A + + ++; P + + ++ ++; P + +; P ++; P
2B − − −/+ + − − − − − ++; P
2C − − −/+ ++ + − +; P +++; P ++; P +; P
2D + + +++; P +++ ++ − ++; P ++; P ++; P +; P
3A − − + ++ − − +; P +; P +; P −
3B − − +++ ++ ++ − +; P ++; P ++; P −

1Data generated mostly by RT-PCR, conventional and real-time (Genever et al., 1999; Hitchcock et al., 2003; Kamal et al., 2015, 2018).
2Data generated by TaqMan quantitative RT-PCR, flow cytometry and immunoblotting (Makhro et al., 2013; Hanggi et al., 2014, 2015).
3Shown by multiple techniques. The “+” symbol means expression was demonstrated; the number of “+” signs reflects the level of expression; “−” means expression was not 
detected. The letter “P” indicates protein expression was documented using flow cytometry or immunostaining in addition to transcript data, on which the semi-quantitative 
assessment was based. MK, megakaryocyte; Retics, reticulocytes; RBC, red blood cells.
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providing a model in which to examine NMDAR involvement 
in megakaryocytic differentiation (Genever et  al., 1999; 
Kamal et  al., 2018).

The role of GluN3 subunits (highly expressed in leukemic 
cells; Table  1) is poorly understood, including in the brain, 
but its functions have already been described as exquisite, 
peculiar, unconventional, and transformative (Kehoe et al., 2013; 
Perez-Otano et  al., 2016; Grand et  al., 2018). This is because 
GluN3 subunits do not require glutamate for activation (Nilsson 
et  al., 2007). In GluN1-GluN3 receptors, glycine acts both as 
the sole agonist binding on GluN3, and provides feedback 
inhibition through GluN1. In GluN1-GluN2-GluN3 receptors, 
the presence of GluN3 reduces Mg2+ block and Ca2+ entry 
(Matsuda et  al., 2002; Cavara and Hollmann, 2008).

Overall, the presence of nonconventional GluN subunits (in 
particular GluN2D and GluN3) in megakaryocytic cells, normal 
and leukemic, suggests that NMDAR generates weaker but more 
sustained Ca2+ influx, and may allow stronger modulation by 
glycine than glutamate, in particular in leukemic cells. There 
is also a possibility of regulation by metabolic factors through 
GluN1. This is because megakaryocytic cells express h1-1 to 
h1-4 GluN1 isoforms, all of type “a” (Kamal et  al., 2015). 
GluN1a isoforms lack the N1-cassette from the N-terminal 
domain (encoded by exon 5) that if present, reduces inhibition 
by protons and zinc, and potentiation by polyamines (Traynelis 
et al., 1995; Yi et al., 2018). Because the bone marrow environment 
is intrinsically hypoxic (Spencer et  al., 2014), this form of 
metabolic regulation warrants testing in blood progenitors.

Evidence for Regulation of Glutamate 
Levels
Mouse and human megakaryocytes express a range of molecules 
for glutamate re-uptake, storage, and release, including VGLUT1, 
VGLUT2, SNARE, and the high-affinity glutamate re-uptake 
system, EAAT1, shown at both transcript and protein levels 
(Genever et  al., 1999; Thompson et  al., 2010). Fluorimetric 
measurements of glutamate concentrations in culture media 
suggest that human and mouse megakaryocytes, and Meg-01 
cells release glutamate in a constitutive manner (Thompson 
et  al., 2010); congruently, similar has been shown for ADP 
packaged together with glutamate in dense granules (Balduini 
et  al., 2012). We  do not know why megakaryocytes need 
glutamate sensitivity but it is a critical question to seek answers 
to in the future. A possible auto-regulatory loop (autocrine 
or paracrine) is suggested by the observation that Meg-01 
cells release more glutamate upon differentiation with PMA 
(Thompson et  al., 2010). Glutamate regulation may 
be  independent of TPO, as NMDAR expression is maintained 
in megakaryocytes from c-Mpl-(TPO receptor) knockout mice 
(Hitchcock et  al., 2003).

Unfortunately, there is no information on glutamate 
concentrations in the interstitial fluid of the bone marrow. In 
peripheral blood plasma, physiological glutamate levels are 
usually maintained between 20 and 100  μM (Kiessling et  al., 
2000), but vary widely depending on the diet (Stegink et  al., 
1983) and exercise (Makhro et  al., 2016). In the interstitial 
fluids, concentrations of glutamate have been observed to be as 

low as 0.5  μM in the masseter muscle of myofascial 
temporomandibular joint (Castrillon et  al., 2010), to as high 
as blood plasma levels in the vastus lateralis muscle of the 
lower limb (Gerdle et  al., 2016). There is no experimental 
data on how plasma/interstitial glutamate levels impact 
endogenous NMDAR in blood/progenitor cells. Paracrine 
NMDAR activation in neuron-like fashion appears more likely 
in tissues with low, steady state glutamate concentrations. On 
the other hand, conditional NMDAR activation via local pH 
changes would be  more likely in tissues with higher, plasma-
like glutamate concentrations. Different types of NMDAR 
subunits will also affect cellular sensitivity to glutamate, and 
modulate the receptor response (as described in section Evidence 
for NMDAR Functionality in Megakaryocytic Cells).

NMDAR Effects on Megakaryocytic 
Differentiation
NMDAR channel blockers (memantine and MK-801) induce 
two types of apparently opposing effects in cultured 
megakaryocytic cells: inhibition of differentiation in normal 
megakaryocytes, but induction of differentiation in 
megakaryocytic leukemia cell lines (Figure  1Ai–ii).

When human megakaryocytes are grown from CD34-positive 
umbilical cord stem cells, the addition of MK-801 inhibits 
acquisition of megakaryocytic markers (CD61, CD41a, and 
CD42a), nuclear ploidy and proplatelet formation; however, 
progenitor proliferation is unaffected (Hitchcock et  al., 2003). 
Similar effects are seen in cultures of mouse hematopoietic 
progenitors, and in the native bone marrow milieu of mouse 
bone marrow explants. MK-801 inhibits actin reorganization 
in mature mouse megakaryocytes, suggesting that NMDAR-
mediated Ca2+ influx is required for the cytoskeletal remodeling 
that underlies proplatelet formation (Kamal et  al., 2018). This 
process may be  similar to dendritic spine formation arising 
in response to neuronal NMDAR firing (Furuyashiki et  al., 
2002). NMDAR links with cytoskeletal elements through post-
synaptic density (PSD) proteins such as PSD-95 and Yotiao; 
both of which are expressed in megakaryocytes, suggesting 
similar interactions may be  possible in hematopoietic cells 
(Hitchcock et  al., 2003).

In contrast to normal megakaryocytes that utilize NMDAR 
function to assist differentiation, leukemic cell lines (Meg-01, 
K-562, and Set-2) appear to divert NMDAR activity to increase 
proliferation (Figure  1Ai–ii). In the presence of NMDAR 
blockers (memantine and MK-801) Meg-01 cells undergo atypical 
differentiation and accumulate prominent cytoplasmic vacuoles 
(Figure 1Aiii; Kamal et al., 2015, 2018). The opposing NMDAR 
effects on cellular phenotype between normal and leukemic 
cells suggest divergence of NMDAR pathways during 
leukemogenesis to increase cell proliferation.

To get more insights into the mechanism of this divergence, 
we  recently created a model of NMDAR hypofunction in 
Meg-01 cells using CRISPR-Cas9 mediated knockout of the 
GRIN1 gene that encodes the obligate, GluN1 subunit of the 
NMDAR (Hearn et  al., 2020). We  found that GRIN1 deletion 
caused marked changes in the intracellular Ca2+ homeostasis, 
including higher cytosolic Ca2+ levels at baseline but lower 
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ER Ca2+ release after activation. Deregulated Ca2+ handling 
led to endoplasmic reticulum (ER) stress and induced 
autophagy. Prominent cytoplasmic vacuoles accumulated in 
Meg-01-GRIN1−/− cells and were found to represent dilated 
ER and lysosomal organelles (Figure 1Aiii). Microarray analysis 
revealed that Meg-01-GRIN1−/− cells had deregulated expression 
of transcripts involved in Ca2+ metabolism, together with a 
shift in the pattern of hematopoietic transcription factors 
toward erythropoiesis (Figure  1Bi–ii). In keeping with the 
pro-erythroid pattern of transcription factors, Meg-01-GRIN1−/− 
cells displayed features of erythroid differentiation 
(Figure  1Biii). Our data provide the first evidence that 
NMDARs comprise an integral component of the Ca2+ toolkit 
in megakaryocytic cells, and argue that intracellular Ca2+ 
homeostasis may be more important than currently recognized 
for balancing megakaryocytic with erythroid differentiation 
at the level of a common progenitor (Hearn et  al., 2020).

In support of our findings, Kinney et  al. provided 
computational evidence of NMDAR involvement in 
erythropoiesis (Kinney et  al., 2019). The authors analyzed 164 
publicly available erythroid microarray datasets using an 
enhanced CellNet bioinformatics algorithm to delineate key 
transitional states of erythroid differentiation at high resolution. 
This approach identified a role for signaling through epidermal 
growth factor receptor Erb-B2 receptor tyrosine kinase 4 (ErbB4) 
in erythroid differentiation, which was further validated 
experimentally in zebrafish, mouse and human models. The 
authors linked ErbB4 with NMDAR signaling by finding 
increased levels of GRIN3B transcripts, coding for GluN3B, 
in the reticulocyte gene cluster. A similar link between ErbB4 
and NMDAR is well-documented in neurons, where ErbB4 
and its neuregulin ligands stabilize synaptic NMDAR (Li et al., 
2007). In fact, altered neuregulin 1–ErbB4 signaling is a well-
established mechanism of NMDAR hypofunction in 
schizophrenia (Hahn et al., 2006). Encouragingly, we also found 
that in Meg-01-GRIN1−/− cells, transcripts for neuregulin 1 
and ErbB receptor feedback inhibitor 1 were up-regulated 
(1.98- and 2.05-fold, respectively), implying the ErbB4-NMDAR 
link is maintained during megakaryocytic-erythroid 
differentiation (Hearn et  al., 2020).

The interrogation of publicly available transcriptomic data 
obtained from human megakaryocyte-erythroid progenitors at 
a single cell level demonstrated the presence of GRINA transcripts 
(encoding NMDAR-associated protein 1, known to be expressed 
at relatively high levels) and a scatter of low signals for GRIN1, 
GRIN2A, GRIN2C, and GRIN2D (Lu et  al., 2018). Deep 
sequencing in that study was performed with approximately 
3  million reads per cell, which captured approximately 6,000 
of the most highly expressed transcripts in a cell, which may 
explain why GRIN transcripts were detected at very low levels.

NMDAR FUNCTIONALITY IN  
ERYTHROID CELLS AND IN THE 
CIRCULATING RBCs

RBCs sense plasma glutamate levels through the NMDAR. 
Using radiolabeled antagonist ([3H]MK-801) binding assay, basal 
activity of NMDARs in RBCs suspended in plasma was shown 
(Makhro et  al., 2013). Supplementation of glutamate to plasma 
caused further activation of the receptors (Hanggi et al., 2014). 
Other findings suggest that the shear of flowing blood may 
also activate NMDAR in RBCs of patients with sickle cell 
disease (Hanggi et  al., 2014, 2015).

NMDAR in Erythroid Precursor Cells
The abundance of NMDARs is particularly high in erythroid 
precursors and the UT-7/EPO cell line (Makhro et  al., 2013; 
Hanggi et al., 2015). The receptor density decreases from hundreds 
of thousands per cell in proerythroblasts and erythroblasts cultured 
from peripheral blood-derived CD34-positive progenitors, to 
35  in young human RBCs, and five in mature and senescent 
RBCs from healthy people (Makhro et al., 2013; Hanggi et al., 2014). 

A

B

FIGURE 1 | NMDAR effects in normal megakaryocytes and leukemic Meg-
01 cells. (A) Schematic indicating that in normal megakaryocytes NMDAR 
activity supports differentiation, in particular proplatelet formation (i). In 
contrast, in leukemic cell lines NMDARs increase cell proliferation (ii). In both 
normal and leukemic cells, NMDAR inhibition induces cellular stress response 
associated with endoplasmic reticulum (ER) dilatation and accumulation of 
lysosomes (iii). Red shade in a cell reflects features of erythroid differentiation. 
(B) Experimental data showing that CRISPR-Cas9-mediated deletion of 
GRIN1 in Meg-01 cells increased expression of ER stress markers (DDIT3/
CHOP, ATF4, PPP1R15A/GADD34, and JUN; Bi; orange bars), associated 
with decreased expression of megakaryocytic transcription factors (RUNX1, 
FLI1, ERG; Bii) and megakaryocytic maturation marker, CD41 (Biii) (blue 
bars). Instead, expression of erythroid transcription factors (KLF1, KLF3, 
KLF6; Bii) and embryonic hemoglobin (HBE1; Biii) was increased (red bars). 
Transcript levels were determined by real-time RT-PCR (Bi) and Clariom S 
microarrays (Bii–iii), as described (Hearn et al., 2020). Statistical significance 
is shown (p < 0.05 for all markers versus unmodified Meg-01 cells set at 1.0, 
tested by one-way ANOVA with Dunnett post-hoc. MK, megakaryocyte.
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In UT-7/EPO cell line 350,000 NMDARs were detected per 
cell (Makhro et  al., 2010). UT-7/EPO is a subclone of a UT-7 
megakaryoblastic leukemia cell line that was maintained in the 
presence of EPO for more than 6  months to increase erythroid 
differentiation (Komatsu et  al., 1993). In keeping with the 
NMDAR expression data, the density of currents produced by 
the NMDAR decreased during differentiation from 
proerythroblastic to the orthochromatic stage of erythroid 
progenitors (Hanggi et  al., 2015).

Similar to megakaryocytes, the pattern of GluN subunits 
evolves during erythroid differentiation. Except for GluN2B, 
all other types of NMDAR subunits have been detected in 
erythroid cells at either mRNA or protein levels, or both 
(Table 1). During early stages, (proerythroblasts and basophilic 
erythroblasts) higher levels of GluN2A and GluN2D were shown 
along with lower levels of GluN3A, GluN3B, and GluN1 (Makhro 
et  al., 2013; Hanggi et  al., 2014, 2015). Orthochromatic 
erythroblasts switched from GluN2A-containing receptors to 
those predominantly containing GluN2C (Hanggi et  al., 2015). 
As a result, high amplitude, fast, inactivating currents, mediated 
by the receptor at early stages of erythroid differentiation were 
replaced by currents of lesser amplitude but longer duration 
(Hanggi et al., 2015). This change in receptor subunit composition 
and its function gave rise to a switch in signal transmitted by 
the NMDAR, and probably, to the alteration in sensitivity to 
the physiological stimuli. Whereas GluN2A-containing receptors 
contributed to the modulation of the transmembrane potential, 
GluN2C/GluN2D-NMDAR mediated Ca2+ entry through the 
channels that remained open for a longer time (Hanggi et  al., 
2015). Mg2+ block is not supposed to control the NMDAR 
activity in RBCs due to the low transmembrane potential (about 
−10  mV) and the presence of GluN2C, GluN2D, and GluN3 
subunits (Monyer et  al., 1994; Wrighton et  al., 2008).

Hyperactivation of the NMDAR by repeated stimulation 
resulted in the channel inactivation and did not affect viability 
of erythroid precursor cells. However, exposure of erythroid 
progenitors to the NMDAR channel blockers (MK-801 and 
memantine) triggered vacuolization and apoptosis, with maximal 
cell death observed at the early differentiation stages (Hanggi 
et  al., 2014, 2015). This observation is in line with the earlier 
findings by Miller and Cheung on the importance of Ca2+ 
signaling for EPO-driven effects in precursor cells (Miller and 
Cheung, 1994; Tong et  al., 2008).

NMDAR Function and Physiological 
Significance in the Circulating RBCs
Relatively low numbers of active NMDAR copies are retained 
by the circulating RBCs. Young RBCs of healthy humans carry 
35 NMDARs per cell on average, whereas mature and senescent 
cells contain about five receptor copies per cell (Makhro et  al., 
2013; Hanggi et al., 2014). The NMDAR abundance is 3–4-fold 
higher in RBCs from patients with sickle cell disease 
(Hanggi et  al., 2014). Activation of NMDAR by exposing the 
cells to the saturating concentrations of agonists (NMDA and 
glycine, 300  μM each) results in an acute, transient increase 
in the intracellular free Ca2+ (Makhro et  al., 2013). There is 
striking inter-cellular heterogeneity in responses of the cells 

to the NMDAR agonists, including changes in transmembrane 
currents and Ca2+ uptake shown with a fluorescent dye, as 
well as the level of dehydration and echinocyte formation. 
These differences cannot be  explained solely by the differences 
in RBC age. Whereas some cells are insensitive to the stimulation, 
others show a clear response to the NMDAR agonists suggesting 
inter-cellular heterogeneity in NMDAR numbers/distribution. 
Along with the changes in RBC volume and density of Ca2+ 
uptake following the NMDAR stimulation, we observed regulation 
of nitric oxide production in RBCs by the nitric oxide synthase 
and modulation of the redox state (Makhro et  al., 2010).

Physiological responses to the changes in NMDAR activity 
in the circulating RBCs include regulation of hemoglobin oxygen 
affinity, cell rheology, and most likely, longevity. Pathophysiological 
downstream effects associated with NMDAR hyperactivation 
were revealed ex vivo for RBCs of patients with sickle cell 
disease. These included Ca2+ overload, dehydration, and increase 
in cell density, and oxidative stress (Hanggi et  al., 2014). There 
are no reports of abnormal RBC counts in patients with 
Alzheimer’s disease taking memantine to protect the brain from 
glutamatergic excitotoxicity (Kavirajan, 2009). One pilot clinical 
trial was performed at the University Hospital Zurich, in which 
patients with sickle cell disease received memantine over a 
year (Makhro et al., 2020; trial identifier NCT02615847), and 
the other is currently ongoing (trial identifier NCT03247218). 
These trials provide an opportunity to explore long-term effects 
of NMDAR inhibition on RBC and platelet production, and 
cell properties in humans.

CONCLUSIONS AND FUTURE 
DIRECTIONS

In summary, megakaryocytic and erythroid precursors carry 
nonconventional NMDAR subunits, therefore NMDAR activity 
during hematopoiesis may be  unique and should be  tested. 
NMDARs regulate megakaryocytic and erythroid differentiation 
ex vivo, and balance both fates during differentiation of Meg-01 
cells, suggesting NMDAR role at the level of a bipotential 
megakaryocyte-erythroid progenitor. NMDAR effects in 
hematopoietic cells are mediated by Ca2+ influx, which in early 
megakaryoblasts affects transcriptional program of differentiation, 
and in mature megakaryocytes induces cytoskeletal rearrangements 
required for proplatelet formation. In contrast to normal progenitors, 
leukemic cell lines re-direct NMDAR signaling to increase 
proliferation. The shift in the dominant NMDAR effect in leukemic 
cells may be  at least partially related to different GluN subunits 
these cells express, which may offer therapeutic opportunities.

In keeping with the proliferative NMDAR effects in leukemic 
cells, other prominent groups found that GluN2B-containing 
NMDAR promotes growth of pancreatic tumors (Li and  
Hanahan, 2013; Li et  al., 2018), and enable brain metastases 
by breast cancer (Zeng et  al., 2019). The following molecules 
acting downstream of NMDAR were shown to assist cancer 
spread in these studies: CaMKII, MAPK, guanylate-kinase-
associated protein, heat shock factor 1, and fragile X mental 
retardation protein (Li and Hanahan, 2013; Li et  al., 2018); 
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we  should examine similar pathways in leukemic cells as they 
may provide novel therapeutic targets.

In cultured human proerythroblasts, GluN2A-containing 
NMDAR provides depolarization, and inward Ca2+ current of 
high amplitude and fast inactivation kinetics. The presence of 
active NMDAR supports survival of early erythroid progenitors, 
which likely contributes to the EPO-driven signaling; however, 
this link is still to be  demonstrated. Expression of GluN2C 
and GluN2D in the late erythroid precursors coincides with 
the onset of hemoglobinization. Thus, the NMDAR role in 
iron uptake warrants investigation. In mature RBCs, NMDAR 
regulates basal intracellular Ca2+ levels, contributing toward 
the regulation of cell volume, density, redox balance, and nitric 
oxide production by RBCs, which most likely contributes to 
the regulation of RBC longevity and oxygen carrying capacity.

NMDAR signaling can be modulated using small molecules. 
Memantine is an approved drug for neurological patients and 
could be  repurposed against certain hematological disorders, 
such as sickle cell disease, megakaryocytic cancers and 
thrombosis. Preclinical studies have already advanced to stage 
I  clinical trials in sickle cell disease, but a lot more needs to 
be  done to determine if NMDAR modulation could be  useful 
in patients with certain myeloid blood cancers or thrombotic 
disease. Neurological side effects may limit the use of memantine 
in hematological patients; therefore, alternative strategies may 
need to be considered. These include subunit-specific NMDAR 
inhibitors, compounds that do not cross the blood-brain-barrier, 
and drugs that target pathways downstream, or glutamate 
release upstream of NMDAR.

Considering that the NMDAR role in megakaryocytic cells 
was first reported in Genever et  al. (1999), the progress in 
this field may be viewed as relatively modest. However, we have 
reached a state of acceptance that NMDARs provide meaningful 
biological effects in hematopoietic cells. The field is attracting 
renewed attention. We await results from the first, stage I clinical 
trial in patients with sickle cell disease, primarily to establish 
safety of memantine outside of neurological indications. Further 
progress into NMDAR role in human leukemia and thrombosis 
will require studies in more advanced ex vivo and in vivo 
models. In addition, the overall principle and purpose of 
peripheral glutamate signaling needs to be  determined. We, 
thus, invite collaborative approaches engaging experts from 
multiple disciplines to join us forming an interest group focusing 
on peripheral glutamate signaling.
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