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Multiple microRNAs (miRNAs) regulate epithelial-
mesenchymal transition and endothelial-mesenchymal
transition (EndMT). Here we report that microRNA-
27b (miR-27b) positively regulates transforming growth
factor-b (TGF-b)-induced EndMT of MS-1 mouse pan-
creatic microvascular endothelial cells. TGF-b induced
miR-23b/24-1/27b expression, and inhibition of miR-27
suppressed TGF-b-mediated induction of mesenchymal
genes. Genome-wide miRNA target analysis revealed
that miR-27 targets Elk1, which acts as a competitive
inhibitor of myocardin-related transcription factor-
serum response factor signalling and as a myogenic
repressor. miR-27b was also found to regulate several
semaphorin receptors including Neuropilin 2, Plexin A2
and Plexin D1. These results suggest important roles of
miR-27 in TGF-b-driven EndMT.
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MicroRNAs (miRNAs) are important regulators of dif-
ferentiation and cell fate decisions. Multiple miRNAs,
such as microRNA-200 (miR-200) and miR-155, have
been identified as suppressors or promoters of epithe-
lial-mesenchymal transition (EMT) (1). In addition, sev-
eral studies have described roles of miRNAs in
endothelial-mesenchymal transition (EndMT), which is
important for heart development and various patho-
logical processes (2). We have previously reported that
transforming growth factor-b (TGF-b) induces mesen-
chymal genes including a-smooth muscle actin (a-SMA)
by activating Rho signals and myocardin-related tran-
scription factor A (MRTF-A), and that constitutively

active miR-31 is a positive regulator of TGF-b-induced
EndMT and EndMT-associated secretory phenotype
(EndMT-SP) in MS-1 mouse pancreatic microvascular
endothelial cells (2, 3).

miR-23,miR-24andmiR-27,membersofmiR-23/24/27
clusters, are highly conserved vertebrate miRNAs and are
involvedinvariousbiologicalprocesses(4).Mammalshave
twomiR-23/24/27 clusters:miR-23a�27a�24-2 andmiR-
23b�27b�24-1.MembersofmiR-23/24/27havebeenpro-
posed to have important roles in angiogenesis (5�8). In
addition, deregulated expression of these miRNAs and
cancer-related roles have been described in many studies
with varying results (9). miR-23 and miR-27 are shown to
facilitate EMT in several types of cancer including lung
cancer(9).WealsopreviouslyreportedthatTGF-b induces
the expression of miR-23a in A549 lung cancer cells (10).
However,incontrasttotheirrolesinEMT,therolesofmiR-
23/24/27inEndMThavenotbeenwellcharacterized.Inthe
presentstudy,westudiedtheeffectsofTGF-bonexpression
levels of miR-23/24/27 and potential contribution ofmiR-
27 to TGF-b-driven EndMT inMS-1 endothelial cells.

miRNA microarray analysis (H.I.S. & A.K., article
in preparation) showed that TGF-b increased the ex-
pression of miR-23b, miR-24 and miR-27b in MS-1
cells (Fig. 1a). The effects on miR-23a and miR-27a
were not remarkable. Next, we investigated the roles of
endogenous miR-27b in EndMT by inhibiting en-
dogenous miR-27 activity. Locked nucleic acid
(LNA) miR-27b inhibitor (LNA-miR-27b) abolished
miR-27b activity in MS-1 cells (Fig. 1b). miR-27b in-
hibitor suppressed induction of mesenchymal markers,
a-SMA and SM22a, by TGF-b (Fig. 1c). In contrast,
miR-27b inhibitor did not attenuate induction of con-
ventional Smad target genes, Smad7, Fibronectin1,
and PAI-1 and downregulation of endothelial markers,
VEGFR2 and CD34 (Fig. 1d and e). These results
demonstrated that TGF-b induces the expression
levels of miR-23b/24-1/27b but not of miR-23a/24-2/
27a in MS-1 cells and that miR-27 positively regulates
mesenchymal gene induction by TGF-b.

In order to identify miR-27 targets during TGF-b-
mediated EndMT at a transcriptome-wide level, we
analysed the RNAseq data using MS-1 cells treated
with miR-27b inhibitor and/or TGF-b, reported in
our previous study (3). In consistent with widespread
inhibitory effects of miRNAs on target gene expres-
sion, mRNA levels of potential miR-27 target genes
with both conserved and poorly conserved target
sites generally increased by miR-27 silencing (Fig. 2a
and Supplementary Table S1). Gene ontology (GO)
analysis showed that LNA-miR-27b-sensitive miR-27
target genes are related to diverse molecular functions,
such as ion binding, transcriptional regulation,
and regulation of phosphorylation (Fig. 2b and
Supplementary Table S2).

To analyse functions of miR-27 targets in the con-
text of known biological pathways, we performed
pathway map analysis using MetaCore software.
Representative miR-27 target genes frequently
observed in the pathway maps enriched for LNA-
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miR-27b-sensitive miR-27 targets included several
transcriptional factors such as CREB1 and Elk1 and
various signaling regulators, including phosphoinosi-
tide 3-kinase, c-Jun N-terminal kinase and p38 mito-
gen-activated protein kinase (Fig. 2c and
Supplementary Table S3). Such miR-27 target genes
also included multiple transcription factors, such as
Elk1, EPAS1, ARNT, CREB1, SP1 and GATA2, im-
portant for endothelial function (Supplementary Fig.
S1). Gene set enrichment analysis (GSEA) also un-
covered an association between LNA-miR-27b-de-
pendent gene expression changes and gene sets
associated with hypoxia and Elk1 paralogue, Elk3
(Fig. 2d). Since Elk1 is a ternary complex factor of
the ETS-domain family, which competes with
MRTFs for binding to serum response factor (SRF)
and acts as a myogenic repressor (14, 15), we next
focused on Elk1. Reporter assay of Elk1 3’

untranslated region (3’UTR) confirmed that miR-27b
targets Elk1 3’UTR depending on the predicted target
site (Fig. 2e and f). These results suggest that miR-27
may facilitate TGF-b-driven EndMT through Elk1
suppression and subsequent MRTF-A activation in
MS1 cells.

In addition, we found that miR-27 targets VAV3, a
regulator of actin remodeling and MRTF-A activity
(Supplementary Table S1). Considering our previous
report describing that VAV3 is regulated by another
EndMT-promoting miRNA, miR-31 (3), VAV3 may
be combinatorially regulated by miR-27 and miR-31.
Although miR-31 is required for induction of EndMT-
SP, i.e. induction of multiple inflammatory chemokines
and cytokines including CCL17, CX3CL1, IL-6 and
Angptl2 (3), the effects of miR-27 inhibition on
EndMT-SP were weak relative to miR-31 inhibition
(Supplementary Fig. S2).

We further systematically analysed TGF-b-depend-
ent suppression of miR-27 target genes, which may be
accompanied with induction of miR-27b by TGF-b.
Comparison of GO terms enriched in genes downregu-
lated by TGF-b and GO terms enriched in miR-27
target genes downregulated by TGF-b and upregulated
by LNA-miR-27b suggested that genes associated with
semaphorin receptor activities are suppressed by TGF-
b in a miR-27-dependent fashion (Fig. 3a and
Supplementary Table S4). This gene set included
Neuropilin 2 (Nrp2), Plexin A2 (PlxnA2) and Plexin
D1 (PlxnD1). We confirmed that miR-27b targets
3’UTRs of Nrp2, PlxnA2 and PlxnD1 as well as
Elk1 (Fig. 3b and Supplementary Fig. S3). These find-
ings suggest that TGF-b-induced EndMT is associated
with miRNA-mediated alteration of semaphorin re-
ceptor activities.

In conclusion, we demonstrated that miR-27b is a
positive mediator of EndMT induced by TGF-b,
adding a novel function of miR-27 in vascular biology.
Relationships between miR-27 and some of the targets
identified in this report, Elk1, Nrp2, PlxnA2, and
PlxnD1, are maintained in mammals and zebrafish
(see Supplementary Materials), suggesting that regula-
tion of these targets by miR-27 may contribute to con-
served developmental processes. In contrast to
EndMT-promoting activity of miR-27 observed in
our study, a previous report described that miR-23
restricts differentiation from endocardial cells to endo-
cardial cushion cells and cardiac valve formation (16).
In the developing heart, miR-27b expression is
observed in only myocardium but not endocardial
cushions and increases in the later developmental
stages (17). Thus, miR-23 and miR-27 may differen-
tially modulate EndMT in embryonic heart develop-
ment and adult pathology.

We identified Elk1 as a novel target of miR-27.
Another report has shown that miR-143 regulates plas-
ticity and fate of vascular smooth muscle cells by tar-
geting Elk1 (18). These findings suggest that multiple
miRNAs are tightly integrated into a core transcrip-
tional network involved in smooth muscle
differentiation and proliferation. Our analysis also
demonstrated that miR-27b regulates several sema-
phorin receptors Nrp2, PlxnA2 and PlxnD1, suggesting

Smad7 Fibronectin1 PAI-1

VEGFR2 CD34

(d)

(e)

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

control sensor
miR-27b sensor

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

R
el

at
iv

e 
m

iR
N

A
 

ex
pr

es
si

on

(a)

(c) α-SMA SM22α

LNA-NC LNA-
miR-27b

LNA-NC LNA-
miR-27b

R
el

at
iv

e 
R

N
A

 e
xp

re
ss

io
n

LNA-NC LNA-
miR-27b

LNA-NC LNA-
miR-27b

LNA-NC LNA-
miR-27b

LNA-NC LNA-
miR-27b

LNA-NC LNA-
miR-27b

(–) TGF-β

(–) TGF-β (b)

23a 23b 24 27a 27bmiR-

R
el

at
iv

e 
R

N
A

 e
xp

re
ss

io
n

R
el

at
iv

e 
R

N
A

 e
xp

re
ss

io
n

(–) TGF-β

(–) TGF-β

0

40

80

120

160

0

1

2

3

4

0

1

2

3

0

4

8

12

16

0

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

LNA-NC LNA-
miR-27b

* *

Fig. 1 miR-27b is a positive regulator of EndMT induced by TGF-b in
MS-1 endothelial cells. (a) Effects of TGF-b on miR-23/24/27 ex-
pression levels, determined by miRNA microarray analysis (TGF-
b2, 1 ng/ml, 72 h). (b) Inhibition of miR-27b activity by miR-27b
inhibitor in MS-1 cells. MS-1 cells were transfected with LNA con-
trol miRNA inhibitor (LNA-NC) or LNA miR-27b inhibitor (LNA-
miR-27b, 50 nM) and miRNA sensor vectors, and subjected to dual
luciferase reporter assay after 48 h. (c�e) Effects of miR-27 inhib-
ition on TGF-b-mediated gene expression changes (c, EndMT genes;
d, conventional TGF-b target genes; and e, endothelial cell-specific
genes), determined by qRT-PCR analysis. MS-1 cells transfected
with LNA miRNA inhibitors were stimulated with TGF-b2 (1 ng/
ml, 72 h). Error bars represent SDs. *P5 0.05. Experimental pro-
cedures and primer information are described in Supplementary
Materials and Supplementary Tables S5 and S6.
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another novel feature of TGF-b-induced EndMT. miR-
23 and miR-27 have been shown to promote endothelial
cell sprouting and angiogenesis by targeting various
angiogenesis regulators, Sprouty2, SEMA6A and Dll4
(6�8). Since Plexin A2 is a receptor for SEMA6A, co-
ordinate regulation of both semaphorin ligands and
semaphorin receptors may underlie angiogenic pheno-
types of miR-27. Furthermore, Nrp2 is shown to nega-
tively regulate contractility of vascular smooth muscle
cells (19). Thus, suppression of Nrp2 by miR-27 may be
associated with acquisition of contractile phenotype
during EndMT. Further analysis would shed light on
the importance of miR-27 and related members in
EndMT and EndMT-associated pathological processes.
These findings may offer development of therapeutic
approach to manipulate EndMT.

Supplementary Data

Supplementary Data are available at JB Online.
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Fig. 2 Transcriptome-wide identification of miR-27 target genes. (a) Cumulative distribution plots of mRNA fold changes of miR-27 target genes
predicted by TargetScan (right, conserved; middle, poorly conserved) and other expressed genes (left) by miR-27 inhibition in MS-1 cells.
P values were calculated by one-sided Kolmogorov-Smirnov test. (b) GO analysis of miR-27 target genes upregulated by LNA-miR-27b.
(c) Occurrence of representative LNA-miR-27b-sensitive miR-27 targets in top 50 pathway maps from MetaCore Pathway Map analysis.
(d) Connectivity maps of gene sets obtained from GSEA for LNA-miR-27b-induced gene expression changes using C2CGP gene set collection
(FDR5 0.0001). Right and left nodes represent gene sets with enrichment in LNA-miR-27b samples and in LNA-NC samples, respectively.
Enrichments with and without TGF-b treatment are mapped to the node borders and inner node area, respectively. Gene sets without edges are
not shown. (e) Sequence alignment between miR-27b and its putative-binding site in mouse Elk1 3’UTR. (f) Suppression of Elk1 3’UTR by miR-
27b. Dual luciferase assay was performed in HEK293T cells using pri-miR-27b expression vector and wild-type or mutated Elk1 3’UTR reporter
vector (shown in panel (e)) according to previous reports (11�13).
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lecular function) terms enriched in miR-27 target genes downregu-
lated by TGF-b and upregulated by LNA-miR-27b, obtained from
MetaCore analysis. (b) Suppression of 3’UTRs of Nrp2, PlxnA2 and
PlxnD1 by miR-27b, analysed as in Figure 2f. Sequences of mutated
3’TR are shown in Supplementary Figure S3.
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