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Human NK (hNK) cells play a key role in mediating host immune responses against various
infectious diseases. For practical reasons, the majority of the data on hNK cells has been
generated using peripheral blood lymphocytes. In contrast, our knowledge of NK cells
in human tissues is limited, and not much is known about developmental pathways of
hNK cell subpopulations in vivo. Although research in mice has elucidated a number of
fundamental features of NK cell biology, mouse, and hNK cells significantly differ in their
subpopulations, functions, and receptor repertoires. Thus, there is a need for a model that
is more closely related to humans and yet allows experimental manipulations. Non-human
primate models offer numerous opportunities for the study of NK cells, including the study
of the role of NK cells after solid organ and stem cell transplantation, as well as in acute
viral infection. Macaque NK cells can be depleted in vivo or adoptively transferred in an
autologous system. All of these studies are either difficult or unethical to carry out in
humans. Here we highlight recent advances in rhesus NK cell research and their parallels in
humans. Using high-throughput transcriptional profiling, we demonstrate that the human
CD56bright and CD56dim NK cell subsets have phenotypically and functionally analogous
counterparts in rhesus macaques. Thus, the use of non-human primate models offers the
potential to substantially advance hNK cell research.
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INTRODUCTION—THE NEED FOR A BETTER MODEL TO
UNDERSTAND HUMAN NK CELLS
NK cells are lymphocytes that have evolved to provide a first line
of immune protection against viruses and malignancies before
adaptive immune responses emerge (Lanier, 2008). Increasing
evidence suggests that human NK (hNK) cell contributions to
the host defense against viruses are pivotal. People with genetic
NK cell deficiencies, though very rare, display severe primary
or recurring infections by members of the herpesvirus fam-
ily (Orange, 2006), suggesting that NK cells are crucial to host
defense against viral infections. In addition, epidemiological
data suggest a protective role for NK cells in hepatitis C virus
infection (Khakoo et al., 2004) and HIV infection (Martin
et al., 2002, 2007). Although these studies suggest that a bet-
ter knowledge of hNK cells has the potential to be translated
into novel, therapeutic approaches, research has been hindered
by the limitations of the human “model.” Most of our knowl-
edge on hNK cells has been derived from studies performed
on peripheral blood lymphocytes due to ease of accessibility.
However, NK cells in blood only represent one specialized subset
of the total hNK cell compartment. Furthermore, manipula-
tions of the human immune system are either highly challenging
and/or unethical to carry out and are thus largely limited to
vaccination.

The study of murine NK (mNK) cells has clearly elucidated a
number of fundamental principles, some of which seem to uni-
versally apply to all NK cells, such as the activation of NK cells by
absent or altered MHC class I molecule expression, also known
as the “missing self hypothesis” (Karre et al., 1986; Ljunggren and
Karre, 1990). Recent pioneering work suggests that mNK cells can
exhibit adaptive immune features, a paradigm-altering concept,
which has not yet been observed in hNK cells (Sun et al., 2009;
Paust et al., 2010). Whereas mice continue to serve as a power-
ful tool to study basic immunological questions, many research
advances made in murine models have not been translated into
medical practice (Davis, 2008). In part, this discrepancy may
be explained by the substantial differences between mouse and
human immunology, which is not surprising given the evolution-
ary distance of 65–75 million years that separate human and mice
development (Mestas and Hughes, 2004), as well as the challenges
of modeling human diseases in murine models.

There are a number of important differences between hNK
and mNK cells. In mice, cognate MHC class I molecules are
recognized by Ly49 protein family members, which contain
C-type lectin domains (Carlyle et al., 2008). In contrast, inter-
actions of hNK cells with classical MHC class I molecules rely
primarily on killer cell immunoglobulin-like receptors (KIRs).
Although Ly49 proteins and KIRs are functional homologs, they
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are different in almost every other aspect, including structural
properties, different binding sites of the MHC class I molecules,
and genetic differences (Natarajan et al., 2002; Pascal et al., 2006).
Furthermore, despite a remarkably high degree of conservation of
NKG2D in humans compared to mice, phylogenetic analyses sug-
gest that the ligands diversified independently from each other
(Raulet, 2003; Eagle and Trowsdale, 2007).

Importantly, there are also differences between hNK and mNK
cell subpopulations. In humans, two phenotypically and func-
tionally distinct peripheral blood NK cell subsets have been
described based on the expression of CD56 and CD16 (Caligiuri,
2008). The predominant population of CD16+CD56dim NK
cells is known for its cytolytic activity and limited cytokine
production (Lanier et al., 1986). In contrast, the less fre-
quent CD56bright NK cell subset does not express CD16 and
is traditionally considered to possess “regulatory” functions
(Cooper et al., 2001). Although the use of CD27 and Mac-1
(CD11b) allows mature mNK cells to be divided into distinct
subsets with some parallels to hNK cell subsets (Hayakawa
and Smyth, 2006), there remain significant differences between
mNK and hNK cell subpopulations, such as divergent expres-
sion of CD62L, CCR7, CX3CR1, and other phenotypic mark-
ers (Hayakawa et al., 2006). Also, to our knowledge it is
not known whether CD27low NK cells mediate antibody-
dependent cytotoxic activity as CD56dim NK cells do in
humans.

Here, we argue that non-human primate models, such as
rhesus macaques, represent a powerful animal model with sig-
nificant potential for the study of hNK cells for two important
reasons. First, rmNK cells exhibit far greater similarities to hNK
cells than mNK cells. Second, as an animal model, non-human
primates allow ready access to tissues and experimental manip-
ulations that are highly challenging or unethical to carry out in
humans.

DEFINING NK CELL SUBPOPULATIONS IN RHESUS
MACAQUES
Unlike hNK cells, virtually all rmNK cells in peripheral blood
express CD8α and most of them do not express CD56 (Carter
et al., 1999). In addition, not all peripheral rmNK cells express
NKp46 (Reeves et al., 2010) but virtually all of them express
NKG2A, which renders this receptor a highly reliable marker
for the definition of peripheral rmNK cells (Mavilio et al.,
2005a; Webster and Johnson, 2005). Thus, after gating on
CD3−CD8α+NKG2A+ cells, analysis of CD56 and CD16 allows
the definition of 3 distinct NK cell subsets in rhesus macaques:
CD56+, CD56−CD16− double-negative (DN), and CD16+ NK
cells (Webster and Johnson, 2005; Reeves et al., 2010). Rigorous
NK cell phenotyping revealed that the CD56+CD16− population
resembles CD56bright hNK cells, especially with regard to expres-
sion of lymph node homing markers, such as CCR7 and CD62L,
in addition to lower expression of granzyme B and perforin
(Webster and Johnson, 2005; Reeves et al., 2010). Conversely, the
CD16+ rmNK cell population corresponds well to the CD56dim

hNK cell subset, as evidenced by the increased expression of
granzyme B and perforin and absence of CCR7 and CD62L. A rel-
atively infrequent CD161+ DN hNK cell population has been

defined (Bennett et al., 1996) but it remains unclear whether this
population corresponds to the DN rmNK cell subset.

TRANSCRIPTIONAL ANALYSIS REVEALS A HIGH DEGREE OF
HOMOLOGY BETWEEN RHESUS AND hNK CELLS
A previous transcriptome analysis study revealed a number of dif-
ferentially expressed genes in CD56bright and CD56dim hNK cells
(Hanna et al., 2004). We therefore tested the notion that CD56+
and CD16+ rmNK cells correspond to CD56bright and CD56dim

hNK cells by performing an extensive transcriptional analysis of
rmNK cell subpopulations using a high-throughput microfluidics
PCR platform (Fluidigm BioMark) on highly purified CD56+,
CD16+, and DN rmNK cells. We either utilized rhesus-specific
ABI TaqMan assays, when available, (Life Technologies), or
custom-designed primers and probes based on rhesus mRNA
sequences. A complete list of real-time PCR assays employed in
our study is available upon request. All assays were subjected to a
rigorous selection process to ensure that targeted rhesus macaque
genes were orthologous to human genes.

Principal component analysis (PCA) revealed a segregation of
NK cells into groups corresponding to the CD56+, CD16+, and
DN rmNK cell subsets (Figure 1A). Similar results were observed
when we subjected the data to unsupervised hierarchical clus-
tering (data not shown). We analyzed the relative expression of
a number of effector proteins and found low expression of the
β-chemokines CCL3, CCL4, and CCL5 in CD56+ cells and high
expression of these genes in CD16+ cells (Figure 1B). Conversely,
transcripts for granzyme K (GZMK) and amphiregulin (AREG)
were more abundantly found in CD56+ cells. We found high
mRNA expression of the IL-7R in CD56+ cells but negligible
expression in CD16+ cells (Figure 1C) as expected based on
human microarray and flow cytometric data (Hanna et al., 2004;
Vosshenrich et al., 2006). In addition, we were able to identify
predicted expression patterns for the tumor necrosis factor recep-
tor superfamily member 1B (TNFRSF1B), integrin α5 (ITGA5),
CX3CR1, CD53, G protein-coupled receptor 183 (GPR183), and
cathepsin W (CTSW) (Figure 1C). Finally, the transcription fac-
tors TCF7, ETF1, GATA3, and TCF8 were highly expressed in
CD56+ compared to CD16+ rmNK cells, whereas the reverse
trend was observed for BATF (Figure 1D).

Notably, the DN NK cell subset represented an intermediate
population between CD56+ and CD16+ NK cells, both in the
PCA analysis as well as for most of the gene expression data pre-
sented in Figure 1. This is of particular interest since increasing
evidence suggests that CD56bright NK cells represent a less mature
developmental stage of NK differentiation, whereas CD56dim cells
exhibit a more differentiated effector profile (Romagnani et al.,
2007; Yu et al., 2010; Beziat et al., 2011). We observed similar
patterns in rmNK cells, as evidenced by expression of IL-7R and
cKIT (data not shown), and TCF7 in CD56+ cells, a pattern con-
sistent with a more primitive stage of differentiation. Conversely,
the expression of effector proteins such as CCL3, CCL4, and
CCL5 was predominantly found in CD16+ cells. In this context,
DN NK cells are likely to represent an intermediate stage of NK
cell differentiation between CD56+ and CD16+ cells. A num-
ber of potential candidates have been suggested as intermediate
NK cell populations in humans, including CD16+CD56bright cells
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FIGURE 1 | Transcriptional data suggest a high degree of homology

between hNK and rmNK cell subsets. (A) Principal component analysis
(PCA) representation of the CD56+ , DN, and CD16+ rmNK cell subsets. PC1

(horizontal) and PC2 (vertical) axes are shown. (B–D) Relative mRNA expression
of genes encoding for effector proteins (B), cell surface receptors and proteins
(C) and proteins associated with transcriptional control (D) are shown.

(Beziat et al., 2011), CCR7−CD56bright cells (Hong et al., 2012),
CD94brightCD56dim cells (Yu et al., 2010), and CD62L+CD56dim

cells (Juelke et al., 2010). These studies reflect the dynamic nature
of NK cell differentiation and emphasize the need for additional
experimental evidence to rigorously establish the ontogeny of
these subsets.

In summary, based on the available phenotypic and
transcriptional profiling data, we suggest that the rmNK CD56+
and CD16+ populations bear a striking homology to their hNK
CD56bright and CD56dim counterparts (Figure 2). Moreover, the
rhesus DN NK cell population displays a distinctive pattern of
gene expression that strongly suggests it represents an interme-
diate stage of differentiation between CD56+ and CD16+ NK
cells.

HUMAN AND NON-HUMAN PRIMATE NK CELLS IN HIV AND
SIV INFECTION
The discovery of simian immunodeficiency virus (SIV) in rhesus
macaques with an acquired and transmissible immunodeficiency
(Daniel et al., 1985) generated considerable interest in non-
human primate species as disease models for HIV. Non-human
primates have since served as an invaluable resource to study

the pathogenesis of lentiviral infections and to test vaccine and
treatment strategies against HIV (Van Rompay, 2012).

Multiple phenotypic and functional changes within the NK
cell compartment have been documented in HIV infection (Fauci
et al., 2005; Iannello et al., 2008) and many similar alterations
have been identified in SIV infection (Bostik et al., 2010; Reeves
et al., 2010). One of the hallmarks of HIV and pathogenic SIV
infection is systemic immune activation of the host (Douek
et al., 2009). This is reflected by the activation states of virtu-
ally all immune cells, including NK cells, as shown by increased
expression of activation markers and functional hyperactivity
as detected by increased frequencies of NK cells producing
IFN-γ, TNF-α and enhanced degranulation and killing activity
(Giavedoni et al., 2000; Alter et al., 2004; Fogli et al., 2004). Acute
HIV and SIV infection were found to be associated with an initial
expansion followed by a contraction of NK cells (Giavedoni et al.,
2000; Alter et al., 2007). Although NK cells were generally shown
to proliferate and die more rapidly than T cells in humans (Lutz
et al., 2011), their turnover rates are further enhanced in chronic
HIV infection (Kottilil et al., 2007). Increased NK cell turnover
was also detected in SIV-infected rhesus macaques in a study in
which NK cells were defined as CD3−CD8+CD16+ cells (De Boer

www.frontiersin.org February 2013 | Volume 4 | Article 32 | 3

http://www.frontiersin.org
http://www.frontiersin.org/NK_Cell_Biology/archive


Hong et al. NK cells in non-human primates

CCR7+/-

CD16

CCR7

IL7R

Increasing Differentiation

chemokines

CD56 CX3CR1

CD94/NKG2A

cKIT
cKIT+/-

CD62L CD62L+/- CX3CR1+/-

GPR183

CD16

CCR7

IL7R
CD56bright

CX3CR1

CD94/NKG2A

cKIT

CD62L

GPR183

CD56dim

KIR

granzyme K

CD94/NKG2A+/-

KIR+/-

KIR+/-

CD56bright CD56dim

CD56+ CD16+DN

Human

Macaque

KIR

granzyme A/B 
perforin

KIR
CD94/NKG2A CD94/NKG2A

A

B

FIGURE 2 | Comparison of rmNK and hNK cell subpopulations. Markers
characterizing the distinct NK cell subpopulations are illustrated with an
emphasis on molecules either indicating a more primitive stage of

hematopoietic differentiation or an effector cell profile. (A) Human CD56bright

and CD56dim NK cells are shown. (B) Rhesus CD56+, DN, and CD16+ NK cell
subsets are shown.

et al., 2003), although this gating strategy excludes the CD56+ and
DN rmNK cell subpopulations, and may have limited the authors’
ability to accurately assess the effects of SIV infection on the full
repertoire of rmNK cells.

Although NK cells from chronically HIV- or SIV-infected
donors display a hyper-activated state, their capacity to respond to
PMA and ionomycin is diminished (Azzoni et al., 2002; Labonte
et al., 2006). Furthermore, studies have demonstrated a dra-
matic skewing of NK cell subpopulations in peripheral blood
during SIV and HIV infection. HIV infection was associated
with a decrease of CD56dim NK cells and an increase of the
CD56−CD16+ NK cell subset (Alter et al., 2005; Mavilio et al.,
2005b; Hong et al., 2010a,b), whereas SIV-infected macaques dis-
played an expansion of DN and CD16+ NK cells (Reeves et al.,
2010). Interestingly, both HIV and SIV infection induced a loss of
CCR7-expressing CD56bright and CD56+ cells, respectively, with-
out affecting the frequencies of cells expressing CD62L (Reeves
et al., 2010; Hong et al., 2012). This perturbation was further-
more accompanied by an increased expression of granzyme B
and perforin and elevated degranulation in response to MHC
class I-devoid tumor cells (Mantegani et al., 2009). Importantly,
there seems to be an inverse relationship between the severity
of immune activation and/or viral load and the impact of viral
infection on NK cells, as evidenced in natural host SIV infec-
tion in sooty mangabeys (Pereira et al., 2008) or non-viremic
HIV-patients (Vieillard et al., 2010). Taken together, these studies

provide solid evidence for SIV-induced perturbations in rmNK
cells similar to what has been described in chronic HIV infection.

NON-HUMAN PRIMATE STUDIES SHED LIGHT ON NK CELLS
IN TISSUES
Whereas most hNK studies have focused on NK cell subsets from
peripheral blood, much less is known about NK cells in tissues.
The complexity and heterogeneity of hNK cells residing in vari-
ous organs, such as uterus, brain, spleen, liver, pancreas, and skin,
as well as various mucosal tissues, including the gut, is an area
of research that is garnering increasing interest (Shi et al., 2011).
For obvious reasons, research is hindered by the significant limi-
tations in obtaining human tissue samples. Here, we highlight one
example of how studies on tissue-residing NK cells in non-human
primates may lead to a better understanding of human diseases.

A novel IL-22- and IL-17-producing NKp44+ hNK cell sub-
set was recently discovered in human and mouse mucosal-
associated lymphoid tissues (Cella et al., 2009; Crellin et al.,
2010). Unlike conventional NK cells, these lymphocytes do
not display cytolytic activity but instead seem to be cru-
cial for maintaining the integrity of epithelial tissues. Since
HIV and SIV are predominantly transmitted and replicate
in gut-associated lymphoid tissues (GALT), we and oth-
ers sought to explore the role of IL-22-producing NK cells
in SIV infection. SIV infection was associated with a sub-
stantial loss of IL-17- and IL-22-producing lymphocytes,
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including NKp44+ NK cells (Reeves et al., 2011; Klatt et al., 2012;
Xu et al., 2012). Remarkably, the remaining NKp44+ NK cells
displayed an altered functional profile with increasing resem-
blance to conventional NK cells. These alterations were linked
to gut inflammation and the up-regulation of indoleamine 2,3-
dioxygenase 1 (Reeves et al., 2011). Given the importance of IL-17
and IL-22 for the maintenance of gut integrity and enterocyte
homeostasis, these studies suggest a mechanistic explanation of
how HIV and SIV infection damage the epithelium and subse-
quently drive disease progression.

A recent study described an expansion of intraepithelial and
lamina propria NKp46+ NK cell subsets in treated HIV-patients
with incomplete or suboptimal CD4+ T cell recovery (Sips et al.,
2012). This finding suggests that gut mucosa-residing NKp46+
NK cells could play a compensatory role in patients with ongoing
compromised immunity. However, to our knowledge, the impact
of HIV infection on IL-22-producing NKp44+ hNK cells has not
yet been addressed.

MANIPULATIONS OF THE NON-HUMAN PRIMATE IMMUNE
SYSTEM
In addition to improved access to tissue samples, a number of
experimental procedures that have the potential to significantly
advance our understanding of NK cells can be carried out in non-
human primates. For instance, the in vivo effects of cytokines on
lymphocyte homeostasis and disease can be addressed in rhe-
sus macaques (Kuramoto et al., 2004; Waldmann et al., 2011).
Administration of IL-15 resulted in an almost 3-fold increase of
circulating NK cells in addition to increasing the number of effec-
tor memory CD8+ T cells (Mueller et al., 2005). Rhesus and
cynomolgus macaque models have been a critical tool for the
study of immune responses in the setting of transplantation (Kean
et al., 2012). NK cells can be involved in both graft rejection and
induction of tolerance (Kroemer et al., 2008). Efforts to therapeu-
tically modulate NK cells to facilitate tolerance against allogeneic
tissue grafts are likely to require further studies in animal models
and, in particular, in non-human primates.

To evaluate the antiviral contributions of NK cells in control of
SIV infection, mouse monoclonal antibodies against CD16 have
been administered to rhesus macaques (Choi et al., 2008). There
are several caveats to this approach, one of them being that the
majority of tissue NK cells, in contrast to NK cells in peripheral
blood, do not express CD16 (Reeves et al., 2010). Nonetheless,
this study and other lymphocyte depletion studies (Schmitz et al.,
1999), provide ample evidence that the depletion of selected

lymphocyte populations, including NK cells, is possible and can
thus be utilized to study their role in an in vivo setting.

Furthermore, non-human primates could also be used in
autologous transfer studies using fluorescently labeled cells and
ex vivo expanded cells. This approach could generate novel
insights into NK cell turnover, differentiation, migratory behav-
ior, in vivo killing of target cells, and other areas. Moreover,
induced pluripotent stem cells have been used to generate hNK
cells with antiviral activity against HIV (Knorr and Kaufman,
2010). NK cells derived from induced rhesus pluripotent stem
cells (Liu et al., 2008) could be used to monitor in vivo NK
cell development and differentiation. These and many other
experimental manipulations of the immune system in non-
human primates open a number of new avenues to address basic
immunological questions and highlight the potential of these
animal models.

CONCLUSION
Here we present two arguments as to why NK cell research in
non-human primate models has the potential to yield significant
insights into hNK biology. First, as a consequence of the phylo-
genetic relatedness of humans and non-human primates, there
are many shared properties between hNK and non-human pri-
mate NK cells. Second, as an animal model, non-human primates
offer access to tissues and allow a variety of manipulations, which
the “human model” cannot offer due to ethical constraints. The
work in non-human primates is challenging, as animals and their
housing are relatively cost-intensive and require dedicated facili-
ties and staff. Nonetheless, we believe that their significance as a
disease model and the potential clinical applicability of immuno-
logical findings derived from these animals continue to make
research in non-human primates highly rewarding.

Non-human primate models not only bear relevance for
humans as outstanding disease models but also as a valuable
resource to address basic immunological questions. The exciting
answers to these questions and the lessons non-human primates
can teach us certainly deserve a greater consideration by the
scientific community.
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