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Abstract: Eye drops are the most common and convenient route of topical administration and the
first choice of treatment for many ocular diseases. However, the ocular bioavailability of traditional
eye drops (i.e., solutions, suspensions, and ointments) is very low because of ophthalmic physiology
and barriers, which greatly limits their therapeutic effect. Over the past few decades, many novel eye
drop delivery systems, such as prodrugs, cyclodextrins, in situ gels, and nanoparticles, have been
developed to improve ophthalmic bioavailability. These novel eye drop delivery systems have good
biocompatibility, adhesion, and propermeation properties and have shown superior performance
and efficacy over traditional eye drops. Therefore, the purpose of this review was to systematically
present the research progress on novel eye drop delivery systems and provide a reference for the
development of dosage form, clinical application, and commercial transformation of eye drops.

Keywords: topical administration; traditional eye drops; novel eye drop delivery systems; anterior
segment; posterior segment

1. Introduction

The eye is a delicate and complicated organ with a unique anatomical and physi-
ological structure that can be divided into two main parts: the anterior and posterior
segments. The anterior segment includes the cornea, iris, ciliary body, pupil, and lens,
while the posterior segment consists of the vitreous humor, sclera, choroid, and retina
(Figure 1) [1]. Common diseases occurring in the anterior segment include keratitis,
dry eye, cataract, glaucoma, inflammatory diseases, and infection diseases [2]. Diseases
affecting the posterior segment include age-related macular degeneration (AMD) [3],
diabetic retinopathy macular edema (DME), proliferative vitreoretinopathy (PVR), and
cytomegalovirus (CMV) [4,5]. In clinical practice, systemic administration, vitreous
injection, periocular injection, and topical administration routes (Figure 1) are commonly
used to treat ocular diseases [6]. Systemic administration is often used to treat the an-
terior and posterior segments diseases of the eye. However, the ocular bioavailability
of this route is extremely low (<2%) because of the presence of blood–eye barriers [7].
In addition, this route is frequently associated with systemic toxicity and serious side
effects due to large doses. Vitreous injection and periocular injection are commonly
applied to treat diseases of the posterior segment of the eye. In these methods, the drug
is delivered directly around the lesion, allowing higher concentrations to be maintained
and avoiding systemic exposure [8]. However, as an invasive procedure, vitreous injec-
tion may cause discomfort and eye pain. In addition, the eye is easily affected by side
effects, such as vitreous detachment, retinal hemorrhagic inflammation, and increased
intraocular pressure in the case of repeated injection [9]. Although periocular injection is
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a less invasive method than vitreous injection, the drug still needs to overcome some bi-
ological barriers (conjunctiva, sclera, and choroid) to reach the site of action [10]. Topical
administration is commonly used to treat diseases of the anterior segment. Compared
with other routes of administration, topical administration is the least invasive method
and has the highest patient compliance [11]. Moreover, topically administered drugs
have the advantages of being easy to manufacture and having low cost and low side
effects, which make topical administration the most desirable clinical application route.
Drugs administered through the topical route are usually formulated into eye drops,
which account for 90% of the commercialized products in the global ophthalmic drug
market, with ophthalmic solutions, suspensions, and ointments accounting for 62.4%,
8.7%, and 17.4%, respectively [12]. Ophthalmic solutions tend to drain rapidly from the
conjunctival sac, which allows little time for the drug to enter the ocular tissues. The
dissolution characteristics of the drug in the suspension are poor, as the volume size of
the drops is generally in the range of 25–50 µL, which prevents the drug from forming
a high concentration gradient in the ocular tissues [13]. Ointments are not commonly
used to treat ocular diseases, because the oil components can affect vision for some time
after application. The absorption of these traditional eye drops on the outer surface of
the eye is limited by different barriers such as static (corneal and blood–aqueous barrier
(BAB)), dynamic (tear drainage, conjunctival blood, and lymphatic flow), and metabolic
barriers [11], making the bioavailability of the drug after topical administration very low
(<5% of the administered dose) [14] and difficult to be delivered to the posterior segment
of the eye.

In recent years, a number of advanced drug delivery systems have been devel-
oped to overcome the limitations of traditional eye drops. These novel drug delivery
systems have shown promising results in in vivo and in vitro ocular disease models
as well as in clinical practice by increasing the retention time of drugs in front of the
cornea, promoting drug penetration, or facilitating drug delivery to the eye through
the corneal/conjunctival–scleral pathway. Research on novel drug delivery systems
has now been extensively reported. For example, Jumelle et al. reviewed the progress
and limitations of in situ gels and nanoparticle drops [15]. Yellepeddi and Palakurthi
combed through the progress of in situ gels and nanoparticle drops [16]. Alvarez-
Trabado et al. summarized the progress of lipid nanoparticles for topical drug delivery
design [17]. Clolkar et al. summarized new strategies for ocular drug delivery in the
anterior segment [18]. Madni et al. reviewed noninvasive strategies for the posterior
segment of the eye [19]. In contrast to these studies, we do not only present a compre-
hensive overview of the results achieved in the anterior and posterior segments of the
eye following the administration of prodrug, cyclodextrin, in situ gel, and nanoparticle
delivery systems in the form of eye drops. More importantly, we also investigate the
high-ocular-bioavailability eye drops based on these novel delivery systems, such as
prodrug-based self-assembled nanoparticle eye drops, cyclodextrin-based prodrug eye
drops, highly adherent eye drops, nanoparticle-based cationic nanoparticle eye drops,
surface-modified nanoparticle eye drops, adherent nanoparticle eye drops, and ligand-
targeted nanoparticle eye drops. The study of novel eye drop delivery systems in the
anterior and posterior segments of the eye may provide some basis for the selection of
dosage forms, clinical application, and commercial translation of eye drops.
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Routes of ocular administration include (1) topical administration; (2) vitreous injection; (3) perioc-
ular injection; and (4) systemic administration. The main barriers to ocular administration consist of 
(A) the tear film barrier: composed of lipid, aqueous, and mucin layers. Acts as a defensive barrier 
against the entry of foreign objects into the cornea and conjunctiva; (B) the corneal barrier: consists 
mainly of endothelium containing tightly connected epithelial cells, water-soluble stroma, and a 
single layer of endothelial cells. Acts as a barrier to prevent the absorption of drugs from the tear 
fluid into the anterior chamber after topical administration; (C) the conjunctival barrier: a mucous 
membrane consisting of the conjunctival epithelium and underlying vascular connective tissue. Ab-
sorption area is larger than that of the cornea, and drugs are easily absorbed into the body circula-
tion through capillaries; (D) the blood–aqueous barrier (BAB): located in the anterior segment of the 
eye. Formed by the iris capillary endothelium and the nonpigmented epithelium of the ciliary body, 
both of which contain tight junctions. Prevents the passage of drugs from the blood (systemic) into 
the aqueous humor; and (E) the blood–retinal barrier (BRB): located in the posterior segment of the 
eye. Formed by the retinal pigment epithelium (outer BRB) and the endothelial membrane of the 
retinal blood vessels (inner BRB), both of which contain tight junctions. The tight junctions restrict 
the entry of the drugs from the blood (systemic) into the retina/aqueous humor. 
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conjunctival sac is approximately 30 μL. After topical application of eye drops (25–50 μL), 
only about 10 μL of the drug could remain because of the blink response and drainage 
from the nasolacrimal duct [20]. The drug that remains in front of the cornea mixes with 
the tear film secreted by the lacrimal glands and cupped cells. An important obstacle fac-
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imately 7–9 μL, a thickness of approximately 7–10 μm, and a turnover rate between 0.5 
and 2.2 μL/min [14]. The sudden increase in tear film volume leads to an increase in tear 
film turnover rate and rapid clearance of drug molecules through tear drainage within 
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Figure 1. Structures of the eye, routes of drug delivery to the eye, and ocular barriers to drug delivery.
The structures of the eye from the outside to the inside are the conjunctiva, cornea, aqueous humor,
iris, ciliary body, lens, suspensory ligament, vitreous humor, sclera, choroid, and retina. Routes of
ocular administration include (1) topical administration; (2) vitreous injection; (3) periocular injection;
and (4) systemic administration. The main barriers to ocular administration consist of (A) the tear
film barrier: composed of lipid, aqueous, and mucin layers. Acts as a defensive barrier against the
entry of foreign objects into the cornea and conjunctiva; (B) the corneal barrier: consists mainly of
endothelium containing tightly connected epithelial cells, water-soluble stroma, and a single layer
of endothelial cells. Acts as a barrier to prevent the absorption of drugs from the tear fluid into the
anterior chamber after topical administration; (C) the conjunctival barrier: a mucous membrane
consisting of the conjunctival epithelium and underlying vascular connective tissue. Absorption area
is larger than that of the cornea, and drugs are easily absorbed into the body circulation through
capillaries; (D) the blood–aqueous barrier (BAB): located in the anterior segment of the eye. Formed
by the iris capillary endothelium and the nonpigmented epithelium of the ciliary body, both of which
contain tight junctions. Prevents the passage of drugs from the blood (systemic) into the aqueous
humor; and (E) the blood–retinal barrier (BRB): located in the posterior segment of the eye. Formed
by the retinal pigment epithelium (outer BRB) and the endothelial membrane of the retinal blood
vessels (inner BRB), both of which contain tight junctions. The tight junctions restrict the entry of the
drugs from the blood (systemic) into the retina/aqueous humor.

2. Physiological and Structural Barriers of the Eye

When the drug passes through the tear film and reaches its target site, it may en-
counter a variety of dynamic or static barriers present in tissues, such as the cornea barrier,
conjunctiva barrier, blood–aqueous barrier, and blood–retina barrier (BRB) (Figure 1).

2.1. Tear Film Barrier

The tear film is the first obstacle faced for topically administered drugs. The precorneal
volume is limited, and the maximum volume of eye drops that can be held in the conjunc-
tival sac is approximately 30 µL. After topical application of eye drops (25–50 µL), only
about 10 µL of the drug could remain because of the blink response and drainage from the
nasolacrimal duct [20]. The drug that remains in front of the cornea mixes with the tear film
secreted by the lacrimal glands and cupped cells. An important obstacle facing the drug at
this point is tear turnover. Normally, the tear film has a volume of approximately 7–9 µL, a
thickness of approximately 7–10 µm, and a turnover rate between 0.5 and 2.2 µL/min [14].
The sudden increase in tear film volume leads to an increase in tear film turnover rate and
rapid clearance of drug molecules through tear drainage within minutes. In addition, the
tear film consists of an external lipid layer, an intermediate aqueous layer, and an internal
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mucin layer [21]. The lipid and aqueous layers restrict the absorption of hydrophilic and
hydrophobic drugs, respectively. The negatively charged mucin layer in the inner tear layer
prevents negatively charged drugs or carriers from entering the cornea.

2.2. Corneal Barrier

The cornea is the second ocular barrier limiting the penetration of exogenous sub-
stances into the eye. It consists of five collagenous layers: the epithelium, Bowman’s
membrane, the stroma, Descemet’s membrane, and the endothelium [22]. Bowman’s mem-
brane and Descemet’s membranes are noncellular structural elastic layers composed of
collagen and glycoprotein. The layers that form substantial barriers to drug penetration are
the epithelium, stroma, and endothelium. The superficial corneal epithelium makes up six
to eight layers of cells with a total thickness of approximately 40–50 µm. The epithelium
cell becomes flattened during maturation and eventually forms tight intercellular junctions,
which allow the permeation of hydrophilic drugs at a rate of only 10−7–10−5 cms−1 [14].
The hydrophilic matrix next to the corneal epithelium (approximately 80% water content)
has a thickness of approximately 450–500 µm, representing 90% of the corneal thickness,
and in turn imposes significant limitations on lipophilic drugs due to solubility and par-
tition coefficients [23]. Likewise, tight junctions exist on the endothelium. However, the
endothelium is leakier than the epithelium and offers less resistance to paracellular drug
transport because of its small cell thickness (13 µm). Overall, the specific sandwich struc-
ture of corneal tissue makes it a unique barrier for most lipophilic and hydrophilic drugs.
In addition, efflux pumps such as P-glycoprotein (P-gp), multidrug resistance-associated
protein (MRP), and breast cancer resistance protein (BCRP) [24] expressed on epithelial and
endothelial cells are important barriers to drug absorption.

2.3. Conjunctival Barrier

The conjunctiva is a thin, translucent, vascularized mucous membrane that can be
divided into three parts: the bulbar conjunctiva, the conjunctival vault, and the lid con-
junctiva. It is made up of three layers: the outer epithelium, the lamina propria, and
the submucosa. The conjunctiva, unlike the cornea, is considered an important route for
noncorneal drug delivery (e.g., macromolecular nanoparticles) because of its rich vascular
system, cupped cells, and potential for transdifferentiation. The surface area of the conjunc-
tiva is 17 times greater than that of the cornea [25], which allows higher uptake to occur
in this tissue. The conjunctival epithelial cell gap is wider than the corneal epithelial cell
gap, so hydrophilic macromolecules are generally more permeable in the conjunctiva than
in the cornea. However, because of the presence of conjunctival capillaries and lymph,
drug absorption through the conjunctiva is prone to a significant loss in the body’s circu-
lation, thereby reducing overall ocular bioavailability [26]. In addition, the conjunctival
epithelium expresses a variety of transporters, such as neutral and cationic amino acid
transporters (ATB0,+), nucleoside transporters (CNT2), peptide transporters (PepT1), P-gp
and MRP [27–29], which also have an impact on drug absorption.

2.4. Blood–Aqueous Barrier

The BAB is a barrier located anteriorly in the eye, formed by the vascular endothelium
of the iris and ciliary muscle and the nonpigmented epithelium at the back of the iris [30].
The barrier is hypopermeable because of the tight junctions between the two cell layers. The
BAB not only limits the passage of drugs from the blood to or from the atrial aqueous but
further restricts the concentration and retention time of drugs in the atrial aqueous because
of the constant drainage of the atrial aqueous (turnover rate of 2.0–3.0 mL/min) [31].

2.5. Blood–Retinal Barrier

The BRB is a barrier located in the posterior segment of the eye that consists of two
types of cells: retinal capillary endothelial cells (RPCs, internal BRB) and retinal pigment
epithelial cells (RPEs, external BRB). Both RPCs and PREs are considered to be important
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barriers to retinal drug transport because of the presence of tight junctions therein [32].
In addition, the pump proteins and internal trapped vesicles (e.g., Na+/K+-ATP, P-gp,
MRP1) [33] expressed in RPE cells allow only specific active drugs to be exchanged between
the choroid and the retina [34].

3. Drug Absorption Routes of Eye Drops

After administration of eye drops, the drug reaches the intraocular tissues mainly
via the corneal/conjunctival–scleral route (Figure 2) [35]. These absorption routes are
governed by the physicochemical properties of the drug, the form of administration, and
the physiological structure and barriers of the eye [36,37]. The corneal route is the primary
route of topical drug delivery. When the drug is dropped onto the surface of the eye, it
reaches the corneal epithelium via the cellular bypass (hydrophilic drug) and transcellular
(lipophilic drug) routes and then reaches the anterior chamber. Once the drug crosses the
cornea to reach the anterior chamber, it is distributed to the surrounding tissues (lens, iris,
ciliary body). At this point, there are two main pathways for the drug to reach the posterior
segment of the eye: (1) direct diffusion to the tissues of the vitreous, retina, choroid, and
sclera via the transvitreal route and (2) drainage to the posterior segment of the eye via the
uveal–scleral pathway [38].
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segment of the eye. Conjunctival–scleral route marked in red. Uveal–scleral route marked in blue.
Transvitreal route marked in rose. Orange marks the systemic absorption route.

The conjunctival–scleral route means that after absorption through the conjunctiva, the
drug can cross the sclera into the choroid, retina, or optic nerve tissues [39]. Because of the
presence of a rich capillary network and lymph nodes in the conjunctiva, transconjunctival
absorption readily allows the drug to enter the systemic circulation, thereby reducing
the concentration in the posterior tissues of the eye. Nevertheless, because of the large
absorption surface area and the relatively wide cellular gap in the conjunctiva, some
compounds with large molecular weights or poor corneal permeability can still reach
the intraocular tissues through the conjunctiva and sclera by passive diffusion or active
transport routes.

In addition, a very small amount of drugs can reach the tissues of the anterior or
posterior segments of the eye by systemic absorption via the nasolacrimal duct, conjunctival
vessels, and lymphatic vessels [40].
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4. Novel Eye Drop Delivery Systems

Because of the unique physiological structure and barrier of the eye, the ocular bioavail-
ability of traditional eye drops is very poor. Novel eye drop delivery systems such as
prodrugs, cyclodextrins, in situ gels, and nanoparticles have been developed to improve
the bioavailability of drugs in the eye. These novel eye drop delivery systems have shown
better clinical results than conventional eye drops in the treatment of both anterior and
posterior segments of the eye.

4.1. Prodrug Eye Drop Delivery Systems

Prodrugs are inactive compounds obtained by chemical modification of the active
compounds through esters, carbamates, phosphates, and oximes, which can be converted
to their active compounds in vivo by chemical or enzymatic metabolic processes [41]. Pro-
drugs are endowed with new physicochemical and biochemical properties from the active
drug. The most important advantages of using prodrug designs are enhancing transmem-
brane permeation of the drug in ocular tissues and improving ocular bioavailability with
minimal disruption of the ocular barrier [42].

The concept of prodrugs was introduced into the field of ophthalmology in 1976 by
Hussain et al. [43] to enhance the uptake of the highly polar molecule epinephrine through
lipid membranes. Since then, various prodrugs have been designed to improve the physico-
chemical properties of therapeutic drugs. Because of the high expression of esterases in the
corneal epithelium, the corneal drug concentration of the optimal ester prodrug, dipivalyl
epinephrine (bipivalin), was 17 times higher than that of epinephrine [44]. Brinzolamide, a
commercial glaucoma treatment drug, when prepared as brinzolamide prodrug eye drops,
penetrated corneal tissue more easily than commercial brinzolamide eye drops and were
more effective in reducing intraocular pressure (IOP). More importantly, the prodrug eye
drops were not toxic to the corneal epithelium after 1 week of repeated administration [45].
In addition, Babizhayev found that N-acetylcarnitine (NAC) prodrug eye drops could
deliver more of the active ingredient L-carnitine to the aqueous humor and lens tissues [46].

Prodrugs also enable more of the drug to be delivered to the posterior segment
of the eye. For example, not only did resolvyx (RX-10045) micelle have sufficient ther-
apeutic concentrations in the anterior segment, but its active metabolite resolving E1
analogue (RX-10008) was visible in the retinal/choroidal tissue after topical administra-
tion [47]. When supplied in the form of eye drops, 4-chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-
1-ylethoxy)phenyl]amino}-1,2,4-benzotriazin-7-yl)phenyl benzoate, a prodrug with thermal
stability, was readily converted to 4-chloro-3-{5-methyl-3-[4-(2-pyrrolidin-1-yl-ethoxy)pheny
-lamino]benzo[1,2,4]triazin-7-yl}phenol, an active compound that could inhibit the VEGFr2
and Src family (Src and YES) kinase signaling pathways for the treatment of AMD [48].

Amphoteric prodrugs can spontaneously self-assemble into nanoparticles with in-
creased stability, solubility, and ocular bioavailability [49]. Hu et al. prepared a self-
assembled nanoparticle using the prodrug paclitaxel–peptide amphiphilic compound
(PS-GA-RGD). The release results showed that active paclitaxel (PS) was continuously
released from PS-GA-RGD nanoparticles within 48 h. In an in vivo eye stimulation test,
the PS-GA-RGD nanoparticle was well tolerated in the eye after a single instillation. More
importantly, the efficacy of the prodrug nanoparticles was better than that of PS in the
treatment of dry eye [50]. In addition, Stella et al. obtained a lipid drug conjugate (LDC),
4′-trisnorsqualenoylacyclovir (SQACV), by covalently linking the 4′-hydroxyl group of
acyclovir (ACV) to the isoprene chain of squalene, which was subsequently formulated into
self-assembled nanoparticles using a nanoprecipitation method. The pharmacokinetic char-
acterization in rabbit tear fluid and aqueous humor showed that the SQACV self-assembled
nanoparticles increased the ACV content in rabbit aqueous humor compared with the free
ACV eye drops [51]. Table 1 [45,46,52,53] lists prodrug eye drop delivery systems in the
application of the anterior and posterior segments of the eye.
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Table 1. Prodrug eye drop delivery systems in the application of the anterior and posterior segments
of the eye.

Model Drugs Prodrugs Indications Main Findings Ref.
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Notes: IOP, intraocular pressure; LogD, lipid–water distribution coefficient; DMAP-GFX, dimethylaminopropyl-
gatifloxacin; OCT, organic cation transporter; E2, 17β-estradiol; DHED, 10β,17β-dihydroxyestra-1,4-dine-3-one;
TML, trimethyl lock; NAC, N-acetylcarnosine; GFX, gatifloxacin; DMAP-GFX, dimethylaminopropylgatifloxacin;
CP-GFX, carboxypropylgatifloxacin; APM-GFX, aminopropyl(2-methyl)-gatifloxacin. The red sites indicate the
chemically modified functional groups of the active compounds.

4.2. Cyclodextrin (CD) Eye Drop Delivery Systems

Cyclodextrins (CDs) are a class of natural cyclic oligosaccharides. The most common
natural CDs consist of 6 (α-CD), 7 (β-CD), and 8 (γ-CD) 1,4-linked α-D-glucopyranose
units (Figure 3). The lipophilic inner cavity of CDs is surrounded by a hydrophilic outer
surface, which predetermines its ease of encapsulation of water-insoluble chemicals by
noncovalent conjugation (electrostatic interactions, van der Waals contributions, hydrogen
bonding, and charge transfer interactions). CDs allow enhancing drug permeability and
biocompatibility and reducing irritation and are widely used in ophthalmic formulations.
In addition, the special chemical structure of CDs can improve the stability, dispersion,
and dissolution properties of certain drugs and significantly enhance their physical and
chemical activity [54].
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CDs have been increasingly studied in ocular drug delivery systems in recent decades.
To improve the solubility and ocular bioavailability of the active imidazole antifungal
drug econazole nitrate (EC), EC-β-CD and EC hydroxypropyl-β-cyclodextrin (EC-HP-
β-CD) inclusion complexes were prepared using the coprecipitation and freeze-drying
techniques, respectively. The two inclusion complexes increased the solubility of EC by
approximately threefold and fourfold, respectively. Furthermore, in vivo experiments
showed that eye drops containing EC-CD inclusion complexes were more bioavailable than
EC eye drops [55].

CD eye drop delivery systems also make it possible to deliver the drug to the posterior
part of the eye. Loftsson et al. found that the concentration of dexamethasone (DEX) in aque-
ous humor was 66 ± 20 ng/g after 2 h of topical DEX ophthalmic solution. For 1.3% w/v
DEX/HM-β-CD, the value was determined to be 320 ± 230 ng/g [56]. After a single appli-
cation of 1.5% w/v DEX/γ-CD for 2 h, the concentration of DEX was 236 ± 67 ng/g in the
aqueous humor, 29 ± 16 ng/g in the vitreous humor, and 57 ± 22 ng/g in the retina [57].
After 2 h of administration of 0.5 and 1.5% w/v DEX/randomly methylated β-cyclodextrin
(RM-β-CD) eye drops, the aqueous humor DEX levels were 1190± 110 and 1670 ± 630 ng/g,
respectively. Levels in the retina were 33 ± 7 and 66 ± 49 ng/g, and those in the optic
nerve were 41 ± 12 and 130 ± 50 ng/g, respectively [56]. The above data suggest that
γ-CD, hydrophilic HM-β-CD, and lipophilic RM-β-CD can enhance the topical transport
of DEX in the eye. Furthermore, the reason why lipophilic RM-β-CD resulted in higher
DEX concentrations than HM-β-CD and γ-CD may be the fact that lipophilic RM-β-CD not
only enhances drug delivery to the lipophilic cornea and sclera through the aqueous tear
film but reduces the tear film’s barrier function by penetrating the membrane.

CDs can improve the solubility and stability of insoluble prodrugs and reduce their
irritation, making them more suitable for ocular administration. For example, latanoprost is
a practically insoluble prostaglandin F2α analog considered a first-line agent for glaucoma
treatment. Its poor aqueous solubility makes it challenging to formulate into eye drops.
Hu et al. found that propylaminoβCD could effectively form a complex with latanoprost,
and the complex formed not only protected the ester bond of latanoprost but promoted
the dissolution of latanoprost. Furthermore, in vivo experiments demonstrated that the
latanoprost propylaminoβCD formulation led to lower ocular irritation than the commercial
latanoprost formulation used as a reference. The latanoprost propylaminoβCD formulation
was demonstrated to successfully address the main stability, solubility, and tolerance
limitations of topical ocular latanoprost therapy for glaucoma [58].

The low viscosity of CDs makes them easy to remove from the anterior cornea, so the
addition of cellulose derivatives to CDs solutions or in combination with in situ gels is an
effective strategy to improve the ocular bioavailability of the drug [59,60]. Ref. [61] showed
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that fluconazole HP-β-CD inclusion complexes hydrogels not only had good bioadhesive
properties but were effective in controlling the release of fluconazole. Ketoconazole (KTZ)
complexes with sulfobutyl ether-β-cyclodextrin (SBE-β-CD) prepared by Chaudhari et al.
showed a fivefold increase in solubility of KTZ compared with KTZ solution. After loading
the KTZ-SBE-β-CD complex into in situ gels, KTZ exhibited more sustained release properties
due to the diffusion of the gel, and the corneal retention and penetration of KTZ were
significantly increased because of the adhesive properties of the gel [62]. Table 2 [55–57,63–67]
lists cyclodextrin eye drop delivery systems in the application of the anterior and posterior
segments of the eye.

Table 2. Cyclodextrin eye drop delivery systems in the application of the anterior and posterior
segments of the eye.

Model Drugs Indications Main Findings Ref.

Anterior segment

Econazole nitrate Eye infections
β-CD and HP-β-CD increased the
solubility of EC by approximately

threefold and fourfold, respectively.
[55]

Fluconazole Eye infections The retention time in front of the cornea
was prolonged. [56]

Latanoprost Glaucoma
Stability and ocular bioavailability were

higher than those of commercial
eye drops.

[63]

Tacrolimus Dry eye Solubility was increased by
approximately 42-fold. [64]

Diclofenac sodium Eye inflammations Solubility was increased by
approximately 20-fold. [65]

Posterior segment

Dexamethasone Macular edema and branch
retinal vein occlusion

More drugs were delivered to the
retinal tissue. [57]

Dexamethasone Diabetic macular edema
The patient tolerated it well, with a

reduction in central macular thickness
and improved vision.

[66]

Celecoxib Age-related macular degeneration
and diabetic retinopathy

The amount of drug passing through
semipermeable membranes, simulated

vitreous, and sclera was increased.
[67]

Notes: β-CD, β-cyclodextrins; HP-β-CD, hydroxypropyl-β-cyclodextrin; EC, econazole nitrate; RPE, retinal
pigment epithelium.

4.3. In Situ Gel Eye Drop Delivery Systems

In situ gels consist of environmentally sensitive polymers that can rapidly transform
a solution into a viscoelastic semisolid gel within the conjunctival sac in response to
environmental stimuli such as pH, temperature, and ionic strength and finally slow release
of a drug under physiological conditions (Figure 4) [68–70]. Environmental stimuli that
affect in situ gels can be classified as biological, chemical, and physical stimuli. Biological
stimuli include changes in glucose levels and enzyme activity; chemical stimuli involve
changes in pH and ionic strength in biological fluids [71]; and physical stimuli include
changes in temperature, sound, electric fields, pressure, light, and magnetic fields [72–74].
As a novel drug delivery system, in situ gels eye drops have many formulation advantages:
(1) ease of use, accurate drug delivery, and good reproducibility; (2) prolonged retention of
the drug at the desired site, reducing frequent administration; (3) simple production process
and easy scalability to industrial frameworks; (4) the ability to deliver sensitive drugs [75];
and (5) good tolerability [76]. The most studied in situ gels are temperature-sensitive,
pH-sensitive, and ion-sensitive in situ gels.
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4.3.1. Temperature-Sensitive In Situ Gel Eye Drop Delivery Systems

Temperature-sensitive in situ gels (abbreviated: temperature-sensitive gels) are among
the longest studied, most widely used, and most common in situ gels. The temperature
at which the solution–gel transition occurs is called the phase transition temperature, also
known as the critical solution temperature (CST). The transition occurs at either the lower
critical solution temperature (LCST) or the upper critical solution temperature (UCST),
depending on the type of polymer used. There are three common types of temperature-
sensitive gels, namely positive temperature-sensitive gels [77], negative temperature-
sensitive gels, and thermally reversible gels [78]. Positive temperature-sensitive gels
undergo a transition below UCST. Negative temperature-sensitive gels have LCST and
shift when heated above LCST [79]. Thermally reversible gels can change from solution to
gel as the temperature decreases and then convert from gel to solution when heated again.
Regardless of the type of temperature-sensitive gel, the phase transition should occur at the
precorneal temperature (35 ◦C) to avoid dilution of the lacrimal fluid and rapid elimination
of the drop in front of the cornea after administration [80].

Polymers with temperature sensitivity are known as ON/OFF polymers [81] and
mainly include poloxamer and poly(N-isopropyl acrylamide). A large number of studies
on temperature-sensitive gel eye drop delivery systems have been reported in the last
decades. A temperature-sensitive gel system loaded with brinzolamide formed a gel at
33.2 ± 1.1 ◦C with a diffusion-controlled release time of 8 h. In vivo studies showed that
this temperature-sensitive gel had better drug retention than commercial formulations [82].
Likewise, a temperature-sensitive gel loaded with ketoconazole (KCL) formed a gel at 33 ◦C,
and KCL was moderately released from the temperature-sensitive gel without a bursting
effect. In vivo antimicrobial studies showed a higher healing effect of temperature-sensitive
gels compared with that of commercial eye drops [83].

Cellulose derivatives, such as chitosan (CS) and hydroxypropyl methyl cellulose
(HPMC), are known to improve the anterior corneal retention time and bioavailability of
the in situ gels [84]. A study by Gratieri et al. showed that CS improved the mechanical
strength and structural properties of poloxamer formulations and conferred mucoadhesive
properties in a concentration-dependent manner. After 10 min of instillation of the polox-
amer/CS 16:1 formulation in the human eye, 50–60% of the gel remained in contact with the
corneal surface, while only 15% of the drug solution remained in contact with the cornea.
This demonstrated a fourfold increase in retention of poloxamer/CS compared with that of
conventional solutions. Therefore, the in situ forming gel comprising poloxamer/CS is a
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promising tool for the topical treatment of ocular diseases [85]. For temperature-sensitive
in situ gels loaded with ketorolac aminotriol nanodispersions, decreasing the concentration
of Pluronic F127 increased the gelation time and gelling temperature of in situ gels, and
adding HPMC to Pluronic F12 hydrogels significantly improved the adhesion strength of
the gels [86].

Salts are known to lower the temperature and regulate the release of in situ gels
to maximize their efficacy following intraocular administration. A study investigating
the effect of different salts on the properties of methylcellulose (MC)-based in situ gels
found that 5–7% w/v sodium chloride, 8–9% w/v potassium chloride, and 5% w/v sodium
bicarbonate were able to reduce the CST below the physiological temperature (37 ◦C) [87].
Rheological studies indicated a large increase in viscosity at 37 ◦C with the addition of
salts in MC solutions, and the release time of the drug from salted MC solutions could be
increased by 1.5 h to 3–5 h depending on the concentration and type of salt. Therefore, the
salted MC solutions were a better alternative than the MC solution for enhancing the ocular
bioavailability of the drug. Another study demonstrated that the use of carrageenan and
potassium chloride was effective in lowering the CST of native MC solutions from 60 ◦C to
33.5 ◦C [88]. Table 3 [82,83,89,90] lists temperature-sensitive in situ gel eye drop delivery
systems in the application of the anterior and posterior segments of the eye.

4.3.2. pH-Sensitive In Situ Gel Eye Drop Delivery Systems

pH-sensitive in situ gels consist of pH-sensitive polymers, which are polyelectrolytes
containing acidic groups (carboxylic or sulphonic acids) or basic groups (ammonium
salts) that accept or release protons in response to changes in the pH of the surrounding
environment. At a lower pH (pH 4.4), the formulation exists as a convenient solution, but
it forms a gel at pH 7.4 (i.e., the pH of tears).

The main pH-sensitive polymers most commonly used in ophthalmic preparations are
polyacrylic acid (PLA), methacrylic acid (MAc), N,N-dimethyl aminoethyl methacrylate
(DMAEMA), cellulose derivatives, and cellulose phthalate acetate [91,92]. pH-sensitive
in situ gel eye drop delivery systems have great potential for maintaining drug stability
and release. For example, pH-sensitive in situ gel prepared using carbomer 974P as a
gelling agent and HPMC as a viscosity builder was used for the sustained delivery of the
ophthalmic drug baicalin. The results of rheological studies showed that the gel strength
was significantly enhanced under physiological conditions and that the gel provided
sustained release of the drug within 8 h. In addition, the area under the curve (AUC) and
the plasma peak concentration (Cmax) values of the in situ gel were 6.1 and 3.6 times higher
than those of the control solution, respectively [93]. Gupta et al. prepared a pH-sensitive in
situ gel loaded with timolol maleate (TM) for the treatment of glaucoma using carbopol as
a gelling agent and CS as a viscosity builder. The in situ gel was in a liquid state at room
temperature and the formulated pH (pH 6.0) and rapidly transformed to a viscous gel
phase at the pH of the tear (lacrimal) fluid (pH 7.4). The results of in vitro drug release and
in vivo effects demonstrated that the in situ gel was therapeutically effective compared with
Glucomol® (0.25% TM ophthalmic solution), 0.4% w/v carbopol solution, and liposome
formulations and exhibited a sickle-like (diffusion-controlled) release behavior within
24 h [94]. A pH-sensitive in situ gel loaded with gatifloxacin was prepared by Kanoujia et al.
using carbopol 940 as a gelling agent and HPMC and HPMC K15M as viscosity builders.
The optimum formulation is clear and transparent with pH, viscosity, and drug content in
the ranges of 6.0–6.8, 10–570 cps, and 82–98%, respectively. In vitro release results showed
that the gel provided sustained drug release over 8 h and that the mechanism of drug
release from the gel was controlled by diffusion [95]. In addition, a ketorolac tromethamine-
loaded pH-sensitive in situ gel showed pseudoplastic rheology, which was able to improve
bioavailability through its longer corneal residence time and ability to maintain drug
release. Also importantly, it was easy to perfuse and reduced the frequency of perfusion,
thus making it more acceptable to the patient [96]. Table 3 [93–99] lists pH-sensitive in situ
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gel eye drop delivery systems in the application of the anterior and posterior segments of
the eye.

4.3.3. Ion-Sensitive In Situ Gel Eye Drop Delivery Systems

Ion-sensitive in situ gels form crosslinks with cations (Na+, Ca2+, Mg2+) present in
the tear fluid to form a gel on the ocular surface and prolong corneal contact time. The
most commonly used polymers in ion-sensitive in situ gel formulations include junctional
cold gels, hyaluronic acid, and sodium alginate. Ion-sensitive in situ gel eye drop delivery
systems are becoming more widely used in the treatment of ocular diseases [100]. A
ketotifen-loaded ion-sensitive eye drop system prepared using natural polysaccharide,
deacetylase conjugates had an optimal viscosity. After dropping into the eye, it underwent
a rapid sol–gel transition due to ionic interactions. Furthermore, the viscosity of the
formulation remained unchanged over a storage period of 180 days. More importantly,
at the same dose, the in situ gel exhibited more durable pharmacological behavior than
regular eye drops [101]. An ion-sensitive in situ gel loaded with terbinafine hydrochloride
nanocolloids was transparent, pseudoplastic, and mucoadhesive. It not only released
the drug slowly but improved the mean residence time and ocular bioavailability of the
terbinafine [102]. Rupenthal et al. formulated ion-sensitive in situ gels based on junctional
gum, xanthan gum, and carrageenan and evaluated these preparations for in vivo release,
precorneal retention time, and ocular irritation. The results showed that the in situ gels
were nonirritating, with 2.5-fold increases in the AUC and pupil constriction response
of pilocarpine compared with aqueous solutions [103]. In addition, a carrageenan-based
ion-sensitive in situ gel eye drop system was prepared using ACV as the model drug,
HPMC as the mucoadhesive agent, and HP-β-CD as the permeation enhancer. At 2% HP-
β-CD, the apparent permeation coefficient of ACV was approximately 2.16 times higher
than that of conventional eye drops. The ion-sensitive in situ gel significantly delayed
drug release and improved bioavailability compared with conventional eye drops [104].
Table 3 [101,102,105,106] lists ion-sensitive in situ gel eye drop delivery systems in the
application of the anterior and posterior segments of the eye.

Table 3. In situ gel eye drop delivery systems in the application of the anterior and posterior segments
of the eye.

Model Drugs Indications Main Findings Ref.

Anterior segment

Temperature-sensitive in situ gels

Brinzolamide Glaucoma
The optimal formulation formed a gel at
33.2 ± 1.1 ◦C with a diffusion-controlled

release time of 8 h.
[82]

Ketoconazole Eye infections
The temperature of the gel was 33 ◦C, and

the gel had a higher healing effect than
commercial eye drops.

[83]

Tetrahydrozoline Conjunctivitis
The best prescriptions were stable,

nonirritating, and provided continuous drug
release for up to 24 h.

[89]

Dorzolamide Glaucoma
The retention time of the drug in front of the

cornea was prolonged, and bioavailability
was improved.

[90]
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Table 3. Cont.

Model Drugs Indications Main Findings Ref.

Anterior segment

pH-sensitive in situ gels

Baicalin Eye infections In situ gel provided sustained release of the
drug within 8 h. [93]

Timolol maleate Glaucoma In situ gel eye drops rapidly transformed
into a mucoadhesive gel at the pH of tears. [94]

Gatifloxacin Eye infections Gel provided drug release over 8 h. [95]

Ketorolac tromethamine Eye infections The retention time of the drug in front of the
cornea was prolonged. [96]

Natamycin Eye inflammation
In vitro permeability was 3.3 times better

than commercial formulations and 5.2 times
better than suspensions.

[97]

Brimonidine tartrate Glaucoma

The residence time of the drug in the cornea
was significantly prolonged, and the

intraocular pressure was
significantly reduced.

[98]

Ion-sensitive in situ gels

Ketotifen Seasonal allergic conjunctivitis The retention time of the drug in front of the
cornea was prolonged. [101]

Terbinafine hydrochloride Fungal keratitis
The optimized in situ gel prolonged the

mean residence time of the drug and
enhanced ocular bioavailability.

[102]

Pefloxacin mesylate Conjunctivitis and corneal ulcers
The drug was released in vitro for up to 12 h,
and the best prescription had good stability

and a shelf life of 2 years.
[105]

Phenylephrine, tropicamide Mydriasis
Compared with normal eye drops, the

intensity and duration of pupil dilatation in
rabbits were increased by 4 to 8 times.

[106]

Posterior segment

pH-sensitive in situ gels

Bear bile
Retinitis pigmentosa

and age-related
macular degeneration

The optimum prescription was
biocompatible and nonirritating and

prolonged the corneal retention time of the
drug by approximately 3 times.

[99]

4.4. Nanoparticle Eye Drop Delivery Systems

Nanoparticles (typically 10–1000 nm in size) can deliver drugs to the posterior seg-
ment of the eye by passive or active (ligand-mediated) targeting [107]. Nanoparticles can
promote drug penetration into the ocular layer, prolong the residence time of eye drops
and reduce toxicity. In recent years, many nanoparticles have begun replacing invasive and
surgical interventions in the treatment of many diseases of the posterior segment of the
eye that cause visual impairment and even blindness. The nanoparticles for targeting the
posterior segment of the eye mainly include liposomes, niosomes, dendrimers, solid lipid
nanoparticles, nanosuspensions, microemulsions, polymer nanoparticles, and nanomicelles
(Figure 5) [108].
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4.4.1. Liposome Eye Drop Delivery Systems

Liposomes are spherical vesicles composed of phospholipid and steroid (cholesterol)
bilayers [109]. Liposomes can be divided into monolayers or multilayers and have a variety
of drug-carrying properties. Both hydrophilic and lipophilic drugs can be encapsulated
in liposomes, with hydrophilic drugs encapsulated in the core and lipophilic drugs in the
bilayer. In addition, liposomes are biodegradable, biocompatible carriers that enhance drug
penetration by binding to the corneal surface [110].

Liposome eye drop delivery systems improve the absorption, distribution, metabolism,
and excretion (ADME) of drugs and have been investigated for the treatment of anterior and
posterior segment diseases of the eye such as glaucoma, diabetic macular edema, endoph-
thalmitis, and uveitis [111]. A recent study concluded that ophthalmic liposomes loaded
with ganciclovir (GCV) prepared using reverse-phase evaporation resulted in 3.9 times
higher corneal permeability of GCV than the corresponding solution after topical admin-
istration [112]. In addition, liposomes loaded with diclofenac increased the cumulative
concentration of diclofenac in the retinal choroid by 1.8 times compared with diclofenac
solution [113].

Generally, liposomes smaller than 200 nm are considered ideal because of maximum
absorption, which decreases with increasing size, while liposomes with sizes of 600 nm
show negligible absorption in the posterior segment of the eye [114]. In addition, positively
charged liposomes can be noncovalently bonded to the negative charge carried by the
mucosal layer, so positively charged liposomes remain in front of the cornea longer than
negatively charged or neutral liposomes [115]. After 2.5 h of topical administration to rabbit
eyes, ACV-loaded liposomes prepared using stearylamine as a cationic inducer were more
concentrated in corneal tissue than anionic liposomes prepared using diacetyl phosphate
as an anionic inducer or ACV solutions, indicating that the cationic liposomes were more
readily absorbed into the whole corneal tissue [116]. Similarly, cationic liposomes loaded
with ibuprofen significantly prolonged the time to peak (Tmax) to 100 min and the AUC to
1.53 times that of ibuprofen eye drops [117].

Furthermore, different approaches have been proposed to increase the residence time
of liposomes in the precorneal area, such as the use of viscosity enhancers, in situ gelling
polymers, and nanoparticle surface modifiers. The main purpose of surface modifiers is to
maximize the interaction of the liposomes with eye structures and/or promote nanoparticle
penetration [118,119]. Hyaluronic acid (HA)-modified liposomes loaded with doxorubicin
(DOX) had longer corneal retention time than unmodified liposomes and free DOX [120].
Similarly, CS-modified liposomes loaded with TM showed a 3.18-fold increase in apparent
permeability coefficient (Papp) compared with commercial ophthalmic solutions [121]. In
comparison with methazolamide (MTA) solution, MTA liposomal gel showed a significant
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reduction in IOP. The areas under the percentage decrease in IOP vs. time (h) curves
(AUC0–8 h) were found to be 58 ± 0.03, 174 ± 0.04, and 222 ± 0.03 h−1 for MTA drug,
MTA liposomes, and MTA liposomal gel. respectively. MTA liposomal gel, as opposed to
traditional eye drops, maybe a suitable delivery medium for ocular distribution [122].

Transporter-targeted liposomes represent a new development in topical administration
that has attracted a great deal of attention in recent years. Many membrane transporters.
such as peptides, amino acids, glucose, lactate, and nucleosides/bases, have been identified
in various ocular tissues, including the cornea, conjunctiva, and retina. Liposomes that
target these transporters could significantly enhance drug penetration [15]. iRGD can be
cleaved by proteases when specifically bound to integrin αvβ3 expressed by corneal epithe-
lial cells. This cleaved iRGD can bind to neuroproteinase-1 (NRP-1), thereby activating the
endocytic transport pathway [123]. Studies have shown that iRGD-modified liposomes
could be used as an effective ocular drug delivery strategy. iRGD-modified liposomes
loaded with brinzolamide effectively penetrated the corneal barrier after topical admin-
istration in an iRGD receptor-mediated manner, exhibiting a stronger and longer-lasting
way therapeutic effect in glaucoma compared with commercially available brinzolamide
eye drops [124]. Table 4 [112,113,125–127] lists liposome eye drop delivery systems in the
application of the anterior and posterior segments of the eye.

4.4.2. Niosome Eye Drop Delivery Systems

Niosomes are a special type of vesicle formed by an amphiphilic nonionic surfactant
and cholesterol [128]. As an ocular drug delivery system, niosomes are biocompatible,
biodegradable, structurally flexible, and suitable for loading hydrophobic and hydrophilic
drugs [129]. As the nonionic surfactant replaces phospholipids, which are prone to oxida-
tive degradation, niosomes are more stable and less prone to leakage than liposomes. In
addition, because of the surfactant’s ability to open tight junctions and promote corneal
permeability, niosomes also have higher ocular bioavailability than liposomes [130].

The ability of niosomes to enhance drug bioavailability and efficacy has attracted
researchers to apply niosomal eye drop delivery systems for the treatment of diseases in
the anterior and posterior segments [131,132]. Abdelbary et al. encapsulated gentamicin
sulfate into niosomes to maintain and control the release of the drug. In vitro drug release
results showed that gentamicin was released more slowly in niosomes than in the corre-
sponding solutions. Hydrophilic–lipophilic balance (HLB) values also play an important
role, with higher encapsulation efficiency and stability obtained by using surfactants with
low HLB [133]. Pharmacodynamic studies showed that carbomer-coated niosomes loaded
with acetazolamide reduced IOP by 33% and that the hypotensive effect lasted for 6 h after
drip administration, four times as long as that of doxorubicin solution, which lasted about
1.5 h [134].

Niosomes coated with bioadhesive materials (CS, HA) or combined with hydrogels are
more suitable for ocular drug delivery [135]. Zeng et al. developed HA-coated niosomes for
ocular delivery of tacrolimus (FK506). Precorneal retention results showed that HA-coated
niosomes significantly prolonged the retention time of FK506 over those of uncoated nio-
somes and suspensions. Aqueous humor pharmacokinetic tests showed that the AUCs of
HA-coated niosomes were 2.3 and 1.2 times greater than those of suspension and uncoated
niosomes, respectively. The synergistic enhancement of FK506 corneal permeability by the
hybrid delivery system was observed and confirmed by confocal laser scanning microscopy.
HA-coated niosomes promote ocular delivery of FK506 in terms of mucosal adhesion,
precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability and
are a promising method for ocular targeted delivery of FK506 [136]. After the installation
of niosome-loaded gels into the eyes of rabbits, the IOP was prolonged, and the relative
bioavailability in normal and glaucomatous rabbits of betaxolol was significantly higher
than that of commercially available eye drops [137]. Table 4 [133,134,136,138] lists niosome
eye drop delivery systems in the application of the anterior and posterior segments of
the eye.
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4.4.3. Solid Lipid Nanoparticle Eye Drop Delivery Systems

Solid lipid nanoparticles (SLNs) can be defined as solid lipid matrices in the nanometer
size range accommodating drugs that are stabilized by one or more surfactants [139].
Compared with other colloidal carriers, SLNs not only have good biocompatibility and
biodegradability and high permeability [140] but can be produced on a large scale by a high-
pressure homogenization method. More importantly, solid state SLNs can prevent or reduce
the degradation of lipophilic drugs compared with liquid liposomes. Nanostructured lipid
carriers (NLCs), which are also solid nanoparticles without a crystalline structure, are able
to hold more drug than SLNs.

In recent years, SLN eye drop delivery systems have gained increasing attention as
drug carriers [141]. SLN loaded with KTZ showed 2.5- and 1.6-fold increases in bioavailabil-
ity in the aqueous humor and vitreous, respectively, compared with KTZ suspensions [142].
Similarly, NLC loaded with N-palmitoyleth anolamine (PEA), significantly increased the
amount of PEA in the ocular tissue compared with PEA suspension [143].

It is generally accepted that SLNs with smaller sizes are more suitable for topical
administration than larger ones. This can be attributed to the fact that the small size
facilitates faster travel of SLNs through the mucus layer of the tear film and favors corneal
uptake by epithelial cells [144]. In addition, it has been reported that surface charge also
affects nanoparticle uptake, with SLNs on cationic surfaces showing higher permeability
than neutral or anionic surfaces [145].

Improving the adhesion of SLNs was found to be an effective strategy for improv-
ing the ocular bioavailability of drugs [146]. Liu et al. developed coumarin-6-loaded
NLC (C6-NLC) using melt emulsion technology followed by surface modification with
CS-hydrochloride (CH) and CS-NAC. The result of in vitro mucosal adhesion demon-
strated that the presence of CS-NAC on the C6-NLC surface provided the most obvious
enhancement in adhesion because of the formation of both noncovalent (ionic) and covalent
(disulfide bridges) interactions with mucus chains. Furthermore, the higher the concentra-
tion of CS-NAC was, the longer the retention time of the nanoparticles in the ocular tissue
was. In addition, corneal penetration results showed that CS-NAC-NLC particles were able
to penetrate the entire corneal epithelium, mainly via a transcellular pathway [147]. SLNs
loaded with cyclosporine were prepared by Battaglia et al. using a coalescence method, and
nanoparticles with different surface charges were obtained by using different stabilizers.
After cyclosporine was labeled with fluorescent probes, the interaction of SLNs with the
cornea was studied by fluorescence microscopy, and the accumulation and penetration of
the drug in the cornea was calculated. The results showed that cationic (CS-coated) SLNs
enhanced drug accumulation and penetration in rabbit corneas compared with anionic and
nonionic SLNs and other reference formulations. The reason for this phenomenon may be
the increased interaction of CS with the nanoparticles and the corneal epithelium [148].

Furthermore, targeted SLNs are an effective strategy for improving the ocular bioavail-
ability of drugs. Using Wistar rats, Delgado et al. measured the in vivo transfection
efficiency of SLN conjugated with protamine, dextran, and two plasmids coding for an
enhanced green fluorescent protein (EGFP). The SLN formulation substantially increased
the expression of EGFP in the cornea for topical administration. This success was attributed
to the careful selection of nanoparticle components, especially the presence of dextran in
SLN protamine–DNA complexes, which allowed targeted internalization through clathrin-
mediated endocytosis, something fundamental for the uptake of protamine–DNA conju-
gates [149]. Table 4 [141,142,150–153] lists lipid nanoparticle eye drop delivery systems in
the application of the anterior and posterior segments of the eye.

4.4.4. Polymer Nanoparticle Eye Drop Delivery Systems

Polymeric nanoparticles (PNPs) are structures with diameters ranging from 10 to
1000 nm. Depending on their structure, polymeric nanoparticles can be divided into
nanocapsules and nanospheres. The former encapsulate drugs inside the formed polymer
lattice, while the latter consist of homogeneous dispersions of drugs into the polymer lattice.
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For ocular applications, the advantages of PNPs as a drug delivery system include high
stability, controlled drug release, specific tissue targeting, and high retention times due to
the adherent polymeric material [154].

The polymers used in nanoparticles are natural materials or modified polymers, such
as the natural materials gelatin, CS, dextran sulfate, and hyaluronic acid [155] and the
synthetic polymers PLA [156], poly(lactic acid-hydroxyacetic acid) (PLGA) [157], poly(ε-
caprolactone), polyacrylamide, and polyacrylate. PNPs can also be made of inorganic
materials, such as silica [158]. CS and its derivatives are commonly used as materials for ad-
herent nanoparticles because of their adhesion properties, antibacterial activity, and ability
to facilitate drug penetration by opening tight intercellular junctions [159]. CS nanoparticles
loaded with carteolol (CRT) were prepared by Ameeduzzafar et al. with a particle size
of 243 nm, drug loading of 49.21 ± 2.73%, and entrapment efficiency of 69.57 ± 3.54%.
In vitro release studies showed a sustained release for 24 h as compared with drug solu-
tion, and scintigraphy study demonstrated good spread and retention in the precorneal
area as compared with the aqueous CRT solution and prolonged reduction in intraocular
pressure [160]. Karava et al. found that pure CS and its derivatives with 2-acrylamido-
2-methyl-1-propanesulfonic acid (AAMPS) and [2-(methacryloyloxy)ethyl]dimethyl-(3-
sulfopropyl)ammonium hydroxide (MEDSP) could both be used as carriers for PNPs for
intraocular delivery of dexamethasone sodium phosphate (DxP) and chloramphenicol
(CHL) [161]. In addition to acting as a backbone material for PNPs, CS and its derivatives
can also be coated on the surface of nanoparticles to impart adhesion properties to the
nanoparticles. For example, PLA nanoparticles loaded with rapamycin had good retention
on the corneal surface when coated with chitosan [162].

The small size of PNPs is a very good feature for their promising characteristics
for diminished irritation in the corneal tissue and capacity to sustain the delivery of
the drug with further avoidance of multiple administrations [163]. In addition, surface
charge also has a certain effect on the bioavailability of PNPs. In general, the higher the
surface charge is, the more favorable the drug delivery is. For example, melatonin-loaded
nanoparticles prepared with PLGA-PEG successfully reduced IOP in rabbits, and the
hypotensive effect was better than that of melatonin-loaded nanoparticles prepared with
PLGA. The explanation for this phenomenon was that the increased zeta potential of PLGA-
PEG nanoparticles relative to PLGA nanoparticles allowed for better charge interactions
with the cornea, producing a longer hypotensive effect [164].

PNPs surface modified with antibodies, vitamins, peptides, and inducers have shown
strong uptake in specific tissues. According to Kompella et al., surface-modified PNPs
showed 64% and 74% higher transport of norepinephrine and transferrin, respectively,
compared with non-surface-modified PNPs. This suggests that surface modification en-
ables PNPs to rapidly and efficiently enter and/or cross the cornea and conjunctiva [165].
Sharma et al. investigated the efficiency and toxicity of 2 kDa polyethylene glycol with
gold nanoparticles (PEI2-GNP) in the delivery of genes to human corneas (in vitro) and
rabbit corneas (in vivo). The results showed that the hybrid nanoparticles could efficiently
deliver genes to the human cornea without altering cell viability. Significant particle uptake
was observed in the rabbits’ aqueous humor following topical administration of the hybrid
nanoparticles, with gradual clearance over time. Furthermore, slit-lamp biomicroscopy of
live animals following topical administration revealed no inflammation or erythema and
only moderate cell death and immune response, suggesting the potential use of PEI2-GNP
in corneal gene therapy [166]. Table 4 [161,167–170] lists polymer nanoparticle eye drop
delivery systems in the application of the anterior and posterior segments of the eye.

4.4.5. Micelle Eye Drop Delivery Systems

Micelles are nanocarriers in size and have external hydrophilic polar heads and
internal hydrophobic fatty acyl chains, which allow them to deliver water-insoluble drugs
and protective molecules [171]. In exceptional cases, amphiphilic copolymers or surfactants
may be misaligned to form “antimicelles” for encapsulating hydrophobic drugs [172,173].
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In addition, micellar delivery systems have the advantage of being easier to prepare
and having relatively small particle size compared with other nanocarrier drug delivery
systems [174].

Micelles are emerging as a novel platform for drug delivery to the anterior segment of
the eye. A methoxy polyethylene glycol-hexyl-substituted poly(lactic acid) (MPEG-hexPLA)
micelle was used for the ocular delivery of cyclosporine A (CsA). The MPEG-hexPLA
micelle formulation was well tolerated in the eye and represented a promising drug carrier
for the treatment of eye diseases involving cytokine activation, such as dry eye syndrome
and autoimmune uveitis, or for the prevention of corneal transplant rejection [175]. Zhang
et al. developed a micellar eye drop using dipotassium glycyrrhizinate (DG) as a carrier
and hesperidin (Hes) as a model drug. The optimized DG-Hes had a mean micelle size of
70.93 ± 3.41 nm and a polydispersity index of 0.11 ± 0.02. DG-Hes significantly improved
the passive penetration, corneal penetration, and ocular bioavailability of Hes. In vitro
antimicrobial activity tests showed that the lowest inhibitory and lowest bactericidal
concentrations of DG-Hes ophthalmic solution were lower than those of free Hes. DG-Hes
ophthalmic solution also significantly reduced the symptoms of ocular infection in a rabbit
model of bacterial keratitis compared with Hes suspension. These results suggest that
DG-Hes eye drops may be useful as a new ophthalmic agent for the treatment of ocular
diseases, particularly bacterial eye diseases [176].

In addition, because of their small particle size, more and more micelles can deliver
drugs to the fundus [177]. A nanomicellar system using vitamin E tocopherol polyethy-
lene glycol succinate (TPGS) (Vit E TPGS) and octoxynol-40 (Oc-40) as polymeric sub-
strates and rapamycin as a model drug resulted in very high rapamycin concentrations
(362.35 ± 56.17 ng/g) in the retinal tissue of rabbit eyes after topical drops. No drug was
found in the vitreous, indicating that rapamycin was sequestered in the lipid-like retinal
tissue [178]. In addition, [179] showed that the tissue concentrations of DEX in the sclera,
retinal choroid, and vitreous humor after multiple topical infusions of dexamethasone
nanomicelles were 112.75 ± 53.09 ng/g, 67.32 ± 26.49 ng/g, and 3.85 ± 1.75 ng/g, respec-
tively. This suggests that micelles may deliver the drug to the posterior part of the eye
during topical administration by diffusion through the conjunctival–scleral route.

Positively charged micelles can improve the bioavailability of drugs. A micellar
system consisting of the polyoxygenated nonionic surfactant pluronic1 F127 (F127) and the
cationic polyelectrolyte chitosan (CH) loaded with DEX resulted in a significant increase
in the in vitro release and transport of DEX in Caco-2 cell monolayers compared with the
F127 micellar system without CH. Pharmacokinetic results in rabbit eyes showed 1.7-fold
and 2.4-fold increases in the bioavailability of the F127 and F127/CH micelle systems,
respectively, compared with the standard DEX suspension. These suggested that micellar
systems improved the intraocular absorption of DEX [180].

In addition, micellar eye drops with active targeting can deliver as much drug to the
posterior end of the eye. A cyclic cidofovir transporter-targeting lipid prodrug (B-C12-CDF)
micelle delivery system prepared by linking the lipid chain (C-12) and the targeting portion
(biotin) to cidofovir and its analogues (CDF) could be targeted to retinal tissue after topical
administration. Better retinal targeting can be achieved by biotin-specific targeting of a
sodium-dependent vitamin transporter that is highly expressed in the retina. Stable drug
delivery to the retina and vitreous layer is possible if the drug is loaded into a polymeric
carrier that controls prodrug release [181]. Table 4 [175,179,180] lists micelle eye drop
delivery systems in the application of the anterior and posterior segments of the eye.

4.4.6. Nanosuspension Eye Drop Delivery Systems

Nanosuspensions are two-phase colloidal dispersions systems in which drug particles
are dispersed into an aqueous medium. Nanosuspensions provide an important and use-
ful method for improving the bioavailability of low water-soluble drugs by reducing the
particle size of the drug to the submicron range and stabilizing the drug with polymers,
surfactants, or a mixture of both [182–184]. Because of the large surface area of the nanopar-
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ticles, the rate of drug release may be sufficient to maintain the effective drug concentration
in the tear film, resulting in significant bioavailability. In addition, nanosuspensions also
have the advantages of low irritation, required reduced dose, prolonged drug release,
reduced systemic toxicity of the drug, and prolonged residence time of nanoparticles on
the corneal surface [185].

Nanosuspensions make it possible to deliver hydrophobic drugs to the eye. For exam-
ple, in a recently published report, Kassem et al. prepared and evaluated nanosuspension
formulations of prednisolone, hydrocortisone, and dexamethasone for topical ocular deliv-
ery. In vivo tissue distribution studies of the glucocorticoid nanosuspensions demonstrated
significantly higher levels in anterior chamber tissues relative to those of solutions and
microcrystalline suspensions of similar compounds [186].

Cationic surfactants are often chosen as stabilizers for nanosuspensions because their
positive charge improves the residence time of the drug in front of the cornea through
noncovalent binding to negatively charged mucins [187]. Flurbiprofen (FLU) polymer
nanoparticle suspensions prepared using eudragit RS100s and RL100s as polymer resins
were effective in preventing severe myasthenia gravis caused by extracapsular cataract
surgery compared with conventional eye drops [188]. Shi et al. developed a cationic
nanosuspension of CS and methoxy polyethylene glycol-poly(ε-caprolactone) (MPEG-PCL)
for ocular delivery of diclofenac (DIC). In vivo pharmacokinetic studies showed enhanced
retention and permeability, higher concentration in aqueous humor (Cmax), and better
bioavailability of the DIC/MPEG-PCL-CS nanosuspension compared with commercial
DIC ophthalmic solutions [189]. Table 4 [188,190] lists nanosuspension eye drop delivery
systems in the application of the anterior and posterior segments of the eye.

4.4.7. Microemulsion Eye Drop Delivery Systems

Microemulsions (MEs) are thermodynamically stable systems consisting of water, oil,
and surfactants/cosurfactants [191]. Depending on the dispersed phase and the disper-
sion medium, emulsions can be classified as oil-in-water emulsions (O/W), water-in-oil
emulsions (W/O), or composite emulsions [192]. As a drug reservoir, MEs can deliver both
hydrophilic and hydrophobic drugs to the cornea [193]. In addition to this, they have a
wide range of properties: natural biodegradability, nanoscale droplet size, sterility, good
solubility in either the innermost oil phase or the oil–water interface, and good ocular
absorption [194]. Nanoemulsions (NEs) are also nanostructured emulsion consisting of an
aqueous phase, an oil phase, a surfactant, and a cosurfactant and differ most from MEs in
that they have a smaller particle size.

Researchers successfully developed some ME eye drop delivery systems that can
be used in ophthalmic applications [195]. The optimized MEs had good stability and
good adhesion and penetration to the corneal surface. The concentration of gatifloxacin
was increased twofold over that of the conventional dosage form [196]. Compared with
conventional DEX formulations, MEs prepared by titration penetrated more easily into the
immediate anterior segment, with longer drug release times and higher bioavailability [197].

Changing the surface charge of MEs or surface modification is a common method to
improve ocular bioavailability [198]. Ying et al. prepared a series of MEs using C6 as a
fluorescent marker to explore the effect of different types of MEs on drug delivery to the
posterior segment of the eye. Fluorescence analysis of eyes collected 30 min after topical
infusion of MEs showed that surface-modified MEs containing CS and polyoxyethylene
ether 407 resulted in increased fluorescence intensity in the retina compared with unmodi-
fied MEs. This phenomenon may be caused by the MEs through electrostatic interaction
with the ocular cell membrane or by increasing the retention time on the ocular surface.
Alternatively, MEs may enter the retina via a noncorneal pathway [199].

Incorporating MEs into in situ gels is also an effective strategy to improve ocular
bioavailability [200]. Gan et al. prepared a CsA-loaded ME using castor oil, solutol HS
15 (surfactant), glycerol, and water, which were then dispersed in Kelcogel® solution
to form an in situ electrolyte-triggered ME gelling system. In vitro, the viscosity of the
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CsA ME Kelcogel® system increased dramatically when diluted with artificial tears and
exhibited pseudoplastic rheology. In vivo results showed that the AUC(0–32 h) of corneal
CsA with the ME Kelcogel® system was approximately three times greater than that of
the CsA ME [201]. Tajika et al. studied and evaluated the effectiveness of the terbinafine
hydrochloride NE in situ gel system for the treatment of fungal keratitis. Under in vivo
histopathological assessment, the NE in situ gel system showed no irritation in the studied
ocular tissues (cornea, iris, retina, and sclera) compared with the control group [202].
Table 4 [195,196,203,204] lists emulsion eye drop delivery systems in the application of the
anterior and posterior segments of the eye.

4.4.8. Dendritic Polymer Eye Drop Delivery Systems

Dendritic polymers have been used extensively for drug delivery since the 19th
century, and in recent years, their use in eye diseases has attracted the attention of scientists
worldwide. Dendritic polymers are spherical, tree-branched, nanostructured polymers
consisting of a central molecule called the “core” and side-chain molecules called the
“branches” [205]. Dendritic polymer nanoparticles are typically smaller than 100 nm in size,
and the peripheral functional groups (neutral, negative, or positive) can receive secondary
surface modifications and are therefore endowed with a range of excellent properties
for ophthalmic drug delivery, such as prolonged corneal residence time and enhanced
permeability [206].

Poly(amidomine) (PAMAM) is the most studied, widely characterized, and commer-
cialized dendrimer species for drug and gene delivery [207]. However, some PAMAM
dendritic macromolecules are toxic in cells and animals because of their polycationic
properties [208]. It has been shown that modifying the amino groups at the periphery of
dendrimers with polyethylene glycol chains can reduce their toxicity and increase their bio-
compatibility [209,210]. PAMAM dendrimers with -OH or -COOH terminal molecules did
not induce cytotoxicity and could have their low generation removed intact by urine [211].
PAMAM dendrimer eye drop delivery systems are also becoming more widely used. Van-
damme and Brobeck prepared several series of PAMAM dendrimers using pilocarpine
nitrate and tropicamide as model drugs. Using New Zealand albino rabbits as an in vivo
model, the ocular tolerance and ocular retention time of PAMAM dendrimer solutions
were assessed qualitatively and quantitatively after a single drop. The average ocular
residence time of aqueous PAMAM dendrimer solutions (generations 1.5, 2, 3.5, and 4)
was comparable to that of 0.2% w/v carbomer solutions under the same experimental
conditions, and the ocular residence time of dendrimer (generation 2) solutions was even
significantly longer than that of carbomer or HPMC solutions [212]. In addition, puerarin
PAMAM dendrimer complexes showed a prolonged corneal residence time and 1.3-fold
and 2.0-fold increases in the main pharmacokinetic parameters Cmax and AUC, respectively,
compared with puerarin solution [213].

Dendritic molecules also show a more significant advantage in delivering drugs to the
posterior segment of the eye. Yavuz et al. constructed various anionic DEX–PAMAM com-
plexes and evaluated the effect of DEX delivery to the posterior eye. When DEX–PAMAM
(generations 4.5) complexes were administered topically, in vivo tissue distribution studies
in rabbit eyes showed that the highest drug levels in the vitreous, retina–choroid, and sclera
were 125.4± 90.0 µg/g, 329.8± 122.8 µg/g, and 1150.5± 232.9 µg/g, respectively, and that
these concentrations were higher than those of DEX suspensions by 8.7, 8.9, and 3.99 times,
respectively. In addition, in vitro transport studies of various DEX–PAMAM complexes
in the rabbit cornea and sclera–retina were investigated and showed that DEX penetrated
through the cornea and sclera–retina into the posterior eye [214]. Liu et al. designed a
gene delivery system for osmolyte based on electrostatic binding to target the retina via
a noninvasive delivery route. It was prepared with red fluorescent protein pellets (pRFP)
and/or a low molecular weight polyamide dendrimer (G3 PAMAM). After installation into
the conjunctival sac of rats, the intact complex rapidly penetrated from the ocular surface
to the fundus and remained in the retina for more than 8 h, which resulted in efficient
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expression of RFP in the posterior segment. The intraocular distribution of the complexes
suggested that the plasmids were absorbed into the eye via a noncorneal pathway [215].
Table 4 [212,216] lists dendritic polymer eye drop delivery systems in the application of the
anterior and posterior segments of the eye.

Table 4. Nanoparticle eye drop delivery systems in the application of the anterior and posterior
segments of the eye.

Model Drugs Indications Main Findings Ref.

Anterior segment

Liposomes

Ganciclovir Eye infections
The AUC of the aqueous humor concentration–time

profile of ganciclovir liposomes was found to be
1.7 times higher than that of ganciclovir solution.

[112]

Timolol maleate Glaucoma
The Papp and Jss of timolol maleate liposomes were
1.50 times higher than that of the commercialized

eye drops.
[125]

Azithromycin Dry eye
Liposomes enhanced corneal permeation

approximately twofold over that of
azithromycin solution.

[126]

Niosomes

Gentamicin Eye infections Niosome had a slower release rate than gentamicin
sulphate compositions. [133]

Acetazolamide Glaucoma Niosome had higher ocular bioavailability than
drug solution. [134]

Tacrolimus Corneal allograft rejection The AUC of niosomes was 2.3 times greater than that
of suspension. [136]

Latanoprost Glaucoma The reduced IOP of niosomes was significantly longer
than commercial eye drops. [138]

Solid lipid nanoparticles

Ketoconazole Ophthalmic mycoses SLNs had higher ocular bioavailability than
ketoconazole suspension. [141]

Methazolamide Glaucoma
SLNs had higher therapeutic efficacy, later occurrence
of maximum action, and more prolonged effect than

drug solutions and commercial products.
[150]

Methazolamide Glaucoma
SLNs showed a significantly prolonged decreasing

intraocular pressure effect compared with
methazolamide solution.

[151]

Polymer nanoparticles

Dexibuprofen Eye inflammations
NPs were confirmed to be more effective to treat and

prevent ocular inflammation than
dexibuprofen solution.

[161]

5-fluorouracil Squamous cell carcinoma 5-FU level in the aqueous humor of the rabbit eye was
significantly higher than that due to 5-FU solution. [167]

Daptomycin Bacterial endophthalmitis
The antimicrobial activity of daptomycin was

preserved when the antibiotic was encapsulated
into NPs.

[168]

Pranoprofen Eye inflammations
The corneal permeation coefficient of NPs was four

times higher than that of commercial eye drop
formulations and freeform drug solutions groups.

[169]

Fluocinolone acetonide Uveitis, posterior uveitis,
and panuveitis

NP eye drops showed greatly prolonged residence
time of the drug on the ocular surface. [170]
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Table 4. Cont.

Model Drugs Indications Main Findings Ref.

Anterior segment

Micelles

Cyclosporin A Eye inflammations
The micelle formulation was well tolerated in the eye and
represented a promising drug carrier for the treatment of

eye diseases.
[175]

Nanosuspensions

Flurbiprofen Cataract Drug levels in the aqueous humor were higher after the
application of the nanosuspensions. [188]

Hydrocortisone Inflammation disorders of
the eye

The AUC was significantly higher than that of the
hydrocortisone solution. [190]

Microemulsions

Timolol maleate Glaucoma MEs had higher drug-loading and transport rates than control. [195]

Gatifloxacin Bacterial keratitis MEs had good stability, greater corneal adherence,
and permeability. [196]

Dexamethasone Uveitis An improved therapeutic effect occurred for the treatment
of uveitis. [203]

Sirolimus Immunosuppressants Suitable for the immunomodulatory treatment of ocular
surface disorders. [204]

Dendritic polymers

Pilocarpine nitrate
and tropicamide Albino

The ocular residence time of dendrimer (generation 2) solutions
was significantly longer even than that of carbomer or

HPMC solutions.
[212]

Gatidloxacin Eye inflammations Enhanced corneal transport and increased
antimicrobial activity. [216]

Posterior segment

Liposomes

Diclofenac Macular edema Liposomes prolonged the retention time in the cornea and
allowed higher bioavailability of diclofenac sodium. [113]

Triamcinolone
acetonide

Pseudophakic cystoid
macular edema

The best corrected visual acuity and central eye socket thickness
in the patient improved significantly. [127]

Solid lipid nanoparticles

N-palmitoyleth
anolamide Retinal inflammation NLCs significantly increased the levels of PEA in the vitreous

and retina compared with a drug suspension. [142]

Atorvastatin Age-related
macular degeneration

SLNs were 8 and 12 times more bioavailable in the aqueous and
vitreous humor, respectively, than free atorvastatin. [152]

Triamcinolone
acetonide Macular edema NLCs could deliver lipophilic active substances to the posterior

segment of the eye via both corneal and noncorneal pathways. [153]

Micelles

Dexamethasone Posterior uveitis Micelles delivered the drug to the posterior part of the eye,
probably by diffusion through the conjunctival–scleral pathway. [179]

Dexamethasone Diabetic macular edema

The AUC values showed 1.7- and 2.4-fold increases in
bioavailability with Pluronic1 F127 and Pluronic1

F127/chitosan micelle systems, respectively, as compared with
a standard dexamethasone suspension.

[180]

Notes: AUC, area under the curve; Papp, apparent permeability coefficient; Jss, the flow rates of steady-state;
IOP, intraocular pressure; SLNs, solid lipid nanoparticles; NPs, nanoparticles; 5-FU, 5-fluorouracil; MEs, mi-
croemulsions; HPMC, hydroxypropyl methyl cellulose; PEA, N-palmitoyleth anolamide; NLCs, nanostructured
lipid carriers.



Pharmaceutics 2022, 14, 1150 23 of 32

5. Novel Eye Drop Products and Clinical Trials

Prodrug-based designs of eye drops have proven successful. Prostaglandin F2α ana-
logues such as bimatoprost (Lumigan®), travoprost (Travatan®), and latanoprost (Xalatan®)
are used to lower IOP in glaucoma. Loteprednol etabonate (Lotemax®), a topical corticos-
teroid based on retrometabolic drug design, has also proven successful in the treatment
of ocular allergies and inflammation. Some marketed eye drop products have also been
developed based on in situ gel delivery systems. For example, Tiopex® is an ophthalmic gel
eye drop consisting of the pH-sensitive in situ gel polymer carbopol 974P for the delivery
of TM for the treatment of glaucoma. Similarly, Pilopine HS®, an aqueous gel containing
pilocarpine hydrochloride formed from carbopol 940, is used for the control of intraocular
pressure. In addition, Timoptic® GFS and Timoptic-XE are ion-sensitive in situ gels that
have been approved for the treatment of glaucoma.

A number of novel eye drops are being studied in related clinical trials. Oculis, an
ophthalmic pharmaceutical company, has developed a drug delivery platform based on
cyclodextrin nanoparticles. Animal tests and preliminary clinical trials have shown that this
technology has the potential to increase drug concentrations in ocular tissues, including
the retina, for the treatment of retinal diseases such as DME. This study is now being
studied in a clinical phase 2 trial (NCT05343156). A multicenter, two-arm randomized
clinical trial investigating and comparing the clinical efficacy of 3% chloroprocaine gel
and 0.5% tetracaine ophthalmic solution as local anesthetics in emulsification surgery will
be conducted in approximately four European countries (NCT04685538). A study on the
effect of lipid-based eye drops on tear film lipid layer thickness is being conducted in a
clinical trial (NCT03399292). The clothes lane study on brimonidine tartrate NE eye drops
in patients with ocular graft versus host disease (OGVHD) is now being studied in a clinical
phase 3 trial. In addition, a randomized, placebo-controlled, double-masked, multicenter
phase 3 study of brimonidine tartrate NE drops for the treatment of dry eye disease (DED)
will be conducted at approximately 25 centers in the United States. (NCT03785340).

6. Conclusions

Delivering drugs efficiently and harmlessly into lesions in the posterior segment of the
eye is a big challenging task. As a noninvasive delivery system, topical administration is
the first treatment option for many ocular diseases because of the potential to eliminate the
risks of intraocular injection and the toxicity of systemic drug delivery. The bioavailability
of conventional eye drops is low because of the presence of multiple dynamic and static
barriers, such as tear drainage, corneal barriers, and conjunctival elimination. To overcome
these limitations, many pharmacists have conducted intensive research into topical oph-
thalmic delivery systems in recent decades to produce safe and effective eye drops with
greater efficacy and greater safety. Some novel eye drop delivery systems, including pro-
drugs, cyclodextrins, in situ gels, and nanoparticles, are now being used to treat a variety of
eye diseases. These novel eye drop delivery systems could increase the local concentration
of the drug in the eye by increasing the retention time in front of the cornea and facilitating
penetration. At the same time, they also allow more drugs to be delivered to the tissues
at the posterior segment of the eye via the corneal route or the conjunctival–scleral route,
which avoids the need for invasive surgery. These novel eye drop delivery systems have
shown improved efficacy in the treatment of anterior and posterior segment disorders of
the eye. Nevertheless, the negative phenomena associated with them should be taken into
account. Prodrugs may lead to increased lipid solubility and toxicity of the drug. Highly
viscous in situ gels may lead to blurred vision. For some stimulus-sensitive materials
with relatively weak gelation efficiency, the use of high concentrations of materials or
combinations of several materials can increase their toxicity. Nanoparticles may suffer from
low encapsulation rates, poor stability, and a tendency for the drug to leak during storage.
Therefore, not only the prescribing factors but the stability and sterility of the product
need to be considered in the early stages of eye drop development. Further research and
development of methods for improving drug preparation and storage are also needed to
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ensure the efficacy and safety of eye drops. As research into ophthalmic drug delivery
systems continues, new safe and effective eye drops are expected to replace or surpass
current invasive techniques in the near future and are expected to be used to treat a wide
range of ocular diseases.
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AMD, age-related macular degeneration; DME, diabetic retinopathy macular edema; PVR, prolifera-
tive vitreoretinopathy; CMV, cytomegalovirus; BAB, blood–aqueous barrier; BRB, blood–retinal
barrier; P-gp, P-glycoprotein; MRP, multidrug resistance-associated protein; BCRP, breast can-
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SQACV, 4´-trisnorsqualenoylacyclovir; ACV, acyclovir; CDs, cyclodextrins; EC, econazole nitrate;
HP-β-CD, hydroxypropyl-β-cyclodextrin; DEX, dexamethasone; RM-β-CD, randomly methylated
b-cyclodextrin; SBE-β-CD, sulfobutyl ether-β-cyclodextrin; KTZ/KCL, ketoconazole; CST, critical
solution temperature; LCST, lower critical solution temperature, UCST, upper critical solution temper-
ature; CS, chitosan; HPMC, hydroxypropyl methyl cellulose; MC, methylcellulose; PLA, polyacrylic
acid; MAc, methacrylic acid; DMAEMA, N,N-dimethyl aminoethyl methacrylate; AUC, area un-
der the curve; Cmax, plasma peak concentration; TM, timolol maleate; O/W, oil-in-water; W/O,
water-in-oil; ADME, absorption, distribution, metabolism, and excretion; GCV, ganciclovir; Tmax, the
time to peak; HA, hyaluronic acid; DOX, doxorubicin; Papp, apparent permeability coefficient; MTA,
methazolamide; NRP-1, neuroproteinase-1; HLB, hydrophilic–lipophilic balance; SLNs, solid lipid
nanoparticles; NLCs, nanostructured lipid carriers; LDCs, lipid drug conjugates; PEA, N-palmitoyleth
anolamine; C6, coumarin-6, EGFP, enhanced green fluorescent protein; PNPs, polymeric nanopar-
ticles; PLGA, poly(lactic acid-hydroxyacetic acid); CRT, carteolol; DxP, dexamethasone sodium
phosphate; CHL, chloramphenicol; CsA, cyclosporine A; MPEG-hexPLA, methoxy polyethylene
glycol-hexyl-substituted poly(lactic acid); DG, dipotassium glycyrrhizinate; Hes, hesperidin; Vit
E TPGS, vitamin E tocopherol polyethylene glycol succinate (TPGS); Oc-40, octoxynol-40; FLU,
flurbiprofen; MPEG-PCL, methoxy polyethylene glycol-poly(ε-caprolactone); DIC, diclofenac, MEs,
microemulsions; NEs, nanoemulsions; PAMAM, poly(amidomine).
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