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ABSTRACT

Both 454 and Ion Torrent sequencers are capable
of producing large amounts of long high-quality
sequencing reads. However, as both methods
sequence homopolymers in one cycle, they both
suffer from homopolymer uncertainty and incorpor-
ation asynchronization. In mapping, such sequencing
errors could shift alignments around homopolymers
and thus induce incorrect mismatches, which have
become a critical barrier against the accurate detec-
tion of single nucleotide polymorphisms (SNPs). In
this article, we propose a hidden Markov model
(HMM) to statistically and explicitly formulate
homopolymer sequencing errors by the overcall,
undercall, insertion and deletion. We use a hierarch-
ical model to describe the sequencing and base-
calling processes, and we estimate parameters of
the HMM from resequencing data by an expect-
ation-maximization algorithm. Based on the HMM,
we develop a realignment-based SNP-calling
program, termed PyroHMMsnp, which realigns read
sequences around homopolymers according to the
error model and then infers the underlying genotype
by using a Bayesian approach. Simulation experi-
ments show that the performance of PyroHMMsnp
is exceptional across various sequencing coverages
in terms of sensitivity, specificity and F1 measure,
compared with other tools. Analysis of the human
resequencing data shows that PyroHMMsnp
predicts 12.9% more SNPs than Samtools while
achieving a higher specificity. (http://code.google.
com/p/pyrohmmsnp/)

INTRODUCTION

The 454 (1), Ion Torrent (2) and Fluorogenic sequencing
(3), derived from the pyrosequencing technology (4–6),

sequence DNA homopolymers by detecting by-products
of the nucleotide incorporation reactions, i.e. the pyro-
phosphates (454), hydrogen ions (Ion Torrent) and
fluorescent molecules (Fluorogenic sequencing). This tech-
nology is based on the sequencing-by-synthesis technique
by which a sequencer cyclically delivers the chemical
reagents at a predefined order through a slide that has
millions of wells filled with beads carrying millions of
template copies. For homopolymer sequencing, the
chemical reagent, lacking a reversible terminator on the
30-hydroxyl group, allows the sequencing procedure to in-
corporate multiple nucleotides within one flow (7,8).
Therefore, at each reagent flow, the measured flow inten-
sity is theoretically proportional to the run length of the
incorporated nucleotides. However, the inevitable stochas-
tic nature of the biochemical reactions and apparatus
raises uncertainty in sequencing homopolymer regions.
In this situation, the linearity between the flow intensity
and the number of incorporated nucleotides would not
be exact, given the increasing length of nascent
homopolymers (9). Such uncertainty causes errors in
determining the length of homopolymers, either longer
(overcall) or shorter (undercall) than the actual length
(Supplementary Figures S1 and S2). In addition, a few
template copies may grow in de-synchronization with
the population, causing the carry forward and incomplete
extension effects (CAFIE) (1–3). More specifically,
homopolymers originated from past flow cycles appear
as insertions termed ‘the carry forward’, whereas
homopolymers originated from future flow cycles appear
as insertions termed ‘the incomplete extension’. As
described in the literature (10), the mismatches in
sequence alignments are predominantly caused by inser-
tions followed by deletions or vice versa. Therefore,
homopolymer uncertainty, carry forward and incomplete
extension account for most of the errors in homopolymer
sequencing.
Homopolymer sequencing has been applied to the

genome-wide detection of single nucleotide polymorph-
isms (SNPs) (11). Assuming that the reads are correctly
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mapped and aligned, the discovery of SNPs would be a
straightforward matter of detecting sites where observa-
tions are truly different from the reference. However, this
is not always the case as insertions and deletions occurring
around homopolymers can shift the alignments and
induce false mismatches. We give several examples of
improper alignments that occur around homopolymer
regions in Supplementary Figures S1 and S2.
Furthermore, such false mismatches have been shown to
critically obstruct accurate detection of SNPs near
homopolymers. To address this problem, a few studies
have proposed to improve the accuracy of SNP calling
in homopolymer sequencing data through quality score
recalibration (12,13) or statistical classification (12–15).
The quality scores can be recalibrated (12) by considering
multiple factors, such as the vendor’s quality of the whole
read, sequence context, e.g. homopolymers around a site
and distance to the 30-end where polymerase molecules
lose activity. An SNP calling method, i.e. PolyBayes
(16), is then applied to call SNPs. Statistical classification
methods also use these aforementioned factors as predict-
ive features to discriminate SNPs from sequencing errors.
For example, Atlas-SNP2 (14) built a logistic regression
model to predict SNPs, whereas ProbHD (15) built a
random forest classifier. However, all these methods
would fail to detect SNPs if the alignments were incorrect.
Therefore, realignment is a critical step for SNP calling.
Intuitively, a realignment strategy will take advantage

of characteristics of sequencing errors to design a scoring
function along with an alignment algorithm, with which
one can search for the proper (optimal) alignment to avoid
false mismatches induced by alignment errors. This
strategy has been proved effective for variant detection
in Illumina sequencing data (17–20). For the Ion
Torrent and 454 sequencing data, the scoring function
should be homopolymer-aware to reflect the characteris-
tics of sequencing errors, and the algorithm should treat a
nucleotide sequence as a homopolymer sequence, which is
a more accurate representation of the sequencing process.
It has been observed that longer homopolymers are
more likely to be sequenced incorrectly, causing gaps
when aligning homopolymers. Based on this rationale,
PanGEA (21) proposed a homopolymer-aware Smith–
Waterman algorithm that treated each homopolymer as
a unit in the dynamic programming and gave a smaller
gap open penalty for longer homopolymers. FAAST (22)
improved this method by incorporating flow information
into the scoring function such that the greater the
observed flow intensity, the smaller the gap open penalty
in the alignment. However, the scoring parameters used in
these two methods were set up heuristically, independent
of both the sequencing machine and the experimental
protocol. The publicly released Ion Torrent software
uses a realignment approach that first transforms the ref-
erence sequence into a theoretical flowgram and then
aligns the theoretical flowgram with the flowgram of a
read.
In this article, we propose a hidden Markov model

(HMM), called PyroHMMsnp, to realign sequencing
reads with reference sequences. The core probabilistic
components of the HMM include the hidden states that

represent the homopolymer sequencing patterns of a
machine, a base call rate matrix (23) that captures the
pattern of homopolymer insertions and a length call rate
matrix that follows the statistical distribution of the called
length with respect to the actual length of homopolymers.
To call SNPs, we develop a Bayesian approach to infer the
most probable genotype from which the observed reads are
sequenced. In the present work, we set up two simulation
experiments, test the performance of the proposed method
and then apply it to two experimental data sets. Results of
the simulation experiments show that PyroHMMsnp
achieves higher accuracy than other state-of-the-art
methods at various levels of sequencing coverage. We
tested it again using the whole-genome resequencing data
of G. Moore generated by Ion Torrent (2), as well as the
genome resequencing data of 15 individuals from the 1000
Genome Project generated by 454 sequencing. Compared
with Samtools (24) at the similar level of specificity,
PyroHMMsnp identified more SNPs, which could be
validated by the NCBI dbSNP database.

MATERIALS AND METHODS

Nucleotide, homopolymer and homopolymer sequence

We first define an alphabetic set �¼ A,C,G,T,�f g to rep-
resent symbolic elements in a sequence with A,C,G,T
denoting the nucleotides and 0 � 0 denoting an insertion
or a deletion. We use a bold random variable, e.g.
a ¼ a1a2 � � � an where ai 2 � for 1 � i � n, to represent a
sequence. A homopolymer, which consists of homoge-
neous nucleotides, can be represented by its nucleotide
and length, denoted as �,lh i where � 2 � and l > 0.
Using this representation, a nucleotide sequence can be
transformed into a homopolymer sequence (25). For
example, sequence AAACGG can be transformed into a
homopolymer sequence A,3h i C,1h i G,2h i. A naturally
occurring homopolymer in a biological sequence has
non-zero length. However, in sequence comparison, we
need a special homopolymer, a null homopolymer
� ¼ �,0h i, to represent homopolymer indels. We define
two homopolymers �,lh i and �,k

� �
to be similar if

� ¼ � 6¼ 0� 0, or different if � 6¼ �. The comparison
between two empty homopolymers is not allowed in
pairwise alignment.

Overview of PyroHMMsnp

In this article, we implement a realignment-based SNP
calling method termed ‘PyroHMMsnp’. Figure 1 describes
the workflow of PyroHMMsnp, which consists of two
separate components: an HMM and a Bayesian SNP
calling method. First, PyroHMMsnp takes input of raw
mappings generated by programs, such as MegaBlast (26),
SSAHA2 (27), Burrows-Wheeler Aligner with Smith-
Waterman algorithm (BWA-SW) (28), Roche’s
GSmapper and Ion Torrent’s TMAP, and then
computes the optimal alignment between every read and
the reference through the HMM. Then, a Bayesian
method is used to infer the underlying genotype that maxi-
mizes the observed reads.
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PyroHMMsnp: HMM

We propose an HMM to describe the ‘local alignment’
of a read with the corresponding reference sequence.
The model performs like a virtual sequencing machine
that takes a homopolymer reference sequence as input
and produces a read, which resembles the sequencing
characteristics of a 454 or Ion Torrent sequencer
(Supplementary Figure S3). As illustrated in Figure
2A, the HMM includes three essential hidden states
C,D,If g for sequencing (alignment), where C stands for
correct homopolymer calling, D for deletion and I for
insertion. More specifically, state C takes a non-empty
homopolymer �,lh i as the input and emits a similar non-
empty homopolymer �,kh i. If l > k, it is undercalled,
and if l < k, it is overcalled. State D also takes a non-
empty homopolymer �,lh i as the input and emits a null
homopolymer �,0h i, whereas state I takes an empty
homopolymer as the input and emits a non-empty
homopolymer. Two hidden states B,Ef g are added into
the model to represent the beginning and ending of the
alignment because (i) the quality at the beginning and
ending of a read may be low and (ii) sometimes the
exact boundaries (the beginning and ending) of the cor-
responding reference that produces the read are not
clearly defined. Thus, the HMM model represents a
local, rather than global, alignment. Based on the afore-
mentioned notation, a hidden state � can take values

from the set � ¼ B,C,D,I,Ef g, and a hidden state
sequence becomes � ¼ �1�2 � � ��n, which represents a
unique alignment between a read and the corresponding
reference sequence.
In the aforementioned HMM, each hidden state can

emit a homopolymer, either non-empty or empty. Let
h ¼ �,lh i represent the homopolymer input to a state �,
and let g ¼ �,k

� �
where k � 0 represent the homopolymer

emitted by the state. The probability that state � emits
output g, given input h is modeled by two independent
components: the base call rates (23) and the length call
rates, as

p gjh,�ð Þ ¼ p �j�,�ð Þ p kj�,l,�ð Þ,

where the base call rate p �j�,�ð Þ represents the probability
that an input base � is sequenced to an observed base �
during nucleotide incorporation, and the length call rate
p kj�,l,�ð Þ reflects the probability of observing k consecu-
tive bases in the sequencing process. In this article, we
follow the literature (23) to calculate the base call rates,
but for the length call, we propose the following two-level
hierarchical model.

Distribution of called homopolymer length
Homopolymer sequencing can be divided into two
contiguous stages. At the first stage, the flow intensity f
is detected from an input homopolymer �,lh i, and at

Figure 1. Algorithmic overview of the HMM-based SNP calling method termed PyroHMMsnp. PyroHMMsnp consists of two components: a HMM
for read-reference realignment and a Bayesian SNP calling method. (i) The HMM performs the realignment for a read with a reference sequence and
estimates the parameters using the expectation-maximization algorithm. After the training, HMM searches for the optimal alignment between a read
and the reference sequence. (ii) PyroHMMsnp accepts the raw mappings generated by a mapping program as the input to the SNP calling procedure,
identifies all candidate polymorphic sites along the genome, clusters together the nearby polymorphic sites into a window, enumerates all possible
haplotypes within the window and infers the most possible underlying haplotype.
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the second stage, the homopolymer length k is called
from f:

l! f! k

We model the first stage by p� f ljð Þ, or simply p f ljð Þ, in
the context where � is clearly defined. We model p f jlð Þ by
a Laplace distribution, as

p f jl > 0ð Þ ¼
1

2b
exp �

f� l
�� ��

b

� �

where b is the scale parameter that is modelled as a power-
law function of l,

b ¼ c0+c1 � lc2

where c0, c1 and c2 are constants and satisfyR
f p f l > 0jð Þ ¼ 1. For l ¼ 0, we follow the literature (1)
to model p f jl ¼ 0ð Þ using a log-normal distribution,
which models the negative flow intensity resulting from
the empty homopolymer input to the sequencing machine.
We model the second stage by p� k f

��� �
, or simply p k f

��� �
,

which can be estimated according to the following Bayes
formula,

p kj fð Þ ¼
1

Z
p f jkð Þ p kð Þ

where, p kð Þ is the prior distribution of homopolymer
length along the genome that can be estimated from the
existing or closely related genome sequences, p f jkð Þ is
the likelihood of observing the flow intensity f, given the
observed homopolymer length k, and Z is the normaliza-
tion term calculated as

Z ¼
X

k0
p f jk0ð Þ p k0ð Þ

If the flow intensities are not given, we compute the
homopolymer-length call rates by an integration over
the intensities, as

p kjlð Þ ¼

Z
f

p kj fð Þ p f jlð Þ

If the intensities are given, a one-level model of p k f
��� �

should be sufficient.

Homopolymer quality score
We include the base quality score in the hidden state
emission of the HMM. For a read homopolymer

Figure 2. (A) The topological structure of the HMM. The HMM takes an input of a nucleotide sequence and transforms it into a homopolymer
sequence for which an HMM is set up. The HMM is comprised of three essential hidden states: C for correct-call, undercall, and overcall; D for
deletion; I for insertion and two silent nodes B,Ef g to represent the beginning and ending of the alignment. (B) The parameter estimation procedure
of the HMM. (C) An illustrative example of the realignment-based SNP calling.

e136 Nucleic Acids Research, 2013, Vol. 41, No. 13 PAGE 4 OF 13



g ¼ �1�2 � � ��k, each compositional nucleotide �i has a
quality score qi. We therefore define the quality score of
the homopolymer as the average over the compositional
nucleotides, as

qg ¼
1

k

Xk
i¼1

qi

In the homopolymer emission, we can model the obser-
vation of the homopolymer quality score for a hidden
state � as

p qg �,l,�j
� �

Thus, the full model becomes

p g,qg h,�j
� �

¼ p � �,�jð Þ p k �,l,�jð Þ p qg �,l,�j
� �

Sequence realignment
Given a read r ¼ r1r2 � � � rn and the corresponding refer-
ence sequence t ¼ t1t2 � � � tm0 , which is located through
read-mapping, we first transform the reference t into
homopolymer sequence h ¼ h1h2 � � � hm, where hj ¼ �j,lj

� �
.

Then, we apply the HMM to search for the optimal align-
ment between the read r and the template h using the
Viterbi algorithm (29). We define the Viterbi variable
V i,j,k,�ð Þ as the probability of the optimal alignment
between the read prefix subsequence r 1:i½ � and the
homopolymer prefix subsequence h 1:j½ � ending with the
hidden state �, and, simultaneously, the suffix of r 1:i½ � is
a homopolymer of length k. We use the following recur-
sion to calculate the Viterbi variable for 1 � i � n,
1 � j � m, as

V i,j,k,�ð Þ ¼ max
i0,j0,k0,�0

V i0,j0,k0,�0ð Þp �j�0ð Þp �ij�j,�
� �

p kij�j,lj,�
� �

p qg �j,lj,�
��� �

where 0 � i� i0 � kmax, 0 � j� j0 � 1, 0 � k0 � k0max,
�0 2 �, kmax is the maximum length of the homopolymer
ended at read position i, k0max is the maximum length of the
homopolymer at read position i0 and p � �0jð Þ is the transi-
tion probability between two states. Based on the recur-
sion, we can use dynamic programming to compute the
Viterbi variables, starting with the boundary conditions
V 0,0,0,Bð Þ ¼ 1 and V 0,0,0,�ð Þ ¼ 0, where � 6¼ B, and
ending with the Viterbi score p r,h,��ð Þ ¼ max

k
V n,m,k,Eð Þ.

Parameter estimation
Parameters in the aforementioned HMM include the
hidden state transition matrix, the base call rates and the
parameters of the two-level hierarchical model. The esti-
mation of these parameters would be simple if the ground-
truth alignments that represent the procedure of
generating read sequences from templates were known.
However, because the ground-truth alignments are not
available, we propose an iterative strategy that is
inspired by the expectation-maximization algorithm (30)
to train the HMM without the ground-truth alignments
(Supplementary Methods). In this strategy, the learning
procedure is divided into two subsequent processes, as
illustrated in Figure 2B. First, given a read and its

mapped reference sequence, the best alignment is
computed and simultaneously assigned a posterior prob-
ability conditional on the previously learned parameters
using the forward–backward algorithm (Supplementary
Methods). The occurrences of the state transitions and
state emissions are counted from the probabilistically
weighted alignments, and parameters of the HMM are
updated according to the occurrences by using the
maximum likelihood estimation. This procedure iterates
until the likelihood value converges.

PyroHMMsnp: Bayesian method for SNP calling

Based on the aforementioned HMM, we propose a
realignment-based approach to call SNPs. As illustrated
in Figure 2C, the proposed approach infers the most likely
genotype from the realignments of the reads within a
window and reports SNPs if the inferred genotype is
different from the reference. The detail is described as
follows:

Haploid organism
Using the raw mapping results, we first extract all candi-
date polymorphic sites along the genome and then cluster
together close polymorphic sites. Next, for each cluster,
we set up a window of size w and collect all substrings of
the reads mapped to this window. Let R ¼ ri 1 � i � Njf g

be the set of the substrings, where N is the number of
substrings within the window. Let z � 1 be the number
of candidate polymorphic sites. We enumerate all 2z

possible haplotypes according to the raw read pileup.
Let t be one of the haplotypes. We set up the prior

probability p tð Þ according to the estimated density of
SNPs in the genome or the value provided by the user.
Within the window, we infer the posterior probability of
the haplotype using the Bayesian method, as

p tjRð Þ ¼
p Rjtð Þ p tð ÞP
t0 p Rjt0ð Þ p t0ð Þ

¼

Q
i p rijtð Þ p tð ÞP

t0

Q
i p rijt

0ð Þ p t0ð Þ

where p rijtð Þ is calculated as the score of the optimal align-
ment between ri and the haplotype t using the HMM
model. Because the genotype comprises a single haplo-
type, we choose the haplotype t�, which has the maximal
posterior probability as the candidate haplotype and
report SNPs at the sites where t� differs from the refer-
ence. The quality score of the SNP is calculated as
Q ¼ �10 log10 1� p t�jRð Þð Þ.

Diploid organism
We adopt a similar approach to the SNP calling for
diploid organisms, but with some slight modifications.
Each genotype consists of two underlying haplotypes
g ¼ t1,t2h i in which the two haplotypes may be the same
(homozygous) or different (heterozygous). The prior prob-
ability for the genotype is calculated by p gð Þ ¼ p t1ð Þ p t2ð Þ,
and the likelihood is computed by the following equation:

p Rjgð Þ ¼
Y
i

p rijt1ð Þ p t1jgð Þ+p rijt2ð Þ p t2jgð Þ½ �

where p t1jgð Þ ¼ p t2jgð Þ ¼ 0:5. Then, we apply the Bayesian
method to compute the genotype that maximizes the
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posterior probability p g Rjð Þ. We call SNPs at the sites
where g differs from the reference and calculate the cor-
responding quality score.

RESULTS

Data sets

To assess the performance of PyroHMMsnp, we used two
Escherichia coli resequencing data sets. The first one is the
whole-genome resequencing data of E. coli substrain
DH10B (Life Technology Website: C22-169), which was
generated by an Ion Torrent sequencer Ion 318TM Chip.
The data set consists of 6 479 267 reads with an average
length of 	240 bp and an average coverage of 	333.2-
fold. The second one is the whole-genome resequencing
data of E. coli substrain MG1655 (NCBI Short Read
Archive: SRR001355), which was sequenced by a GS
454 FLX sequencer. The data set consists of 256 503
reads with an average length of 244 bp and an average
coverage of 	9.6-fold. These two data sets were also
used to study the distributions of the flow intensities and
compare the Ion Torrent sequencing data with 454
sequencing data.
We applied PyroHMMsnp to call SNPs in human

genome using the whole-genome resequencing data
produced by an Ion Torrent PGM machine for an indi-
vidual G. Moore (NCBI Short Read Archive:
ERX016676). The data set consists of 859 757 279 reads,
with an average length of 	183 bp.
We also applied PyroHMMsnp to call SNPs in popula-

tion sequencing data. We downloaded the mapping file for
chromosome 20 resequencing data produced by the GS
454 FLX Titanium for 15 Utah residents with Northern
and Western European ancestry (CEU) from the 1000
Genome Project. The file consists of 11 855 924 mapped
reads, with an average length of 	246 bp.

Homopolymer emission model in HMM

We used the aforementioned two E. coli whole-genome
sequencing data to explore the empirical distributions of
the flow intensities for both the Ion Torrent and 454
sequencing data conditional on the lengths of the reference
homopolymers. To ensure the quality of reads in these
data sets, we first performed a filtration procedure follow-
ing the literature (10) to eliminate reads that were too long
or too short, or had more than two ambiguous bases.
Then, we mapped the remaining reads onto the reference
genome using MegaBlast (26). In this process, we set the
gap-open penalty, gap-extend penalty and e-value cutoff
to 1. Results showed that the mapping rates of the Ion
Torrent data and the 454 data were 88.4 and 92.6%, re-
spectively. Next, we applied the HMM (with default par-
ameters) to compute the optimal alignments for the
mapped reads, in which the homopolymers in the reads
were aligned with the reference homopolymers, and their
flow intensities matched the length of the reference
homopolymers. Figure 3A and B illustrate the empirical
distributions of the flow intensities for adenine
homopolymer stretches, conditional on the lengths of
the reference homopolymers obtained from the Ion

Torrent and 454 data, respectively. We then fitted these
empirical distributions of the flow intensities to Laplace
distributions, which accurately described these distribu-
tions of the flow intensities emitted from the reference
homopolymers for both data sets.

We also observed that the distribution of the flow in-
tensity had greater variance as the reference homo-
polymers became longer. For the Laplace distribution,
the variance information is encoded by the scale param-
eter. We then plotted the estimated scale parameters of the
Laplace distributions against the reference homopolymer
lengths in Figure 3C and D. We fitted the estimated scale
parameters by a power-law function that was proposed in
the ‘Materials and Methods’ section. As shown in Figure
3C and D, the scaling exponents of the power-law func-
tions are 	1.23 for the Ion Torrent data and 1.46 for the
454 data. In addition, we also explored the empirical dis-
tributions of the flow intensities for homopolymers of
cytosine, guanine and thymine and fitted them by the
Laplace distributions. The results are plotted in
Supplementary Figures S4–S7. Compared with previous
studies that model the variance using the quadratic
equation (1,9,13), our proposed power-law functions
have better fit and could be explained by the random
walking of polymerases along the nascent DNA strands
(31,32).

We used a two-level hierarchical model to describe the
homopolymer length calling procedure. The first level is
the flow intensity emission component p f ljð Þ, the probabil-
ity that the sequencer detects flow intensity f for an input
homopolymer of length l. p f ljð Þ can be modeled by the
aforementioned Laplace distribution (Figure 3A). The
second level is the length calling component, p k f

��� �
, the

probability that the base-calling software calls a length k
homopolymer, given the flow intensity f (Figure 3E). If the
flow intensities are given, a one-level model, p k f

��� �
, should

be sufficient. For the two-level model, we used the
Bayesian method to integrate out the latent flow intensity
f to obtain the length call rates, p k ljð Þ ¼

R
f p k f

��� �
p f ljð Þ.

Comparing the Ion Torrent and 454 sequencing data

This comparison was based on the two E. coli whole-
genome sequencing data sets. Although both the 454
and Ion Torrent technologies have similar sequencing
characteristics (33,34), their detection methods are differ-
ent. The Ion Torrent uses a semiconductor sensor to detect
the change of solution pH, whereas the 454 technology
detects enzymatic-reacted luminescence. From Figure 3A
and B, we can clearly observe that the distributions of the
454 data have a more compact shape than that of the Ion
Torrent data. The estimated scale parameters, as
illustrated in Figure 3C and D, also confirm that the
flow intensities of the 454 data have smaller variance
than that of the Ion Torrent data, implying that the flow
intensities of 454 data have higher fidelity.

Furthermore, we analyzed the two E. coli whole-
genome sequencing data sets, computed the optimal align-
ment using the HMM, and decoded the hidden state paths
for the alignments. Table 1 shows the statistics of the
homopolymer correct-call, undercall, overcall, mismatch,
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Figure 3. The distribution of the flow intensity and homopolymer emission modeling of poly(dA) stretches. (A) The distribution of the flow intensity
extracted from the Ion Torrent data conditional on the length of the poly(dA) stretches. The dark dash-dotted curves are the data-fitted Laplace
distribution models. (B) The distribution of the flow intensity extracted from the 454 data conditional on the lengths of the poly(dA) stretches.
(C) The plot of the estimated scale parameter b against the homopolymer size l from the Ion Torrent data. The red upward-pointing triangles
represent the estimated scale parameters of the Laplace distributions. The fitted model is shown by the dark dash-dotted curve. (D) The plot of the
estimated scale parameter b estimated from the 454 data against the homopolymer size l. (E) The posterior probability of homopolymer size k, given
the flow intensity f estimated from Ion Torrent data. (F) The length calling rates for poly(dA). The z axis is the logarithmic scale of p kjlð Þ. The color
decline from red to blue represents the probability from high to low.
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insertion and deletion. The Ion Torrent data have a lower
correct-call rate and higher undercall, overcall, deletion
and insertion rates than those of the 454 data. We
further catalogued the insertions into two subgroups: in-
sertions caused by incorporation asynchronization and
insertions caused by other sequencing errors. Although
97.05% of the insertions in the 454 data are caused by
incorporation asynchronization, this is true for only
56.73% of the insertions in the Ion Torrent data. These
results show that the 454 sequencing data have higher
accuracy than the Ion Torrent data.

Simulation experiments for haploid genomes

The performance of PyroHMMsnp is measured by the
following three criteria: sensitivity, specificity and F1

score. Sensitivity is defined as the fraction of the
annotated SNPs called by the program, specificity as the
fraction of the called SNPs that are correct and F1 score as
a harmonic mean of sensitivity and specificity. The
formulas are shown in the following:

sensitivity ¼
# True Positivesf g

# Annotated SNPsf g
,

specificity ¼
# True Positivesf g

# Called SNPsf g

F1 ¼
2� sensitivity� specificity

sensitivity+specificity

To compare PyroHMMsnp with other SNP-calling
programs of Samtools (v0.1.17), VarScan (v2.2.8) and
Atlas-SNP2 (v1.4.1), we designed the following simulation
experiments based on the E. coli whole-genome
sequencing data generated by the Ion Torrent machine.
The simulation strategy consists of the following three
steps. First, we generated an artificial reference genome
by uniformly mutating single bases on the E. coli
DH10B genome, creating a set of ground-truth SNPs.
Second, we ran the SNP-calling programs to predict
SNPs using both the Ion Torrent resequencing data and
the artificial reference genome. Finally, we assessed the
accuracy of the predictions using the aforementioned
criteria.
To perform this simulation, we sampled 10 000 random

alleles from the E. coli genome and mutated each into one
of the other three alleles with equal probabilities. As the
Ion Torrent data have deep coverage, we were able to test
the performance of SNP calling methods using different
sequencing depths by down-sampling the reads to 5�, 10�

and 15� coverage. The sampled reads were then mapped
onto the artificial reference genome and used to call SNPs.
We then applied PyroHMMsnp, Samtools, VarScan and
Atlas-SNP2, to call SNPs. Samtools integrated a built-in
module to recalibrate quality scores through realignment
and computed the optimal alignments using a simple
scoring function that was specifically designed for
homopolymers. VarScan implemented a batch of heuristic
filters to reduce false-positive discoveries of SNPs. Atlas-
SNPs developed a binary classifier to discriminate SNPs
from sequencing errors.

We summarize the performance of these methods in
Table 2. PyroHMMsnp achieves the highest F1 scores in
all three levels of sequencing coverage indicated, suggest-
ing that PyroHMMsnp has the best overall performance.
As the sequencing coverage increases, both the sensitivity
and specificity of PyroHMMsnp, Samtools and Atlas-
SNP2 increase, and the F1 score of Samtools grows
closer to that of PyroHMMsnp. In contrast, the specificity
of VarScan decreases with the increase of sequencing
coverage, although the sensitivity does increase, possibly
because VarScan does not model sequencing error well.
On the other hand, Atlas-SNP2 is conservative in calling
SNPs, as evidenced by its higher specificity (100% in all
three sequencing coverage) and lower sensitivity than
PyroHMMsnp and Samtools. This haploid simulation
experiment shows that the HMM-based realignment
strategy in PyroHMMsnp works well for the homo-
polymer sequencing data.

We also performed the simulation experiment using the
E. coli whole-genome sequencing data generated by the
454 machine (Supplementary Experiment). The sensitiv-
ity-versus-specificity plot (Supplementary Figure S10)
also confirms that PyroHMMsnp has the best overall
performance.

Simulation experiments for diploid genomes

To conduct a diploid simulation experiment to assess the
performance of the SNP-calling methods, we randomly
selected a 5million bp segment on human chromosome
20 as the template to generate simulated SNPs and
pyrosequencing data. To generate SNPs, we randomly
selected a site and mutated it into a homozygous SNP
with one-third chance and heterozygous SNPs with two-
third chance. Setting the SNP density to be 0.1%, we
simulated an artificial genome segment with 4942 SNPs,
and then, using this genome segment, we applied the 454
simulator ART (35) to generate eight sets of sequencing
reads with varying coverage: 5�, 10�, 15�, 20�, 25�,

Table 1. The comparison between the 454 and Ion Torrent sequencing data

Platform Correct-call (%) Undercall (%) Overcall (%) Mismatch (%) Deletion (%) Insertion (%) (Non-CAFIE:CAFIE) (%)

454 99.659 0.096 0.122 0.007 0.013 0.103 (2.954:97.046)
Ion Torrent 97.487 0.950 1.033 0.008 0.084 0.437 (43.271:56.729)

PyroHMMsnp was applied to the E. coli genome sequencing data sets generated by the 454 and Ion Torrent sequencers.
The raw mappings were realigned using the HMM, and the alignments were catalogued into correct-call, undercall, overcall, mismatch, deletion and
insertion, according to the hidden states.
The insertion was further grouped into CAFIE and non-CAFIE.
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30�, 35� and 40�. The SNP-calling programs were
applied to the original genome template and the simulated
454 data sets to call SNPs. The resulting sensitivity, spe-
cificity and F1 measure are shown in Figure 4.

At the coverage of 5�, PyroHMMsnp calls 1264 true
positive variants and 136 false positive variants. In
contrast, Samtools calls 480 true positives and 40 false
positives, VarScan calls 189 true positives and 21 false
positives and Atlas-SNP2 calls 359 true positives and 23
false positives. These results clearly suggest that
PyroHMMsnp is sensitive enough to detect true positive
variants at the shallow coverage, although the specificity is
slightly less than that of either Samtools or Atlas-SNP2.
As the sequencing coverage increases to 20, the sensitivity
of PyroHMMsnp increases to 96.3%, significantly
higher than that of Samtools (75.3%), VarScan (67.2%)
and Atlas-SNP2 (80.0%). Similarly, the specificity of
PyroHMMsnp increases to 99.4%, which is higher
than that of Samtools (99.1%), VarScan (95.1%) and
Atlas-SNP2 (99.3%). This diploid simulation experi-
ment clearly shows the exceptional performance of
PyroHMMsnp.

Application to the human genome resequencing data

Finally, we applied PyroHMMsnp to the resequencing
data of human genome generated by the Ion Torrent
PGM machine and evaluated its performance. We
mapped the data onto the human reference genome hg19
by using BWA-SW (28) with the default parameter con-
figuration. We filtered out low-quality reads, discarding
reads with either low mapping quality score or <15 in
vendor’s quality score. To evaluate the performance of
PyroHMMsnp, Samtools and VarScan, we focused on
chromosome 20, with an average read coverage of
	6.4-fold, and we assessed the accuracy of SNP calling
using the SNP annotations in dbSNP 136. The perform-
ance is measured by both the number of predictions and
accuracy, which is the fraction of the true positives (SNPs
that can be found in dbSNPs) in the predicted SNPs, the
same as specificity that we have defined before. We do not
use sensitivity here because the sensitivity cannot be
measured when the ground-truth is not available.

As shown in Table 3, PyroHMMsnp calls 37 739 SNPs,
3311 (12.9%) more than Samtools (33 428), with a slightly
higher accuracy (98.4%) than Samtools (98.3%). Both
PyroHMMsnp and Samtools are more accurate in predict-
ing homozygous SNPs, with 99.6 and 99.5%, respectively,
than heterozygous SNPs, with 97.0 and 96.7%, respect-
ively. The transition-versus-transversion ratio (Ti/Tv) is
2.17 for PyroHMMsnp and 2.33 for Samtools. In
contrast, VarScan predicts 63 997 SNPs, of which only
47 755 (74.6%) are annotated in dbSNP, and its Ti/Tv
ratio is 1.79. Atlas-SNP2 predicts only 6007 SNPs, of
which 5817 (96.8%) are annotated in dbSNP, and its
Ti/Tv ratio is 2.20. We also plot the overlaps of SNPs
called by these four methods in Supplementary Figure S8.
We conducted the aforementioned experiment using a

laptop computer with 2.30GHz CPU and 6 GB memory.
In terms of running time, PyroHMMsnp took 	66.8min
(Table 3) to call the SNPs on the 63 M-base human
chromosome 20 (hg19). In comparison, Samtools and
Atlas-SNP2 took a similar running time, 	20min, and
VarScan took 36.1min.
Figure 5 shows some representative cases in which

PyroHMMsnp succeeds in finding the SNPs, whereas
Samtools fails. As depicted in Figure 5A, a homozygous
SNP can be found at the locus 346 751. PyroHMMsnp
reports this site as a homozygous polymorphic site based
on an inserted guanine, which the mapping program
wrongly aligned between loci 346 750 and 346 751.
Furthermore, although the flow intensity of 5 bp
homopolymers has a considerably wider variance accord-
ing to Figure 3A, it seldom happens that a 5 bp
homopolymer is undercalled as a 2 bp homopolymer,
according to the error model. Therefore, PyroHMMsnp
calls this polymorphic site by a high probability. However,
Samtools considers it within a long homopolymer in
which the sequencing accuracy is low, predicting it as a
sequencing error. Figure 5B–D illustrates other cases
where PyroHMMsnp is able to predict polymorphic sites
that are surrounded by homopolymers. In summary,
PyroHMMsnp performs better than other programs in
distinguishing SNPs that occur either within or around
the homopolymer stretches.

Table 2. Sensitivities, specificities and F1 scores of four SNP calling methods across various levels of coverage, including 5�, 10�, 15�, of the

Ion Torrent data

Coverage PyroHMMsnp Samtools VarScan Atlas-SNP2

5�
Sensitivity 82.2% (±3.1e-3) 76.1% (±3.4e-3) 81.3% (±3.4e-4) 17.0% (±3.4e-3)
Specificity 99.3% (±1.8e-4) 99.9% (±2.5e-4) 97.2% (±8.0e-4) 100.0% (±0.0e+0)
F1 89.9% (±1.8e-3) 86.4% (±2.2e-3) 88.5% (±2.1e-3) 29.0% (±5.0e-3)

10�
Sensitivity 93.8% (±2.2e-3) 92.2% (±2.2e-3) 93.6% (±2.2e-3) 58.5% (±4.2e-3)
Specificity 99.7% (±3.1e-4) 99.8% (±3.5e-4) 92.2% (±4.7e-4) 100.0% (±5.5e-5)
F1 96.7% (±1.1e-3) 95.9% (±1.2e-3) 92.9% (±1.1e-3) 73.8% (±3.3e-3)

15�
Sensitivity 94.8% (±1.9e-3) 94.4% (±1.9e-3) 94.8% (±2.1e-3) 79.8% (±5.3e-3)
Specificity 99.8% (±2.9e-4) 99.8% (±3.4e-4) 85.4% (±7.3e-4) 100.0% (±1.5e-4)
F1 97.2% (±1.0e-3) 97.0% (±1.0e-3) 89.9% (±1.1e-3) 88.7% (±3.2e-3)

The simulation experiment is repeated 10 times to evaluate sensitivities, specificities and F1 measurements. Numbers in parenthesis are the standard
deviations across 10 replicate simulations.
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Figure 6 shows some representative cases in which the
false SNPs induced by the misalignments are avoided by
PyroHMMsnp, but called by Samtools. For the example
shown in Figure 6A, the guanine homopolymer stretches
at locus 75 319 are overcalled, and the cytosine
homopolymer stretches at locus 75 324 are undercalled,
thus shifting adenines at locus 75 323 one base pair away
from the reference position and, in turn, causing the false
mismatches. Figure 6B shows the misalignments, which
resulted from incorporation asynchronization. That is,
the adenines at locus 18 408 293 of both the top second
read and the bottom read should be aligned with the
adenine homopolymer stretches at locus 18 408 295.
Thus, for situations where the mapping program inaccur-
ately aligns the reads with sequencing errors,
PyroHMMsnp is able to adjust the alignments according
to the sequencing error model.

Compared with the results of Samtools, we found some
interesting SNPs that were annotated in dbSNP, but not
called by our method (Supplementary Figure S9). In the
first example, PyroHMMsnp assumes, at most, two haplo-
types for an individual genome and thus missed the SNP.
In the second example, PyroHMMsnp did not call the
SNP because the observation can be interpreted in two
ways: the underlying haplotype having two mutations
(rs544597 ‘A/T’ at site 17 814 145 and rs658674 ‘C/T’ at
site 17 814 146) or the underlying haplotype having two
indels (rs111593622 ‘-/A’ at site 17 814 144 and
rs201082568 ‘-/C’ at site 17 814 146). PyroHMMsnp
prefers not to call mutations at this confounding situation.

Application to 1000 genome sequencing data

To evaluate the performance in detecting SNPs in popu-
lation genome sequencing data, we ran PyroHMMsnp and
other tools on the 454 sequencing data of 15 CEU indi-
viduals for whom alignments are available from the 1000
Genome Project Phase I. The average coverage across
chromosome 20 is 	35�, combining data sets from all
15 individuals. The tandem repeats around the centromere
are masked. The following results were achieved: (i)
PyroHMMsnp called 105 482 SNPs, 104 332 (98.9%) of
which were found in dbSNP. (ii) Samtools called 88 466
SNPs, 87 803 (99.3%) of which were found in dbSNP. (iii)
VarScan called 74 977 SNPs, 73 713 (98.3%) of which were
found in dbSNP. (iv) Atlas-SNP2 called 101 840 SNPs,
100 157 (98.3%) of which were found in dbSNP. Overall,
PyroHMMsnp called many more SNPs than the other
programs, and at the same time had the second best
accuracy.

DISCUSSION

In this article, we have proposed an HMM-based SNP
calling program, termed PyroHMMsnp, to model
homopolymer sequencing errors in both 454 and Ion
Torrent sequencing data. Through a set of simulation ex-
periments based on the E. coli whole-genome sequencing
data, as well as performance on the real human genome
resequencing data and 1000 Genome sequencing data, we
show that PyroHMMsnp significantly improves the

Figure 4. The sensitivity, specificity and F1 score of the diploid simu-
lation experiment.
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accuracy of SNP detection, compared with other state-of-
the-art programs.

Extension to detect short indels

It has been shown that the haplotype-based strategy can
also improve the accuracy of the detection of insertions
and deletions (indels) (19,36,37). To accomplish this in the
next stage of our studies, we will efficiently enumerate the
candidate haplotypes that contain the susceptible indels
and SNPs. We will extend the proposed HMM model to
construct the multiple sequence alignment to more effi-
ciently enumerate the candidate haplotypes (38). The
idea is similar to the partial order graph (39) or the
variant graph (40). Finally, we will use the Bayesian
framework to infer the most likely haplotypes that
contain short indels or mutations.

Extension to account for incorporation asynchronization

Our proposed HMM could be extended to account for
incorporation asynchronization, as well as CAFIE,
which are also called phasing leading and phasing

lagging, respectively, in the Ion Torrent community.
This can be done by adding the auxiliary hidden states
corresponding to these two asynchronization phenomena
and changing the first order Markov chain to the second-
order Markov chain. The proposed parameter estimation
procedure described in this article could be used to train
the second-order Markov model with a slight modifica-
tion, and the Viterbi algorithm can be modified to
account for the second-order Markov chain.

Computational complexity

The computational complexity of PyroHMMsnp is
affected by four factors: (i) the size of the window w, in
which the O w2

� �
-Viterbi algorithm is used to align reads

with the reference, (ii) the number of candidate variant
sites within the sliding window, z, in which we enumer-
ate 2z candidate haplotypes, (iii) the number of reads
within the sliding window, N, which is proportional to the
sequencing coverage and (iv) the length of the genome L.
The total complexity is O L

w�N� 2z � w2
� �

¼ O LNw2zð Þ,
where L

w is the number of windows in the genome. Clearly,

Figure 5. Representative SNPs called by PyroHMMsnp, but not by Samtools. (A) A homozygous SNP at locus 346 751. (B) A homozygous SNP at
locus 389 456. (C) A heterozygous SNP at locus 38 248 603. (D) A heterozygous SNP at locus 59 275 582.

Table 3. The comparison of four SNP calling programs using the Ion Torrent human genome resequencing data (Chromosome 20)

Method All predicted SNPs Homozygous SNPs Heterozygous SNPs Transition/
Transversion

Run
time (min)

Predictions Found in
dbSNP

Predictions Found in
dbSNP

Predictions Found in
dbSNP

PyroHMMsnp 37 739 37 154 (98.4%) 20 651 20 574 (99.6%) 17 088 16 580 (97.0%) 2.17 66.8
Samtools 33 428 32 876 (98.3%) 19 585 19 486 (99.5%) 13 843 13 390 (96.7%) 2.33 20.4
VarScan 63 997 47 755 (74.6%) 26 044 25 022 (96.1%) 37 953 22 733 (59.9%) 1.79 36.1
Atlas-SNP2 6007 5817 (96.8%) 3310 3121 (99.7%) 2877 2696 (93.7%) 2.20 21.1

Prediction results were validated by dbSNP136.
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the exhaustive enumeration of 2z candidate haplotypes is
the dominant factor controlling the actual running time.
As such, the running time can be reduced if we can filter
out non-polymorphic sites, or, in the alternative, design an
algorithm to generate candidate haplotypes more effi-
ciently. We will explore the multiple sequence alignment
graph (38–40) or the assembly technique (37,41) to avoid
exhaustive enumeration.

Extension to the detection of rare variants

Detecting rare variants is important for disease associ-
ation studies (42). As the frequencies of rare variants
can be much lower than the sequencing error rate, the
major challenge is to distinguish real variants from
sequencing errors. Because our HMM model has been
shown to better capture the error patterns in
pyrosequencing data, we believe that applying it to the
population sequencing data can improve the detection of
rare variants. Modifications to the Bayesian model are
needed to consider low-frequency variants (43–45).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–11, Supplementary Methods
and Supplementary Experiments.
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