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Abstract

In an empirical analysis of transposable element (TE) abundance within natural populations

of Mimulus guttatus and Drosophila melanogaster, we found a surprisingly high variance of

TE count (e.g., variance-to-mean ratio on the order of 10 to 300). To obtain insight regarding

the evolutionary genetic mechanisms that underlie the overdispersed population distribu-

tions of TE abundance, we developed a mathematical model of TE population genetics that

includes the dynamics of element proliferation and purifying selection on TE load. The

modeling approach begins with a master equation for a birth-death process and extends the

predictions of the classical theory of TE dynamics in several ways. In particular, moment-

based analyses of population distributions of TE load reveal that overdispersion is likely to

arise via copy-and-paste proliferation dynamics, especially when the elementary processes

of proliferation and excision are approximately balanced. Parameter studies and analytic

work confirm this result and further suggest that overdispersed population distributions of

TE abundance are probably not a consequence of purifying selection on total element load.

Introduction

The genomics revolution has revealed that a significant portion of eukaryotic genomes consists

of transposable elements (TEs, also called mobile DNA elements). Notable examples include

the human and maize genomes, 44% and 85% of which are TE sequences [1, 2]. Various

mobility mechanisms enable TEs to proliferate and/or change position within a genome

(transposition). The effect of TEs can range from having little to no consequence on phenotype

to being powerful mutagens [3]. In addition to the innate tendency of TEs to proliferate, the

distinction between autonomous and non-autonomous TEs, mutations leading to nonactive

elements, and factors such as recombination, epigenetics, and selection contribute to their

complex genomic distribution and demography [4, 5]. The population structure of TE families

may represent an evolutionary equilibrium between proliferation and selection, i.e., transposi-

tion-selection balance. Alternatively, increased proliferation rates (transposition bursts) may

on occasion generate TE families that have not had enough time to reach evolutionary
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equilibrium [6–8]. While it is clear that TEs have been an integral part of the long-term evolu-

tion of genome architecture, much about the role of TEs in evolution remains unknown.

Knowledge of the dynamics of TE abundance in natural populations is an important step

toward an increasing understanding of how genomes evolve.

The classical population genetic theory of TEs used a combination of mathematical analysis,

computer simulation, and a limited amount of experimental data, to give theoretical insight

into TE dynamics and demographics [9]. This modeling considered a single family of TEs with

a drift-diffusion representation of TE proliferation, with either no selection or weak selection

acting on total TE copy number. This modeling approach has informed our understanding of

the population genetics of TEs for several decades. However, the classical theory does not

reproduce experimentally observed within-population variances that often greatly exceed the

population mean. The cause of this discrepancy is that the classical approach assumes a bino-

mial distribution of within-population TE loads, which constrains the population variance to

be no greater than the population mean.

This paper begins with a brief review of classical TE population genetics. This is followed by

an analysis of TE demography derived from genome-sequence data of two natural populations

(Mimulus guttatus and Drosophila melanogaster). Notably, in both cases, we observe that the

within-population variance of TE load is highly overdispersed. Because these empirical results

violate the predictions of classical TE modeling, we developed a master equation formulation

of the population distribution of TE loads in a large randomly mating population. This alterna-

tive population genetic framework simultaneously and self-consistently predicts both the

mean and variance of within-population TE load. This model of TE population genetics is

then interrogated to identify evolutionary genetic mechanisms that influence the population

variance of TE load. Moment-based analyses of time-dependent and equilibrium population

distributions of TE load reveal that overdispersion may arise via copy-and-paste proliferation

dynamics, especially when the elementary processes of proliferation and excision are first-

order and balanced. Parameter studies and analytic work confirm this result and further sug-

gest that overdispersed population distributions of TE abundance are probably not a conse-

quence of purifying selection on total element load.

Classical population genetics of TEs

In classical TE population genetics a chromosome is modeled as a finite set of m available

insertion sites (loci) per haploid genome, each of which can either be occupied by a transpos-

able element (or not) [9–13]. For a single family of TEs, the state of an infinite diploid popula-

tion at a given chromosomal site i, for i = 1, 2, . . ., m, is described by its frequency, xi, where

0� xi� 1. Assuming insertion sites exhibit no linkage disequilibrium, the set of frequencies,

fxig
m
i¼1

, describes the state of the population. The mean copy number of TEs per individual is

�n ¼ 2
Pm

i¼1
xi, where the factor of 2 accounts for diploidy.

The evolutionarily neutral version of the classical theory includes two processes affecting

TE load (gain and loss). Gain of TEs is represented by a proliferation rate (per individual per

element per generation) in the germ line of an individual with n elements. This proliferation

rate, denoted un, is typically assumed to be a decreasing function of TE load (dun/dn< 0). Loss

of TEs is represented by a first-order excision rate constant (per individual per element per

generation) denoted by ν. The change (per generation) in the mean TE copy number per indi-

vidual is thus

D�n ¼ E½nun� � n�n ; ð1Þ

where n is the diploid TE load of a randomly sampled individual, the expected value is taken
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over individuals in the population, and �n ¼ E½n� is the population mean of TE copy number.

Expanding Eq (1) around the mean TE load gives the following second-order approximation,

D�n � �nðu�n � nÞ þ
V�n

2
2
du�n
d�n þ �n d

2u�n
d�n2

� �

; ð2Þ

where V�n denotes the population variance in TE copy number. If the higher order terms that

scale the population variance are negligible, the change in mean TE copy number per genera-

tion is D�n � �nðu�n � nÞ. For this neutral model of TE population dynamics, one concludes that

�n will approach a (stable) equilibrium value satisfying u�n � n provided du�n=d�n < 0.

To extend this model of TE population genetics to include the effect of natural selection, it

is customary to assume a viability function, wn, that is a decreasing function of genome-wide

TE load (dwn/dn< 0). Approximating the mean fitness of the population (E½wn�) by the fitness

of an individual with an average number of copies (w�n), Eq (2) can be extended to include the

effect of selection on TE load [13],

D�n � V�n
dlnw�n

d�n
þ �nðu�n � nÞ þ

V�n

2
2
du�n

d�n
þ �n

d2u�n

d�n2

�

:

�

ð3Þ

As a specific example, consider the proliferation rate function un = ξ0/n with ξ0 > 0 and the

selection function wn = e−γn for γ> 0 (viability is a decreasing function of TE copy number).

Because dun/dn = −ξ0/n2 and d2 un/dn2 = 2ξ0/n3, the higher order terms involving derivatives

of un evaluate to zero. Consequently, Eq (3) becomes

D�n � V�n
d lnw�n

d�n
þ x0 � n�n :

Substituting d lnw�n=d�n ¼ � g and setting D�n ¼ 0 gives 0 ¼ � gV�n þ x0 � n�n. Solving for the

equilibrium mean TE load gives,

�n ¼
x0 � gV�n

n
: ð4Þ

This result is biologically meaningful for x0 > gV�n . As expected, the equilibrium TE load is an

increasing function of the proliferation rate constant, ξ0, and a decreasing function of the exci-

sion rate constant, ν. Furthermore, stronger selection against TE load (greater γ) decreases the

mean value of the equilibrium TE load in the population.

Population variance in the classical model

Analysis of the classical model of TE population genetics proceeds in an ad hoc manner by

making further assumptions regarding the population variance, V�n , which is a parameter in

Eqs (2)–(4). For example, one may assume [9] the population variance takes the form

V�n ¼ �n 1 �
�n

2m

� �

� 2ms2

x þ 4
X

i<j

Dij ; ð5Þ

where D is a matrix of linkage disequilibrium coefficients [14], and s2
x ¼

1

m

Pm
i¼1
ðxi � �xÞ2 is

the variance in element frequency across loci (see Sec 1 in S1 Text). If one further assumes that

linkage effects are small enough to be ignored, then

V�n � �n 1 �
�n

2m

� �

� 2ms2

x : ð6Þ
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For a large enough population, one expects the variance in element frequency across loci to be

eventually become negligible, s2
x ! 0 and, consequently, the equilibrium population variance

of TE load should approach that of a binomial distribution,

V�n � �n 1 �
�n

2m

� �

: ð7Þ

In that case, assuming occupiable loci are not limiting (�n << 2m), the population variance is

well-approximated by the mean (V�n � �n). Substituting this value into Eq (4), the classical

model indicates that the equilibrium TE load will be

�n ¼
x0

gþ n
: ð8Þ

As in Eq (4), the equilibrium TE load is an increasing function of the proliferation rate con-

stant (ξ0), and a decreasing function of both the excision rate constant (ν) and the strength of

selection against TE load (γ).

The classical model, Eqs (3)–(8), has informed expectations regarding the population genet-

ics of TEs for several decades. For example, an extension of this classical theory predicts that in

a finite population of effective size Ne, the the stationary distribution of TE frequency (x) will

take the form ρ(x)/ xa−1(1 − x)b−1 where a ¼ 4Ne�nu�n=ð2m � �nÞ and b ¼ 4Neðnþ

jd lnw�n=d�njÞ [11]. For un = ξ0/n, wn = e−γn, and �n << 2m, this gives a = 4Neξ0 and b = 4Ne(ν
+ γ). On the other hand, the classical approach to modeling TE population genetics has obvi-

ous limitations. For one thing, the derivation and analysis of the classical model makes

assumptions about the population variance, V�n in Eqs (5)–(7), that may not be consistent with

experimental observations (see Results). Furthermore, the population variance of TE load

ought to be an emergent property of a model constructed for the purpose of understanding the

population genetics of TEs, rather than a modeling assumption that is imposed upon a preex-

isting framework, as in Eq (7).

The remainder of this paper addresses these two issues in detail. We begin with empirical

evidence that population variance of TEs is neither binomial nor well-approximated by the

mean. This motivates the presentation of an alternative population genetic framework that,

simultaneously and self-consistently, predicts both the population variance and the mean TE

load. This model of TE population genetics is then interrogated to identify evolutionary

genetic mechanisms that influence the population variance of TE load.

Results

Dispersion of TE loads in the classical model

In the classical modeling of TE population genetics discussed above, analytical results are

obtained by assuming a randomly mating population with a binomial distribution of TE loads,

n � Binomialð2m; �n=2mÞ ; ð9Þ

with mean E½n� ¼ �n and variance Var½n� ¼ �nð1 � �n=2mÞ. A simple measure of the variability

of TE load within a population is the index of dispersion (Fano factor) given by

Fano½n� ¼
Var½n�
E½n�

: ð10Þ

Substituting the mean and variance of the binomial distribution into Eq (10), it is apparent

that the classical model of TE population genetics predicts (i.e., assumes) a Fano factor that is
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less than one,

Fano½n� ¼ 1 �
�n

2m
< 1 :

In fact, when the number of sites occupied by TEs is small compared to the total number of

occupiable loci (m!1 with �n fixed), the Fano factor approaches one from below

(Fano½n� ! 1). In this limit, the binomial distribution of Eq (9) is well-approximated by

n � Poissonð�nÞ. If it were the case that the TE load within a population were Poisson distrib-

uted, then the mean and variance of TE load would be equal (E½n� ¼ Var½n� ¼ �n) and the

index of dispersion would be Fano½n� ¼ 1. With our expectations set by this prediction of

classical modeling, empirical observations of a Fano factor greater than one (Fano½n� > 1)

would indicate overdispersion of TE load within a population.

Overdispersion of empirical TE counts

Figs 1 and 2 present analyses of two data sets, both of which demonstrate that the variance of

TE load in experimentally studied populations can be far greater than would be predicted by

classical models of TE population genetics. The first data set (analyzed in Fig 1) consists of

whole-genome sequence data from 164 lines of Mimulus guttatus derived from a naturally

occurring population (hundreds of thousands of individuals) in Iron Mountain, Oregon, USA

[15]. To estimate TE copy numbers, we compared the coverage of each TE to the average cov-

erage of single copy genes (see Appendix: Data Analysis for details). Although Mimulus gutta-
tus is our primary interest, we also analyzed (Fig 2), for comparison, genomic DNA

sequencing data from 131 lines of Drosophila melanogaster (derived from a large population in

Raleigh, North Carolina) from the Drosophila Genetic Reference Panel [16].

Fig 1. Empirically observed distributions of TE copy number in a Mimulus guttatus population. A: Mean-variance plot of TE copy number for 164

individuals compared to theoretical expectation (Fano = 1, Poisson diagonal line). For each of ten different families of TEs, the index of dispersion is in

the range 10 < Fano½n� < 300. For each family, the vertical bars show 95% bootstrap confidence interval of the population variance of TE load. B: TE

counts separated by class (red, Class I, retrotransposon; blue, Class II, DNA transposon). The variability in TE load can be observed in the counts from

individuals (bottom) as well as histograms (top). Overdispersion is apparent in the deviation of the observed counts (red and blue histograms) from the

corresponding Poisson distributions (gray lines). The vertical dashed lines show the population mean of TE load.

https://doi.org/10.1371/journal.pone.0270839.g001
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Comparison of the marker locations and histograms in Figs 1 and 2 with the gray lines

labelled Poisson shows that in both species, Mimulus guttatus and Drosophila melanogaster,
the population distribution of TE load is overdispersed (the variance of TE load is greater than

the mean TE load). In D. melanogaster, this overdispersion is greater for Class I TEs (retrotran-

sposons) with an RNA intermediate than Class II TEs (DNA transposons) (Fig 2B). The corre-

sponding Fano factors, given by Eq (10), are 16 and 2.7, respectively (see Table 1). Fig 1A

shows that overdispersion of TE load is even more pronounced in M. guttatus. In this case, the

Fano factors are 61 for Class I TEs (red symbols: LINE, SINE and LTR), and 646 for Class II

TEs (blue symbols: CACTA, Helitron, Tcl-Mariner, PIF-Harbinger, hAT and MULE). Fig 1B

shows the estimated number of Class I and II TEs in each of the 164 lines of M. guttatus (hori-

zontal bar graph). In both cases, the variance (width of red and blue histograms) is far greater

than the variance in classical models of TE population genetics (gray curves). Taken together,

Figs 1 and 2 show that in both species (M. guttatus and D. melanogaster) and for both classes

Fig 2. Empirically observed distributions of TE copy number in a Drosophila melanogaster population. A: Mean-variance plot of TE copy number

for 131 individuals compared to theoretical expectation (Fano = 1, Poisson diagonal line). For each of four different families of TEs, the index of

dispersion is in the range 1 < Fano½n� < 200. Vertical bars show 95% bootstrap confidence intervals. B: TE copy number for 131 D. melanogaster
individuals. TE counts are separated by class (red, Class I, retrotransposon; blue, Class II, DNA transposon).

https://doi.org/10.1371/journal.pone.0270839.g002

Table 1. Empirically observed overdispersion of TE load.

Species TE Class E½n� Var½n� Fano½n�

M. guttatus I 8,082 4.9 × 105 61

II 27,559 1.8 × 107 646

D. melanogaster I 128 2,053 16

II 60 164 2.7

Mean, variance, and index of dispersion (Fano factor) of the population distribution of TE load in 164 M. guttatus and 131 D. melanogaster individuals (cf. Figs 1 and 2).

Class I elements (retrotransposons) proliferate in a staged manner that involves an RNA intermediate, while Class II elements (DNA transposons) do not utilize an RNA

intermediate (for review see Ch. 9 of [17]).

https://doi.org/10.1371/journal.pone.0270839.t001
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of TEs (retrotransposons and DNA transposons), the population distribution of TE load is

highly overdispersed.

Overdispersion is not explained by distinct TE families

The overdispersion documented in Figs 1 and 2 cannot be explained away as a simple conse-

quence of heterogeneous properties of distinct TE types. Consider two families of TEs with

loads across individuals in the population given by the random variables x1 and x2. Denoting

the mean TE loads of these families by �ni ¼ E½xi�, the corresponding Fano factors are

Fi ¼ Var½xi�=�ni. If these two families were not distinguished, the observed mean load would be

given by a composite count, x = x1 + x2, with mean �n ¼ �n1 þ �n2 and variance,

Var½x� ¼ Var½x1 þ x2� ¼ Var½x1� þ Var½x2� þ 2Cov½x1; x2�

¼ �n1F1 þ �n2F2 þ 2Cov½x1; x2� :
ð11Þ

Substituting Var½xi� ¼ �niFi and dividing by �n gives an expression for the composite index of

dispersion,

F ¼
Var½x�

�n
¼
F1

�n1 þ F2
�n2

�n1 þ �n2

þ
2

�n
Cov½x1; x2� :

Assuming that the within-population loads for the two families of TEs are independent, the

covariance will be zero (Cov½x1; x2� ¼ 0). In that case, the composite Fano factor is a weighted

average of Fano factors for each family,

F ¼
F1�n1 þ F2�n2

�n1 þ �n2

;

which takes values in the range min(F1, F2)� F�max(F1, F2). A similar argument allows us

to conclude that for TE families with independent proliferation and excision dynamics, the

dispersion of TE load that results when families are not distinguished is always less than the

overdispersion of at least one of the TE families. When the dynamics of TE families are not

independent the situation is more complicated. The composite Fano factor may either increase

or decrease when families of TEs are lumped into larger groups, or split into smaller groups,

depending on the mean load for each family and the correlation (positive or negative) of loads

in the population (see Sec 2 of S1 Text for discussion).

Master equation for TE population dynamics

Our modeling aims to clarify the observed overdispersion of TE load in M. guttatus and D.
melanogaster, following classical TE population genetics, but with a few important modifica-

tions. Because the variance in TE load is not the result of heterogeneity in TE types (see

above), our analysis will focus on a single TE family.

Let pn(t) denote the probability that a randomly sampled haploid genome (gamete) has a

TE count of n at time t. Prior to considerations of selection, the model of TE population

dynamics is a skip-free birth-death process with gain and loss rates denoted gn and ℓn. The dis-

crete state space for haploid TE load is n 2 {0, 1, 2, . . ., m} and the state-transition diagram of

the stochastic process is

0Ð
g0

‘1

1 � � � n � 1Ð
gn� 1

‘n
nÐ

gn

‘nþ1

nþ 1 � � � m � 1Ð
gm� 1

‘m
m: ð12Þ

The master equation for this stochastic process is the following system of m+ 1 differential
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equations,

dp0

dt
¼ � g0p0 þ ‘1p1

ð13Þ

dpn
dt

¼ gn� 1pn� 1 � gnpn � ‘npn þ ‘nþ1pnþ1 1 � n � m � 1 ð14Þ

dpm
dt

¼ gm� 1pm� 1 � ‘mpm : ð15Þ

Each term of the master equation corresponds to gain or loss of probability for a given state.

For example, Eq (12) includes the transition n* n + 1 with rate constant gn. This transition,

which occurs at rate gnpn, results in loss of probability for state n; hence Eq (14), which gives

the rate of change of pn, includes the term −gnpn (negative). The transition n − 1* n with rate

constant gn−1 occurs at rate gn−1pn−1 and results in gain of probability for state n. The corre-

sponding term in the dpn/dt equation is gn−1pn−1 (positive). The expected value of TE load of a

randomly sampled diploid genotype is

�n ¼ E½n� ¼ 2
Xm

n¼0

npn ¼ 2m1 ; ð16Þ

where m1 ¼
Pm

n¼0
npn is the mean TE load of a randomly sampled haploid gamete. By differen-

tiating Eq (16) to obtain

d�n
dt
¼ 2
Xm

n¼0

n
dpn
dt

; ð17Þ

and substituting Eqs (13)–(15), the master equation formulation can be shown to be consistent

with the classical approach (see Sec 3 of S1 Text).

The master equation model predicts the variance of TE load

The dynamics of the population variance of TE load are an emergent property of the master

equation model, Eqs (13)–(15). To illustrate, let us assume that TE excision occurs with a first-

order rate constant. In that case, the loss rate as a function of n is

‘n ¼ nn : ð18Þ

Let us further assume that the rate of gain for a single family of TEs takes the form

gn ¼ nun ¼ ðZ0 þ ZnÞð1 � n=mÞ : ð19Þ

In this expression, η is the copy-and-paste rate per transposon (a first-order rate constant charac-

terizing proliferation of TEs), η0 is a zeroth order rate constant, n is the TE copy number, and m
is the number of occupiable loci (in a haploid gamete). Fig 3 shows these TE gain and loss rates,

ℓn and gn, as functions of n. Substituting these constitutive relations into Eqs (13)–(15) gives

dp0

dt
¼ � Z0p0 þ np1

ð20Þ

dpn
dt

¼ ½Z0 þ Zðn � 1Þ�½1 � ðn � 1Þ=m�pn� 1

� ½ðZ0 þ ZnÞð1 � n=mÞ þ nn�pn
þ½nðnþ 1Þ�pnþ1

ð21Þ

dpm
dt

¼ ½Z0 þ Zðm � 1Þ�½1 � ðm � 1Þ=m�pm� 1 � nmpm : ð22Þ

where 1� n�m − 1 in Eq (21).
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Fig 4 shows representative numerical solutions of this master equation for the population

dynamics of TE load. When the copy-and-paste rate constant is zero (η = 0) and occupiable

loci are not limiting (�n << 2m), the stationary probability distribution is well-approximated

by a Poisson distribution with Var½n� � �n and Fano½n� � 1 (blue histograms). For both

Mimulus- and Drosophila-like parameters, no overdispersion is observed when η = 0. These

results should be compared to the green and red histograms, for which the copy-and-pate rate

is nonzero (see caption for parameters). Notably, an increase in the copy-and-paste rate leads

to significant overdispersion of the TE load for both simulated populations (Fano½n� ranging

from 1 to 100).

Moment equations for mean and variance of TE load

The previous section showed that the evolutionarily neutral master equation model provides

information about the population variance of TE load that is unavailable in classical theory.

Because this realism introduces complexity—Eqs (20)–(22) compared to Eq (2)—we derived

ordinary differential equations (ODEs) that summarize the dynamics of the mean and variance

of the population distribution of diploid TE loads predicted by the master equation. Sec 3 of S1

Fig 3. Rates of transposable element gain and loss in master equation model. Example rates of transposable element

gain (gn, dashed) and loss (ℓn, dotted) are shown cyan. These functions of TE load given by Eqs (18) and (19) intersect

(balance) when 17% of the insertion sites are occupied (gray dot-dashed line). Parameters: η0 = 20, η = 3, ν = 2.5,

m = 5 × 105. The net rate of change (blue curve) is zero for a TE load of n = 8.3 × 104 (open circle), which is on the

order of that found for transposons (Class II elements) in Mimulus (e.g., LINE and LTR, see Fig 1B left).

https://doi.org/10.1371/journal.pone.0270839.g003
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Text shows that the mean and variance of TE load solve the following ODEs,

d�n
dt
¼ 2Z0 � n � Zþ

Z0

m

� �
�n �

Z

m
s2

n þ
�n2

2

� �

ð23Þ

ds2
n

dt
¼ 2Z0 þ nþ Z �

Z0

m

� �
�n � 2 n � Zþ

Z0 þ Z=2

m

� �

s2
n

�
2Z

m
�ns2

n þ
�n2

4
þ E½ðn � �nÞ3�

� �

:

ð24Þ

The term E½ðn � �nÞ3� that appears in Eq (24) is the third central moment of the within-popula-

tion diploid TE load. Analysis of this system of ODEs and the third central moment is pro-

vided below.

If number of occupiable loci are not limiting (�n << 2m), we may take the limit of Eqs (23)

and (24) as m!1 to obtain simpler equations for the mean and variance,

d�n
dt
¼ 2Z0 � ðn � ZÞ�n ð25Þ

ds2
n

dt
¼ 2Z0 þ ðnþ ZÞ�n � 2ðn � ZÞs2

n : ð26Þ

This reduced system of ODEs is linear and, for large m, the equation for the variance, Eq (26),

does not depend on the third central moment. The steady-state solution of Eqs (25) and (26) is

Fig 4. Gametic TE load calculated using the master equation model. Top: Stationary population distributions of TE load in

haploid genomes calculated using the evolutionarily neutral master equation model, Eqs (20)–(22). For mean loads similar to

Mimulus (left) and Drosophila (right), no overdispersion is observed in simulations absent copy-and-paste transposition (η = 0,

Fano½n� � 1). Green and red histograms show overdispersed population distributions of TE load that are obtained when copy-

and-paste transposition is included. Mimulus parameters: ν = 0.1, m = 109; η0, η = 2000, 0 (blue), 200, 0.095 (red), 20, 0.099

(green). Drosophila parameters: ν = 0.1, m = 5000; η0, η = 20, 0 (blue), 1, 0.1 (green), 2, 0.1 (red). See Sec 6 of S1 Text for

numerical methods.

https://doi.org/10.1371/journal.pone.0270839.g004
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given by

�n ¼
2Z0

n � Z
ð27Þ

s2
n ¼

2Z0n

ðn � ZÞ
2
¼

n�n
n � Z

ð28Þ

is physical provided ν> η, that is, when m is large, the rate of excision ν must be greater than

the copy-and-past rate constant η for a biologically meaningful solution with �n � 0 (mean TE

load must be non-negative). This steady state is stable because the Jacobian of Eqs (25) and

(26), given by the 2 × 2 matrix with entries J11 = −(ν − η), J12 = 0, J21 = ν + η, J22 = −2(ν − η),

has real valued eigenvalues λ+ = −(ν − η)< 0 and λ− = 2λ+ < 0.

The values for the steady-state mean and variance of TE load given by Eqs (27) and (28)

correspond to the following index of dispersion,

Fano½n� ¼
s2
n

�n
¼

n

n � Z
: ð29Þ

Notably, the condition for a stable steady state (ν> η) implies an index of dispersion greater

than unity (Fano½n� > 1) for any nonzero copy-and-paste rate constant (η> 0). For this rea-

son, we conclude that copy-and-paste proliferation dynamics will result in an overdispersed
steady-state population distribution of TE loads provided the number of occupiable loci are not
limiting (�n << 2m). Further analysis of the moment equations, Eqs (23) and (24), shows that

overdispersion will not occur in the absence of copy-and-paste dynamics (see the η = 0 case in

Table 2).

This preliminary analysis of an evolutionarily neutral master equation for TE proliferation,

Eqs (20)–(22), indicates that a nonzero copy-and-paste rate may lead to an overdispersed popu-
lation distribution of TE load, as in Eq (29). That is, copy-and-paste TE dynamics is one possi-

ble explanation for our empirical observations of overdispersed TE counts (Figs 1 and 2).

Furthermore, this analysis predicts that a large index of dispersion may be a consequence of

balanced dynamics of TE gain and loss, that is, Fano½n� ! 1 as ν decreases to η in Eq (29).

While the divergence in the analytical result is an artifact of taking the m!1 limit, a parame-

ter study of the master equation model (Fig 5) confirms that overdispersion is most pro-

nounced (Fano½n�maximized) when m is large and the dynamics of TE gain and loss are

approximately balanced (η� ν).

Table 2. Mean and variance of TE load in the absence of selection.

Limit E½n� ¼ �n Var½n� ¼ s2
n Fano½n� ¼ Var½n�=E½n�

η = 0 2m Z0=n

mþ Z0=n

2m2 Z0=n

ðmþ Z0=nÞ
2

m
mþ Z0=n

ν> η, m!1 2Z0

n � Z

2Z0n

ðn � ZÞ
2

n

n � Z

The evolutionarily neutral moment equations, Eqs (23) and (24), make predictions for the mean and variance of TE

load in various limits (see Secs 3.2–3.3 of S1 Text). The influence of selection on overdispersion can be understood by

comparison.

https://doi.org/10.1371/journal.pone.0270839.t002
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Influence of selection on overdispersion

To investigate the effect of purifying selection on the population variance of TE load, we

assume a selection coefficient (wn) that depends on total diploid TE load (n) with dwn/dn< 0

(higher load is less viable). For concreteness, let

wn ¼ ð1 � sÞ‘ for 0 � s << 1 ; ð30Þ

where s is the strength of selection against TE load. When the neutral model, Eqs (20)–(22), is

Fig 5. Overdispersion of TE load depends on the copy-and-paste rate (η). Parameter studies of the neutral master

equation model showing the mean (�n�), variance (s2
n), and index of dispersion (Fano½n�) of within-population TE load

as a function of the copy-and-paste rate constant (η). Parameters: m = 4 × 103 and as in legend. Cyan curves indicate

analytical approximations using ν = 0.1 that are valid in the limit as m!1 (see Table 2). These approximations are

most accurate for small η/ν and diverge as η approaches ν from below (cyan arrowheads). These calculations were

accelerated using a Fokker-Planck approximation to Eqs (20)–(22) (see Sec 6 in S1 Text).

https://doi.org/10.1371/journal.pone.0270839.g005
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modified to include selection, the master equation becomes

dpn
dt

¼ aðp0n � pnÞ þ ½Z0 þ Zðn � 1Þ�½1 � ðn � 1Þ=m�pn� 1

� ½ðZ0 þ ZnÞð1 � n=mÞ þ nn�pn þ nðnþ 1Þpnþ1 :

ð31Þ

for 1� n�m. The first term in this expression represents each load probability pn relaxing to

a target probability p0n given by

p0n ¼
pn
P

jwnþjpj
P

ipi
P

jwiþjpj
0 � i; j � m ; ð32Þ

where wi+j = (1 − s)i+j. The equations for for dp0/dt and dpm/dt have fewer gain/loss terms than

Eq (31), but are analogous to Eqs (20)–(22). The parameter α that occurs in Eq (31) is the

inverse of the generation time. The quantity �w ¼
P

ipi
P

jwiþjpj is the mean fitness under the

assumption of random mating [18].

Fig 6 shows steady-state distributions of haploid (top row) and diploid (bottom) TE loads

calculated using Eq (31) both with and without of selection on diploid load. As expected, the

effect of weak selection (red and green histograms) is to decrease the TE load in the population

as compared to the neutral model (blue histograms). This decrease in mean TE load occurs for

a wide range of generation times (1/α) and selection coefficients (s). More important (and less

obvious) is the impact of selection on the variance of TE load and overdispersion. Using Dro-
sophila parameters, Fig 6 (top right) shows an example simulation (green histogram) in which

selection leads to increased dispersion (the Fano factor increases from 1 to 8.66). However, in

a second case (red histogram), selection increases the index of dispersion only slightly (to a

Fano factor of 1.06). Notably, in three representative simulations using Mimulus parameters,

selection does not increase the dispersion of TE load (Fig 6, left). This observation is consistent

with the moment-based analysis presented in the following section.

Moment equations with selection

For a deeper understanding of the impact of selection on the distribution of TE load in a popu-

lation, one may begin with Eqs (31) and (32) and derive the dynamics of the mean and vari-

ance of TE load under the action of simple selection functions. For example, in the limit of

weak selection 0< s<< 1, Eq (30) is well-approximated by wn = 1 − sn. In this case, as derived

in Sec 4 of S1 Text, the dynamics of the mean and variance of TE load solve

d�n
dt
¼ �

as
1 � s�n

� s2

n þ 2Z0 � n � Zþ
Z0

m

� �
�n �

Z

m
s2

n þ
�n2

2

� �

ð33Þ

ds2
n

dt
¼ �

as
1 � s�n

� E½ðn � �nÞ3� þ 2Z0 þ nþ Z �
Z0

m

� �
�n � 2 n � Zþ

Z0 þ Z=2

m

� �

s2

n

�
2Z

m
�ns2

n þ
�n2

4
þ E½ðn � �nÞ3�

� �

:

ð34Þ

These ODEs may be compared to the moment equations for the neutral model, Eqs (25) and

(26). As expected, the influence of selection on the mean TE load is proportional to the popula-

tion variance through the factor � ass2
n=ð1 � s�nÞ in Eq (33). Similarly, the influence of selec-

tion on the population variance is proportional to the third central moment of the diploid load

through the factor � asE½ðn � �nÞ3�=ð1 � s�nÞ in Eq (34). In both cases, the quantity 1 � s�n is

the mean fitness of the population, i.e., �w ¼ E½wn� ¼ E½1 � sn� ¼ 1 � s�n.
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Under the assumption that the mean TE load is much smaller than the number of loci

(�n << 2m), we may simplify Eqs (33) and (34) by taking the limit m!1,

d�n
dt
¼ �

as
1 � s�n

� s2

n þ 2Z0 � ðn � ZÞ�n ð35Þ

ds2
n

dt
¼ �

as
1 � s�n

� E½ðn � �nÞ3� þ 2Z0 þ ðnþ ZÞ�n � 2ðn � ZÞs2

n : ð36Þ

Setting the left side of Eq (35) to zero, we observe that the steady-state mean and variance are

related as follows,

�n ¼
2Z0

n � Z
�

as
1 � s�n

�
s2

n

n � Z
¼

2Z0

n � Z
1 �

as
1 � s�n

�
s2

n

2Z0

� �

: ð37Þ

Fig 6. Effect of selection on the distribution of TE load. Stationary population distributions of TE abundance with and without

selection predicted by the master equation model, Eqs (31) and (32). Parameters: selection coefficient s as in legends. Mimulus: ν =

0.1, m = 109; η0, η = 2000, 0 (blue), 200, 0.095 (red), 20, 0.099 (green). Drosophila: ν = 0.1, m = 5000; η0, η = 20, 0 (blue), 1, 0.1 (green),

2, 0.1 (red).

https://doi.org/10.1371/journal.pone.0270839.g006
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Comparing this expression to Eq (27) and noting that the variance is nonnegative (s2
n � 0), we

see that weak selection decreases the mean TE load in the population as compared to the neu-

tral model (as expected). Similar analysis of Eq (36) shows how selection may impact the vari-

ance of TE load and, consequently, the index of overdispersion. Setting the left side of Eq (36)

to zero and solving for the steady-state variance, gives

s2
n 1þ

as
1 � s�n

�
nþ Z

2ðn � ZÞ
2

" #

¼
2Z0n

ðn � ZÞ
2
�

as
1 � s�n

�
E½ðn � �nÞ3�

2ðn � ZÞ
; ð38Þ

where the first term on the right side, 2η0ν/(ν − η)2, is the variance of TE load in the absence of

selection. Eq (38) shows weak selection can decrease or increase the population variance of TE

load, depending on the sign of the third central moment (E½ðn � �nÞ3�), consistent with master

equation simulations (Fig 6).

Moment closure and the (�n, s2
n) phase plane

In their current form, the moment equations with selection, Eqs (33) and (34), are an open sys-

tem of ODEs. That is, the equation for the variance (s2
n) depends on E½ðn � �nÞ3�, the unknown

third central moment. As discussed in Sec 5 of S1 Text, an applicable moment closure tech-

nique assumes that the third central moment of the diploid load is algebraic function of the

mean and variance,

E½ðn � �nÞ3� ¼ cð�n; s2
nÞ :

We investigated two possibilities for this function based on the properties of the beta-binomial

and negative binomial distributions. The beta-binomial moment closure, derived in Sec 5.3 of

S1 Text, is a complicated expression involving the mean, variance, and number of loci m,

cBBð�n; s2
nÞ ¼ s

2
ðm � �nÞð�n2 � 2m�n � 2s2 þ 4ms2Þ

m�nð2m � �n � 4Þ þ 2ms2 þ 2�n2
: ð39Þ

Moment closure motivated by the properties of the negative binomial distribution results in a

simpler expression that does not involve the number of loci m,

cNBð�n; s2
nÞ ¼ s2

n
2s2

n � �n
�n

� �

: ð40Þ

Although the beta-binomial closure given by Eq (39) is arguably a better approximation, it

does not perform markedly better than the negative binomial closure, Eq (40), as assessed

through comparison of moment ODE and master equation simulations (not shown). In the

analysis that follows, we use the negative binomial closure, motivated by its simplicity and the

fact the two expressions coincide when the number of loci are not limiting (ψBB! ψNB as m
!1).

PLOS ONE Population genetics of transposable element load: A mechanistic account of observed overdispersion

PLOS ONE | https://doi.org/10.1371/journal.pone.0270839 July 14, 2022 15 / 23

https://doi.org/10.1371/journal.pone.0270839


Substituting Eq (40) into Eqs (33) and (34) gives a closed system of ODEs for the mean and

variance of diploid load under the influence of selection:

d�n
dt
¼ �

as
1 � s�n

� s2

n þ 2Z0 � n � Zþ
Z0

m

� �
�n �

Z

m
s2

n þ
�n2

2

� �

ð41Þ

ds2
n

dt
¼ �

as
1 � s�n

� s2

n
2s2

n � �n
�n

� �

þ 2Z0 þ nþ Z �
Z0

m

� �
�n � 2 n � Zþ

Z0 þ Z=2

m

� �

s2

n

�
2Z

m
�ns2

n þ
�n2

4
þ s2

n
2s2

n � �n
�n

� �� �

:

ð42Þ

Fig 7A presents a representative (n; s2
n) phase plane for the dynamics of the mean and variance

of TE load predicted by Eqs (41) and (42). The red and green lines are the nullclines for the

mean and variance, respectively, with intersection corresponding to the steady state. This cal-

culation uses parameters resulting in a steady-state TE load similar to our empirical observa-

tions of M. guttatus (counts on the order of 105). The moment equations predict a steady state

that is located far above the broken black line denoting s2
n ¼ n and Fano factor of 1. The blue

curves show two solutions, obtained by numerically integrating Eqs (41) and (42), that use ini-

tial conditions for which the population variance is equal to the mean. Interestingly, the result-

ing dynamics of TE load can include a transient phase in which the index of dispersion is far

greater or less than the steady-state value.

Fig 7B shows how the nullclines for the mean and variance of TE load depend on the

strength of selection in three cases with parameters corresopnding to TE loads similar to D.
melanogaster (counts on the order of 100). As the strength of selection increases, both the

mean and variance of TE load decrease, in such a manner that the index of dispersion

(Fano½n�) also decreases.

Although the model obtained by moment closure and the phase plane analysis of Fig 7 does

not assume �n << 2m, we may consider Eqs (41) and (42) in the limit as m!1,

d�n
dt
¼ �

as
1 � s�n

� s2

n þ 2Z0 � ðn � ZÞ�n

ds2
n

dt
¼ �

as
1 � s�n

� s2

n
2s2

n � �n
�n

� �

þ 2Z0 þ ðnþ ZÞ�n � 2ðn � ZÞs2

n :

Setting the left sides of Eqs (41) and (42) to zero, and assuming weak selection (0� s<< 1),

we can derive first-order accurate asymptotic expressions for the steady-state mean and vari-

ance,

�n �
2Z0

n � Z
1 � as

n

ðn � ZÞ
2

" #

ð43Þ

s2
n �

2nZ0

ðn � ZÞ
2

1 � as
ðnþ ZÞ

ðn � ZÞ
2

" #

: ð44Þ

Because v/(ν − η)2 > 0, this expression indicates that weak selection decreases the mean TE

load, consistent with our intuition. Similarly, the factor (ν + η)/(ν − η)2 is positive, allowing us

to conclude that weak selection decreases the population variance when m is large. As for the
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index of dispersion, this analysis indicates that under weak selection the Fano factor is

s2
n

�n
�

n

n � Z
1 � as

Z

ðn � ZÞ
2

" #

: ð45Þ

Fig 7. The phase plane for the dynamics of TE load. The dynamics of the mean (n) and variance (s2
n) of TE load

predicted by the moment equations, Eqs (41) and (42)), can be understood through phase plane analysis. The red and

green curves are the nullclines for the mean and variance, respectively, with intersection corresponding to the steady

state (open circle). The blue trajectories show the dynamics of equilibration. A: Mean loads similar to Mimulus.
Parameters: ν = 2.5, m = 5 × 105, η0 = 20 and η = 3 with no selection (α = 0, s = 0). B: Mean loads similar to Drosophila.

Parameters: ν = 0.1, m = 5000, η0 = 1 and η = 0.1. Dotted nullclines: no selection. Dashed: s = 10−4, α = 5. Solid:

s = 10−4, α = 20. Note that increased selection on TE load (gray arrow) decreases the index of dispersion (Fano½n�).

https://doi.org/10.1371/journal.pone.0270839.g007
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Because η/(ν − η)2 is positive any nonzero copy-and-paste rate (η> 0), we conclude that the

Fano factor is also expected to decrease, because weak selection causes the within-population

variance of TE load to decrease more than the mean. This conclusion—i.e., selection on dip-

loid TE load is unlikely to be responsible for overdispersion—is consistent with the numerical

parameter studies summarized in Fig 8 that were enabled by the moment equations with selec-

tion, Eqs (33) and (34), and beta-binomial moment closure, Eq (39).

Fig 8. Statistics of TE load for weak selection depends on generation time. The moment equations derived under

the assumption of weak selection, Eqs (33) and (34), with beta-binomial moment closure, Eq (39), enabled these

parameter studies of the mean, variance, and dispersion of TE load as a function of generation time (1/α). Parameters:

ν = 0.1, η0 = 10, η = 0.1, and as in legend.

https://doi.org/10.1371/journal.pone.0270839.g008
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Discussion

Although mathematical modeling has informed our understanding of the population genetics

of transposable elements (TEs) for several decades, classical theory has emphasized analytical

results that assume a binomial distribution of TE loads (see Introduction). Because the vari-

ance of a binomial distribution is less than or equal to its mean, the classical theory effectively

assumes that the population distribution of TE loads are underdispersed (Fano½n� � 1).

In an empirical analysis of TE copy number in two natural populations (M. guttatus and D.
melanogaster), we found—in both cases—that the population distribution of TE loads was dra-

matically overdispersed (Table 1, Figs 1 and 2). Because the classical theory of TE population

genetics is not applicable to this situation, we extended this theory and explored mechanisms

that may be responsible for observed overdispersion. The master equation model presented

here predicts the entire distribution function of TE loads, and from this distribution we calcu-

late the mean, variance, and index of dispersion as a function of model parameters.

Prior to considerations of selection, the parameters of the neutral model encode assump-

tions regarding the dynamics of TE proliferation (e.g., copy-and-paste and excision rate con-

stants) as well as an estimate of the maximum number of loci that may be occupied by TEs.

Using parameter sets that yield TE counts in empirically observed ranges (tens of thousands

for M. guttatus, hundreds for D. melanogaster), we found—in both cases—that copy-and-paste

TE proliferation dynamics often resulted in overdispersed TE loads (Fig 4). Moment-based

analysis of the neutral model suggests that overdispersed population distributions are to be

expected when the copy-and-paste transposition rate constant (η) and excision rate constant

(ν) are approximately balanced (i.e., η� ν, see Fig 5 and Table 1).

Next, we extended the master equation model to include purifying selection on TE load.

For a parameter set corresponding to M. guttatus, selection decreased the mean and variance

of TE load and, because the variance decreased more than the mean, the index of dispersion

also decreased (Fig 6, left). For a parameter set corresponding to D. melanogaster, we found

that purifying selection, when sufficiently strong, may lead to an increased index of dispersion

of TE load (Fig 6, right). In both M. guttatus and D. melanogaster parameter regimes, our sim-

ulations (Fig 8) and analysis, Eqs (43)–(45), agree that weak purifying selection decreases both

the mean and variance of TE load in such a way that the index of dispersion is unchanged or

slightly increases. Moment-based analysis of the master equation confirmed that weak selec-

tion usually has the effect of decreasing the index of dispersion (Fig 7B).

It has not escaped our notice that the dynamics of mean and variance of TE load given by

Eqs (41) and (42) could, at least in principle, make predictions for a longitudinal study of TE

demographics. A conspicuous aspect of some trajectories in the (n; s2
n) phase plane is a tran-

sient phase of elevated dispersion prior to equilibration (i.e., proliferation-selection balance).

Notably, this transient elevated dispersion is observed when the initial mean TE load is less
than its equilibrium value (the concave down solution shown in Fig 7A is an example).

Although beyond the scope of this paper, the transposition burst phenomenon [6–8] could be

analyzed from the perspective of non-equilibrium dynamics of (n; s2
n) subsequent to an

increase in the proliferation rate of a TE family.

Comparison of M. guttatus and D. melanogaster
Class I elements (retrotransposons) proliferate in a staged manner that involves an RNA inter-

mediate, while Class II elements (DNA transposons) do not utilize an RNA intermediate [19].

In our empirical analysis of TE load in D. melanogaster, we compared these two broad classes

of TEs. We found that retrotransposons were 6-fold more highly overdispersed than DNA

transposons (see Table 1 and Fig 2B). Conversely, our empirical analysis of TE load in M.
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guttatus shows that, in this natural population, DNA transposons are far more overdispersed

than retrotransposons. These contrasting empirical results from M. guttatus and D. melanoga-
ster suggest that it is the effective, and perhaps context-dependent, copy-and-past rate (η) of a

TE family—as opposed to the mobility mechanism or TE class distinction—that is most rele-

vant to the distribution of within-population TE load.

Limitations of the model

The mathematical modeling presented here extends the classical theory of TE population

genetics in several ways. Most importantly, in both the master equation and moment-based

simulations, the relationship between the population variance and mean is a prediction of the

model (as opposed to a modeling assumption, as in classical theory). This feature of the model

enables parameter studies exploring how the dynamics of TE proliferation and purifying selec-

tion influence the dispersion of within-population TE loads.

One limitation of our model is the harsh (but common) assumption that selection acts on

overall TE load [9–13]. This choice is consistent with the finding that most TE insertions have

negative fitness consequences and are located outside of genes [20–23]. On the other hand,

many TEs are located in heterochromatic regions of the genome. It is unlikely that these large

masses of TEs have fitness consequences comparable to TEs that are proximal to genes. In

future work, our model could be extended to include variability in the selective cost of TE

insertions, inactivating mutations that lead to nonautonomous TEs, dead-on-arrival TE inser-

tion, and other phenomena that, for simplicity, were not included in this study.

Arguably, the most significant limitation of the model is that the dynamics of recombina-

tion are not represented. Indeed, the population distribution of TE load is modeled without

any representation of the location of TEs within the genome. To the extent that recombination

promotes linkage equilibrium, one expects that recombination will decrease the dispersion of

TE load and, consequently, this aspect of recombination dynamics is unlikely to be responsible

for empirically observed overdispersion. We recommend interpreting the master equation and

moment-based models as representations of the dynamics of a single linkage class of TEs, with

the tacit understanding that the index of dispersion for a genome composed of multiple link-

ages classes will be less than the model prediction. Admittedly, this viewpoint does not account

for the fact that recombination is less frequent in regions of the genome that have a high den-

sity of TEs. Recombination hotspots exist in M. guttatus that may impact patterns of TE inher-

itance and population variance [24]. However, studying the influence of density-dependent

recombination on the dispersion of TE load is beyond the scope of this paper, as it would

require a modeling framework that is explicitly spatial.

We note that events involving the loss or gain of multiple TEs (as could occur via ectopic

recombination or other mechanisms) are expected to contribute to overdispersion. To see this,

consider a master equation simulation in which the gain and loss of TEs occurs in blocks of

size b. If there is no other change to the model, we may reinterpret the random variable n as

the number of blocks of TEs in a randomly sampled diploid genome. In that case, the mean

and variance of TE count are increased by a factor of b and b2, respectively. The Fano factor,

given by the ratio of variance to mean, increases by a factor of b,

Fano½bn� ¼
Var½bn�
E½bn�

¼
b2Var½n�
bE½n�

¼ bFano½n� :

This scaling implies that block-wise inheritance of TEs is expected to increase the index of dis-

persion by a factor proportional to a representative block size. This intriguing and relatively

simple explanation for empirically observed overdispersion could be studied using an
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explicitly spatial model of TE population genetics, preferably one that includes a mechanistic

account of ectopic recombination and perhaps other genome rearrangements.

Appendix: Data analysis

Figs 1 and 2 present analyses of two data sets, both of which indicate that the variance of TE

load in experimentally studied populations can be far greater than would be predicted by clas-

sical models of TE population genetics. The first data set (analyzed in Fig 1) consists of whole-

genome sequence data from 164 lines of Mimulus guttatus derived from a naturally occurring

population (hundreds of thousands of individuals) in Iron Mountain, Oregon, USA [15]. To

estimate TE copy numbers, we compared the coverage of each TE to the average coverage of

genes understood to be present in single copy. These short reads were first aligned to a com-

posite genomic database consisting of M. guttatus coding sequences, the mitochondrial

genome, M. luteus chloroplast, and a file of approximately 1400 TE sequences [24, 25]. The M.
luteus chloroplast genome was used because it was completely assembled, M. luteus is closely

related to M. guttatus, and chloroplast sequences evolve slowly making this a reasonable refer-

ence [26]. Next, the whole genome sequencing data from the aforementioned 164 individuals

was mapped to this combined reference using Bowtie 2 [27] in its --very-sensitive-
local mode. After this, Picard was used to mark and remove duplicate reads. The remaining

reads were then filtered using Samtools to exclude reads that were low quality, non-primary,

or supplementary (samtools view -h -q 10 -F 0x904). The final list of read counts

was processed using a custom Python script to create an array of reads per feature per individ-

ual. TE copy numbers were estimated by first removing the reads mapping to mitochondrial,

chloroplast, and rRNA genes. Due to the high quality assembly and annotation of the genome,

the remaining genes were assumed to exist in single copy. The average coverage per feature j
(i.e., gene or transposon) in individual i was computed as cij = rijlij/kj, where rij and lij are the

number and length of reads to feature j in individual i, and kj is the annotated length of feature

j in the reference genome. To control for genes that might be present in more than single copy,

the top 99th percentile of genes were removed. Writing G for the index set of the N = 33, 233

remaining genes, the average coverage was computed as gi ¼ 1

N

P
j2Gcij. The total copy number

of TE features in each individual was estimated as ĉij ¼ cij=gi. Bowtie 2, Picard, and Samtools

can be downloaded from:

• http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

• https://broadinstitute.github.io/picard/

• http://www.htslib.org/

The second data set (analyzed in Fig 2) comes from an analysis of 131 lines of Drosophila
melanogaster obtained from the Drosophila Genetic Reference Panel [16]. The individual lines

were derived from a large population in Raleigh, North Carolina. In a previously published

analysis, Cridland et al. used genomic DNA sequencing to identify over 17,000 TE insertions

across these lines. For each insertion (locus), in each individual, this previous work provides a

call of present, absent, or indeterminate. Because the vast majority of TE insertions were deter-

mined to be rare (83% are present in only one line), we treated loci with indeterminate calls as

absent. Elements that were not previously identified as transposons (DNA intermediates) or

retrotransposons (RNA intermediate) were excluded. Chromosome 4 was excluded from this

analysis, because it is known to have a number of peculiar features (e.g., small size and lack of

recombination) [28].
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Supporting information

S1 File. Data and scripts. This compressed directory contains the two data sets discussed in

‘Appendix: Data Analysis’ (above) and the scripts used to generate Figs 1 and 2.

(ZIP)

S1 Text. Derivations and model formulation. This supporting text derives the moment equa-

tions for TE load from the master equation model. The text also provides details of model for-

mulation including moment closure techniques, how selection is incorporated into the master

equation and moment-based models, and numerical methods.

(PDF)
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23. Bartolomé C, Maside X, Charlesworth B. On the abundance and distribution of transposable elements

in the genome of Drosophila melanogaster. Molecular Biology and Evolution. 2002; 19(6):926–937.

https://doi.org/10.1093/oxfordjournals.molbev.a004150 PMID: 12032249

24. Hellsten U, Wright KM, Jenkins J, Shu S, Yuan Y, Wessler SR, et al. Fine-scale variation in meiotic

recombination in Mimulus inferred from population shotgun sequencing. Proceedings of the National

Academy of Sciences. 2013; 110(48):19478–19482. https://doi.org/10.1073/pnas.1319032110 PMID:

24225854

25. Vallejo-Marı́n M, Cooley AM, Lee MY, Folmer M, McKain MR, Puzey JR. Strongly asymmetric hybrid-

ization barriers shape the origin of a new polyploid species and its hybrid ancestor. American Journal of

Botany. 2016; 103(7):1272–1288. https://doi.org/10.3732/ajb.1500471 PMID: 27221281

26. Clegg MT, Gaut BS, Learn GH, Morton BR. Rates and patterns of chloroplast DNA evolution. Proceed-

ings of the National Academy of Sciences. 1994; 91(15):6795–6801. https://doi.org/10.1073/pnas.91.

15.6795 PMID: 8041699

27. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012; 9(4):

357–359. https://doi.org/10.1038/nmeth.1923 PMID: 22388286

28. Hartmann MA, Sekelsky J. The absence of crossovers on chromosome 4 in Drosophila melanogaster:

Imperfection or interesting exception? Fly. 2017; 11(4):253–259. https://doi.org/10.1080/19336934.

2017.1321181 PMID: 28426351

PLOS ONE Population genetics of transposable element load: A mechanistic account of observed overdispersion

PLOS ONE | https://doi.org/10.1371/journal.pone.0270839 July 14, 2022 23 / 23

https://doi.org/10.1371/journal.pgen.1002487
http://www.ncbi.nlm.nih.gov/pubmed/22291611
https://doi.org/10.1073/pnas.0702552104
http://www.ncbi.nlm.nih.gov/pubmed/17592135
https://doi.org/10.1023/A:1018310418744
http://www.ncbi.nlm.nih.gov/pubmed/9440281
https://doi.org/10.1017/S0016672305007585
https://doi.org/10.1534/genetics.104.032243
http://www.ncbi.nlm.nih.gov/pubmed/15466430
https://doi.org/10.1126/science.aat5760
https://doi.org/10.1126/science.aat5760
http://www.ncbi.nlm.nih.gov/pubmed/30072534
https://doi.org/10.1093/molbev/mst129
http://www.ncbi.nlm.nih.gov/pubmed/23883524
https://doi.org/10.1038/nrg2165
https://doi.org/10.1038/nrg2165
http://www.ncbi.nlm.nih.gov/pubmed/17984973
https://doi.org/10.1139/g89-046
http://www.ncbi.nlm.nih.gov/pubmed/2556325
https://doi.org/10.1093/jhered/esh050
http://www.ncbi.nlm.nih.gov/pubmed/15247307
https://doi.org/10.1093/genetics/156.4.1661
http://www.ncbi.nlm.nih.gov/pubmed/11102365
https://doi.org/10.1093/oxfordjournals.molbev.a004150
http://www.ncbi.nlm.nih.gov/pubmed/12032249
https://doi.org/10.1073/pnas.1319032110
http://www.ncbi.nlm.nih.gov/pubmed/24225854
https://doi.org/10.3732/ajb.1500471
http://www.ncbi.nlm.nih.gov/pubmed/27221281
https://doi.org/10.1073/pnas.91.15.6795
https://doi.org/10.1073/pnas.91.15.6795
http://www.ncbi.nlm.nih.gov/pubmed/8041699
https://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
https://doi.org/10.1080/19336934.2017.1321181
https://doi.org/10.1080/19336934.2017.1321181
http://www.ncbi.nlm.nih.gov/pubmed/28426351
https://doi.org/10.1371/journal.pone.0270839

