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To distinguish Methicillin-Resistant Staphylococcus aureus (MRSA) from Methicillin-
Sensitive Staphylococcus aureus (MSSA) in the protein sequences level, test the
susceptibility to antibiotic of all Staphylococcus aureus isolates from Quanzhou
hospitals, define the virulence factor and molecular characteristics of the MRSA isolates.
MRSA and MSSA Pfam protein sequences were used to extract feature vectors of 188D,
n-gram and 400D. Weka software was applied to classify the two Staphylococcus
aureus and performance effect was evaluated. Antibiotic susceptibility testing of the 81
Staphylococcus aureus was performed by the Mérieux Microbial Analysis Instrument.
The 65 MRSA isolates were characterized by Panton-Valentine leukocidin (PVL),
X polymorphic region of Protein A (spa), multilocus sequence typing test (MLST ),
staphylococcus chromosomal cassette mec (SCCmec) typing. After comparing the
results of Weka six classifiers, the highest correctly classified rates were 91.94, 70.16,
and 62.90% from 188D, n-gram and 400D, respectively. Antimicrobial susceptibility test
of the 81 Staphylococcus aureus: Penicillin-resistant rate was 100%. No resistance
to teicoplanin, linezolid, and vancomycin. The resistance rate of the MRSA isolates to
clindamycin, erythromycin and tetracycline was higher than that of the MSSAs. Among
the 65 MRSA isolates, the positive rate of PVL gene was 47.7% (31/65). Seventeen
sequence types (STs) were identified among the 65 isolates, and ST59 was the most
prevalent. SCCmec type III and IV were observed at 24.6 and 72.3%, respectively.
Two isolates did not be typed. Twenty-one spa types were identified, spa t437 (34/65,
52.3%) was the most predominant type. MRSA major clone type of molecular typing
was CC59-ST59-spa t437-IV (28/65, 43.1%). Overall, 188D feature vectors can be
applied to successfully distinguish MRSA from MSSA. In Quanzhou, the detection
rate of PVL virulence factor was high, suggesting a high pathogenic risk of MRSA
infection. The cross-infection of CA-MRSA and HA-MRSA was presented, the molecular
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characteristics were increasingly blurred, HA-MRSA with typical CA-MRSA molecular
characteristics has become an important cause of healthcare-related infections. CC59-
ST59-spa t437-IV was the main clone type in Quanzhou, which was rare in other parts
of mainland China.

Keywords: Staphylococcus aureus, feature vector, virulence factor, molecular characterization, antibiotic
resistance, machine learning

INTRODUCTION

Staphylococcus aureus has been considered the mainly pathogen
that cause skin and soft-tissue infections, central nervous system
infections, necrotizing pneumonia and infections associated with
intravascular devices (Conceicao et al., 2007; Nadig et al., 2010;
Rosa et al., 2016). Staphylococcus aureus is categorized into two
groups, methicillin-sensitive Staphylococcus aureus (MSSA) and
methicillin-resistant Staphylococcus aureus (MRSA) (Ahmed
and Mukherjee, 2018). Which is based on the well-known
differences of the mecA gene conferred to the pathogen, and the
significant difference of the biofilm formation between MRSA
and MSSA strains (Gidari et al., 2020). MRSA is responsible
for most global Staphylococcus aureus bacteremia cases, and
MRSA infection is related to poorer clinical outcomes than MSSA
(Hassoun et al., 2017). Thus, MRSA is an important nosocomial
pathogen that is being observed with increasing frequency in
community settings. However, some studies have shown that tst-
positive MSSA strains belonging to ST1, ST8, and ST30 are a
potential source of tst-positive community-acquired MRSA and
speculated that the tst-positive MRSA clones may have emerged
from their respective MSSA counterparts. Therefore, MRSA and
MSSA may owe the tst gene as an aid to targeted infection control
(Schlebusch et al., 2009). Machine learning methods have a broad
application in the bioinformatics, especially in the biological
classification fields (Jiang et al., 2013; Liao et al., 2017, 2018a;
Xu et al., 2018, 2019; Yu et al., 2018, 2020a,b; Ding et al., 2019;
Liu G. et al., 2019; Liu B. et al., 2020; Shen et al., 2019a,b; Li
et al., 2020; Shao et al., 2020; Wang H. et al., 2020; Zhao et al.,
2020a,b). Here, Machine learning algorithm was performed to
accomplish the classification of MRSA and MSSA based on their
protein sequences (Liao et al., 2018b).

Since the first methicillin-resistant staphylococcus aureus
(MRSA) reported in 1961 (Jevons, 1961), MRSA isolates were
soon recovered from other European countries, and later from
the United States, Japan, and Australia. At the same time, the
resistance rate of MRSA was so high that it gave rise to significant
morbidity and mortality. Currently, MRSA is also resistant
to various non-β-lactam antibiotics, such as erythromycin,
clindamycin, gentamicin, ciprofloxacin, and levofloxacin (Jiun-
Ling et al., 2010). MRSA has caused an increasing public and
occupational health concern.

In the early 1990s, community-associated MRSA (CA-
MRSA) first broke out sporadically in several parts of Western
Australia and the United States (Udo et al., 1993; Diekema
et al., 2014). In 1999, The Centers for Disease Control and
Prevention (CDC) reported that four children from Minnesotans
and North Dakota died of sepsis in CA-MRSA infection,

causing widespread concern (CDC, 1999). CA-MRSA is different
from hospital-acquired MRSA (HA-MRSA) and has its own
unique characteristics in virulence factors, genetic characteristics,
epidemiology, and clinical manifestations. CA-MRSA infection
most commonly affects skin and soft tissues, it is also associated
with severe invasive diseases such as necrotizing pneumonia and
sepsis, which often infect healthy young people such as students,
athletes, and military personnel. The outbreak of CA-MRSA is
associated with several common features, including close contact,
poor sanitation, sharing among public goods or public facilities,
skin surface abrasions, and lack of medical care to treat infections.
Generally, CA-MRSA carries PVL virulence factors belonging to
type IV SCCmec, and its SCCmec elements are relatively small,
which is conducive to widespread transmission. Therefore, it is
easy to form a wide range of epidemics. Usually without carrying
other antibiotic resistance genes and therefore non β-lactam
antibiotics are sensitive. While HA-MRSA usually contains large
SCCmec such as type I, type II or type III, and contains a variety
of anti-drug genes, the resistance of HA-MRSA isolates is not
limited to β-lactam antibiotics. Pathogens are often resistant to
multiple antibiotics.

The prevalence and resistance phenotypes of MRSA in
different countries and regions are different and always changing
over time. After reviewing the literature of nearly a decade, almost
no paper reported on the molecular epidemiological investigation
of MRSA in Quanzhou. This study analyzed the antimicrobial
resistance of the Staphylococcus aureus isolated from several
Three-A hospitals in Quanzhou, and tested the PVL virulence
factor, spa typing, MLST typing and SCCmec typing of MRSA in
this region, which provided a reference for clinical treatment of
MRSA infection and response to explosive epidemics.

MATERIALS AND METHODS

Data Retrieval and Treatment
All the primary sequences of both MRSA and MSSA Pfam
proteins (in FASTA files) were retrieved from the UniProt
database1, the raw data are preprocessed by cd-hit program2

to merge the sequence similarities and reduce the complexity.
To avoid bias in the classifier, we set the identity at rigorous
30% similarity and remove the intersecting sequences, finally
we obtained the results of 439 MRSA sequences as positive
dataset and 62 MSSA entries as negative dataset. Since the MRSA
sequences are seven times that of the MSSA sequences, the MRSA

1http://www.uniprot.org/
2http://cd-hit.org
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sequence is divided into seven, and the positive sequence and the
negative sequence 1:1 constitute seven sets of data.

Construction of Feature Vectors for
Positive and Negative Sequences
Feature selection (Wang G. et al., 2008; Zhao et al., 2015; Cheng
and Hu, 2018; Du et al., 2018; Su et al., 2018; Tang et al., 2018;
Wei et al., 2018a,b; Cheng et al., 2020) is the important process
to select the extracted features that give the best classification
results. To predict the potential MRSA from MSSA at the amino
acid sequence level, firstly, we extracted the feature vectors from
positive versus negative protein sequence dataset by using three
novel machine-learning-based methods developed by our group,
that are 188D, n-gram and 400D feature vectors (Wang G. et al.,
2010; Liao et al., 2016; Liu and Jiang, 2016; Xinrui et al., 2018;
Leyi et al., 2019; Liu B. et al., 2019; Yu et al., 2019; Zhang and Liu,
2019; Ao et al., 2020b).

Construction of Classifier With Weka and
Classification Evaluation
Weka3 is a machine learning software for many applications that
is widely used for teaching and research (Ye et al., 2019), and the
Classify module contains several kinds of classifiers such as bayes,
functions, lazy, meta, misc, rules, and trees in Weka Explorer.
We use all the classifiers to train and select the best 6 performed
ones to compare each other: AdaBoostM1, RandomSubSpace,
DecisionTable, OneR, RandomForest, and REPTree. All the
classifiers were set the parameters as default and test mode set as
10-fold cross validation. The identification process was showed in
Figure 1.

We use four common measurements to illuminate the
performance quality, that is Sensitivity (Sn), Specificity (Sp),
Accuracy (Acc) and Matthew’s correlation coefficient (MCC)were
adopted to evaluate the above three methods and four classifiers.
These methods are formulated as follows (Wei et al., 2014,
2017a,b, 2018c; Zhao et al., 2017; Wang G. et al., 2018; Cheng,
2019; Cheng et al., 2019; Yang et al., 2019; Ao et al., 2020a; Hasan
et al., 2020; Qiang et al., 2020; Tang et al., 2020):

Sn =
TP

TP+ FN

Sp =
TN

TN+ FP

Acc =
TP + TN

TP + FP + TN + FN

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FN) (TP + FP) (TN + FP) (TN + FN)

Where TP, TN, FP, and FN stand for the numbers
of true positive, true negative, false positive, and false
negative, respectively.

3http://www.cs.waikato.ac.nz/ml/weka/

Clinical Strains
A total of 81 non-repetitive Staphylococcus aureus strains were
isolated from the outpatients and inpatients in three tertiary
hospitals, which were Second Affiliated Hospital of Fujian
Medical University, Quanzhou Children’s Hospital and Jinjiang
Municipal Hospital, between October 2018 and July 2019.
Staphylococcus aureus was identified by the Mérieux automated
bacterial tester. According to the Clinical and Laboratory
Standards Institute (CLSI) Antibiotic Sensitivity Test Execution
Standard, Methicillin-Resistant Staphylococcus aureus (MRSA)
was the MIC value of oxacillin ≥4 µg/ml and the plasma
coagulase was also positive. At the same time, the mecA gene was
detected by PCR to confirm. All the isolates were stored at−80◦C
for further experiments.

Ethics Statement
After inquiring the hospital, this study didn’t require any
ethics statement because no work was developed with human
samples. Strains were isolated directly from the patients to
plates. Strains were collected not only for this study, but also
for diagnosing of infection. Patient identifying information was
collected by medical doctors as part of the routine hospital patient
care procedure, and a number was assigned to each patient.
Information arrived at the laboratory with this number after
isolating and identifying all strains. Patient consents for collecting
their clinical signs, medical histories, and characteristics were
obtained during the admission of the hospital as a part of the
routine hospital patient care procedure.

Antimicrobial Susceptibility Testing of
the 81 Staphylococcus Aureus Strains
The antimicrobial susceptibility testing was conducted on
all Staphylococcus aureus strains by the Mérieux Microbial
Analysis Instrument according to the guidelines of CLSI
M100-S29. The antibiotics tested were penicillin, linezolid,
teicoplanin, vancomycin, ciprofloxacin, gentamicin, levofloxacin,
clindamycin, Sulfamethoxazole/trimethoprim, erythromycin,
rifampicin, and tetracycline. Staphylococcus aureus ATCC25923
and ATCC29213 were used for quality control.

PVL Gene and Molecular Typing of the 65
MRSA Isolates
Extraction of Genomic DNA
Sixty-five MRSA clinical isolates and standard strains were
inoculated on blood agar culture plates overnight for 16–18 h,
and DNA was extracted according to the bacterial genomic DNA
rapid extraction kit. The obtained DNA was dissolved in 50 µl of
TE Buffer and placed in an autoclaved eppendorf tube, and stored
at−20◦C.

Detection of PVL Gene
The PVL gene was amplified by PCR as described previously
(Mcclure et al., 2006). The amplified product was performed
to agarose gel electrophoresis. One amplified band appeared at
433 bp as the PVL gene, and 146 bp was the mecA gene. The
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FIGURE 1 | The computational framework of classification prediction for distinguishing MRSA from MSSA based on amino acid sequences. Firstly, both MRSA
(positive) and MSSA (negative) protein sequences were retrieved from UniProt and pretreated by CD-HIT (30% similarity) and obtained dataset containing 439 MRSA
and 62 MSSA entries. Secondly, MRSA were randomly divided into 7 groups with 62 entries in each group, each group MRSA and MSSA were extracted the feature
vectors including 188D, n-gram and 400D methods. Thirdly, positive and negative feature vectors matrix were imported into Weka (10-fold cross-validation) and the
six best performing classifiers were selected for further analysis. Finally, the 4 common measurements (Sn, Sp, Acc, and MCC) were used to evaluate classification
performance.
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identity of the PCR product was confirmed by sequencing. PVL
quality control strain was CCUG46923.

Spa Typing
Spa typing was performed as described previously (Harmsen
et al., 2003). Purified spa PCR products were sequenced, and
short sequence repeats were assigned by using the spa database
website4. The spa complex was defined by visual analysis, whereby
spa types with similar short sequence repeats were clustered into
the complexes previously described by Ruppitsch et al. (2006).

SCCmec Typing
The SCCmec types were determined by a multiplex PCR
developed by Oliveira et al. (2006). Non-types (NT) were defined
as isolates showing unexpected fragments or lacking some
fragments as determined by multiplex PCR. The quality controls
were MRSA NCTC10442 (SCCmec I), MRSA N315 (SCCmec II),
MRSA 85/2082 (SCCmec III), MRSA JCSC 4744 (SCCmec IV).

MLST and Data Analysis
Multilocus sequence typing test was carried out as described
previously (Enright et al., 2000). The sequences of the PCR
products were compared with the existing sequences available
on the MLST website5 for Staphylococcus aureus, and the allelic
number was determined for each sequence. The clustering of
related STs, which were defined as clonal complexes (CCs), was
determined by using the program eBURST (based upon related
sequence types) (Feil et al., 2004).

RESULTS

Classification of Positive and Negative
Proteins
We obtained the 188D, n-gram and 400D feature vector datasets
from both positive and negative groups and used them as input to
the Weka explorer. The results showed that the highest correctly
classified rates were 91.94, 70.16, and 62.90%, respectively. The
four common classification measurement values from 188D,
n-gram and 400D feature vectors are illustrated in Figures 2–4.

Identification of MRSA/MSSA and
Antimicrobial Resistances
Of the 81 strains of Staphylococcus aureus, 65 were MRSA, 16
strains were MSSA strains. According to the definition of HA-
MRSA and CA-MRSA, 65 strains of Staphylococcus aureus were
divided into 22 HA-MRSAs and 43 CA-MRSAs.

Penicillin-resistant rate was 100%. No resistance to
teicoplanin, linezolid, and vancomycin. The antimicrobial
resistance rates to ciprofloxacin, sulfamethoxazole/trimethoprim,
gentamicin, levofloxacin, clindamycin, erythromycin, rifampin,
and tetracycline were 14.8, 11.9, 12.5, 13.2, 76.6, 77.7, 5.9,
and 32.7%, respectively. Statistical analysis show that the
MRSA isolates had significantly higher resistance rates

4https://spa.ridom.de
5http://saureus.mlst.net

to clindamycin than the MSSA isolates (87.7% vs. 31.8%,
p < 0.001), erythromycin (86.2% vs. 43.1%, p < 0.001),
tetracycline (36.9% vs. 15.6%, p = 0.03). The multi-resistance rate
of MRSA was 93.8% (61/65) (Figure 5).

PVL Gene Screening
Of the 65 MRSA isolates, thirty-one were PVL positive (31/65,
47.7%), among which nine were detected by HA-MRSA (9/22,
40.9%), and twenty-two were detected by CA-MRSA (22/43,
51.2%) (p > 0.5). The mecA gene was detected in all
MRSA (Figure 6).

Molecular Typing
Sixteen isolates belonged to SCCmec type III and forty-seven
belonged to SCCmec type IV. Two MRSA isolates could
not be SCCmec typed. Twenty-one spa types were identified.
T437 (34/65, 52.3%) was the most common, followed by
t030 (6/65, 9.2%), t062 (3/65, 4.6%), t309 (3/65, 4.6%), and
t13774 (2/65, 3.1%).

Among all MRSA isolates, sixteen sequence types (STs) were
identified by MLST. The most common ST was ST59 (36/65,
55.4%), followed by ST239 (6/65, 9.2%) and ST5 (4/65, 6.2%). Ten
clonal complexes (CCs) were identified by eBURST. CC59 (37/65,
56.9%) was the most common clone, followed by CC8 (6/65,
9.2%) and CC5 (4/65, 6.1%) (Table 1). MRSA major clone types
of molecular typing were CC59-ST59-spa t437-IV (28/65, 43.1%),
followed by CC59-ST59-spa t437-III (6/65, 9.2%), CC8-ST239-spa
t030-III/IV (6/65, 9.2%), and CC5-ST5-spa t062-IV (4/65, 6.1%),
respectively (Table 1).

Comparison of Antimicrobial Resistance
Rates Between CC59-ST59-spa t437-IV
and Other Types of MRSA
Comparing the antibiotic resistance rate between CC59-ST59-spa
t437-IV clone and other types, this study found that the resistance
rate of CC59-ST59-spa t437-IV clone to CIP (ciprofloxacin), CN
(gentamicin) and RD (rifampicin) was lower than other clone
types (p < 0.05) (Table 2).

DISCUSSION

Machine-learning techniques can be applied to extract features
from bacterial protein sequences (Patel et al., 2017; Huang and
Li, 2018; Shao and Liu, 2020; Zhao et al., 2020c). In this study, we
successfully use them to distinguish MRSA from MSSA despite
their similar sequences. It is reported that MRSA has reached
over 60% of all isolated Staphylococcus aureus and the incidence
of MRAS has increased to 49% in the United States (Jiang
et al., 2020). So, it is very important to identify MRAS from
MSSA rapidly. Because traditional assay methods are often time-
consuming and with poor sensitivity, our classified recognition
method shows its obvious advantages. Here, we have successfully
established a machine learning method that based on our develop
188D feature vectors (Li Y. et al., 2019) being able to distinguish
MRSA from MSSA. This method shows high specificity and
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FIGURE 2 | The 6 classifiers performance comparison using Sensitivity (Sn), Specificity (Sp), Accuracy (Acc) and Matthew’s Correlation Coefficient (MCC) values for
188D features. Among them, the RandomSubSpace classifier performs best in the four evaluation indexes with its values 98.8, 78.2, 88.5, and 78.8%, respectively.

FIGURE 3 | The 6 classifiers performance comparison using Sensitivity (Sn), Specificity (Sp), Accuracy (Acc) and Matthew’s Correlation Coefficient (MCC) values for
n-gram features. Among them, the AdaBoostM1 classifier performs best in the four evaluation indexes with its values 72.6, 61.7, 67.1, and 34.5%, respectively.
However, all evaluation index values of this feature are lower than 188D.

sensitivity, the average discrimination ability reaches more than
90%. Thus, the 188D feature extraction method in this paper
could be used as valuable tool for rapid, simple, sensitive and
reliable identification of MRSA.

Panton-Valentine leukocidin (PVL) is an exotoxin produced
by a variety of Staphylococcus aureus isolates that has a
strong killing effect on white blood cells (Gauduchon et al.,
2001). PVL–positive Staphylococcus aureus is highly toxic
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FIGURE 4 | The 6 classifiers performance comparison using Sensitivity (Sn), Specificity (Sp), Accuracy (Acc) and Matthew’s Correlation Coefficient (MCC) values for
400D features. For the Sn index, RandomSupSpace classifier performs best with a value 71.8%, and OneR classifier performs best with a value 53.2% for Sp index,
but for the Acc and MCC indexes the AdaBoostM1 classifier performs best with its value 56.9%, 13.8%, respectively. Among the above three features, 400D get the
worst performance.
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FIGURE 5 | Resistance rates of eight antibiotics. It shows that the MRSA isolates possess significantly higher resistance rates to DA, E, and TE than the MSSA
isolates. CIP (ciprofloxacin), SXT (Sulfamethoxazole/trimethoprim), CN (gentamicin), LEV (levofloxacin), DA (clindamycin), E (erythromycin), RD (rifampicin), TE
(tetracycline).

and is often associated with mild or moderate skin and
soft tissue infections (SSTI) and can cause severe invasive
infections, including necrotizing pneumonia or invasive bone

joint infections (Vandenesch et al., 2012). The prevalence of
PVL gene in different regions is diverse. In Europe, Glasner
et al. (2015) tested 147 spa 437-MRSA strains in 11 European
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FIGURE 6 | Results of agarose gel electrophoresis. This figure shows that all MRSA isolates can be detected with mecA gene, as well as the positive and negative
test results of the PVL gene. M: 600 bp DNA Ladder; 1: positive PVL control; 2: PVL negative control. 4, 5, 8, 10, 12–15: PVL positive strains; 3, 6, 7, 9, 11, 16: PVL
negative strains. 1–16: mecA gene.

countries for PVL gene, and the positive rate was as high as
82%. In Asia, the prevalence of PVL in CA-MRSA and HA-
MRSA was 14.3 and 5.7%, respectively (Song et al., 2012). In
Taiwan, the data were also different. The percentage of PVL-
positive isolates in the study of 253 MRSA strains from blood
infection was 11.1% (Wang L. et al., 2010). The detection rate of
PVL was 45.2% in Sun Yat-sen Memorial hospital of Guangzhou
(Xie et al., 2016), and was 47.6% in Hainan’s hospitals in China
(Li X. et al., 2019). Consistently in this study, the detection rate
of PVL was as high as 47.7%. There was no significant difference
between CA-MRSA (51.2%) and HA-MRSA (40.9%) groups. The
positive rate of PVL in this area is relatively high, which suggests
that the strong toxicity of MRSA in Quanzhou and the serious
invasive infection may result from it. That should be paid more
attention by clinicians.

Although PVL is usually considered to be a common
pathogenic factor for CA-MRSA, some studies have shown that
HA-MRSA isolates have a relatively high PVL positive rate in
some areas (De-Zhi et al., 2011). Zetola et al. (2005) found
that the prevalence of PVL tends to increase in nosocomial
infections. These results suggest that these CA-MRSA may be
cloned in hospital environment. Therefore, PVL may no longer
be a reliable marker for CA-MRSA isolates, but all MRSA may be
an important repository of PVL virulence factors. This suggests
that HA-MRSA with typical CA-MRSA molecular characteristics
(SCCmec IV and PVL positive) has become an important cause of
health care related infections.

We found that CC59-ST59-spa t437-IV was the predominant
clone in Quanzhou. This clone was also one of the most
common CA-MRSA strains in East Asia (Song et al., 2012;
Chuang and Huang, 2013; Liu G. et al., 2016). In 2007,
Tristan and his colleagues reported for the first time the
isolates of Staphylococcus aureus ST59 associated with spa-
t437 (Anne et al., 2007). Subsequently, a large community
and hospital study in Asia described CC59 as the most
popular Complex clone (CC). In addition, ST59-MRSA-t437 was

identified as the most prevalent clone between 2004 and 2006
(Song et al., 2012).

In China, ST59-MRSA-t437-IV is prevalent among children
and adolescents (Li et al., 2013; Ning et al., 2015; Zhen
et al., 2017). According to the report by Wang X. et al.
(2016), the detection rate of this clone in Shanghai Children’s
Medical Center between 2012 and 2013 was 21.3%, while the
proportion of ST59-MRSA-t437-IV clones detected by Beijing
Children’s Hospital in 2016 was as high as 61.7% (Yang et al.,
2017). Interestingly, our study found that the proportion of
adolescents and children carrying the clone was 36.4% (8/22)
in Quanzhou, but the positive rate of the clone was 69.8%
(30/43) in adults and significantly higher than that in minors
(p < 0.05). This clone seems to be more popular in adults. The
possible reason is that Quanzhou is located on the southeast
coast of China, and the close interaction between local residents
and Taiwan, Hong Kong, and Southeast Asian countries have
enabled ST59-MRSA-t437 cloning to have a wide cross-infection
among the populations in these areas. Song et al. (2012) also
confirmed that community and hospital related MRSA CC59
strains collected from 8 countries and regions in Asia spread
rapidly across national boundaries in both directions. In our
study, the clone belonged to CA-MRSA accounted for 67.6%
(23/34), HA-MRSA accounted for 32.4% (11/34), and both
SCCmec type III and IV were present in both community and
hospital MRSA infections. This indicated that CC59-MRSA-
t437-IV can’t be used as a molecular marker for community
infection. The difference between CA-MRSA and HA-MRSA
has become blurred. More and more CA-MRSA-based clones
have successfully invaded into hospital institutions, which has
become an important pathogen of infection in hospitals. In many
medical centers, they have become a common cause of medical-
associated bacteremia (Uhlemann et al., 2014; Chen et al., 2015;
Miura et al., 2018).

CC8-ST239-MRSA-III is the major HA-MRSA clone in China
and some Asian countries, and the corresponding spa typing are
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TABLE 1 | MLST, spa, SCCmec, PVL, mecA, and CA/HA-MRSA of the
65 MRSA isolates.

CC MLST spa SCCmec PVL mecA CA/HA-MRSA

1 CC8 ST239 t030 IV − + HA-MRSA

2 CC59 ST59 t437 IV + + HA-MRSA

3 CC45 ST508 t529 IV − + CA-MRSA

4 CC30 ST30 t019 IV + + HA-MRSA

5 CC59 ST59 t437 IV − + CA-MRSA

6 CC1 ST944 t3590 IV + + CA-MRSA

7 CC8 ST239 t030 III − + HA-MRSA

8 CC59 ST59 t437 III − + HA-MRSA

9 CC88 ST88 t13774 III − + CA-MRSA

10 CC8 ST239 t030 IV − + HA-MRSA

11 CC59 ST59 t1894 III + + CA-MRSA

12 CC59 ST59 t437 IV + + HA-MRSA

13 CC59 ST59 t437 IV + + CA-MRSA

14 CC88 ST88 t13774 IV − + CA-MRSA

15 CC59 ST59 t437 IV + + CA-MRSA

16 CC59 ST59 t437 IV − + CA-MRSA

17 CC59 ST338 t441 IV + + CA-MRSA

18 CC59 ST59 t437 IV − + CA-MRSA

19 CC59 ST59 t437 IV + + CA-MRSA

20 CC8 ST239 t030 IV − + CA-MRSA

21 CC59 ST59 t437 IV − + HA-MRSA

22 CC5 ST5 t062 IV − + CA-MRSA

23 CC59 ST59 t437 III + + CA-MRSA

24 CC59 ST59 t437 IV − + CA-MRSA

25 CC59 ST59 t437 IV + + CA-MRSA

26 CC45 ST45 t16027 IV − + CA-MRSA

27 CC59 ST59 t437 IV + + CA-MRSA

28 CC59 ST59 t437 IV + + CA-MRSA

29 CC30 ST31 t5351 NT + + HA-MRSA

30 CC59 ST59 t437 IV + + CA-MRSA

31 CC59 ST59 t437 IV − + CA-MRSA

32 CC59 ST59 t437 IV − + CA-MRSA

33 CC59 ST59 t437 IV + + CA-MRSA

34 CC59 ST59 t437 III + + HA-MRSA

35 CC15 ST18 t624 NT + + CA-MRSA

36 CC22 ST22 t309 III + + CA-MRSA

37 CC59 ST59 t437 III − + CA-MRSA

38 CC30 ST72 t2383 IV − + CA-MRSA

39 CC59 ST59 t437 III + + CA-MRSA

40 CC59 ST59 t437 IV + + CA-MRSA

41 CC8 ST239 t030 III − + HA-MRSA

42 CC22 ST22 t309 III + + HA-MRSA

43 CC59 ST59 t437 IV − + HA-MRSA

44 CC59 ST59 t437 IV + + CA-MRSA

45 CC30 ST398 t034 IV + + HA-MRSA

46 CC59 ST59 t437 IV + + HA-MRSA

47 CC59 ST59 t437 IV + + HA-MRSA

48 CC1 ST94 t779 IV − + CA-MRSA

49 CC5 ST5 t062 IV − + CA-MRSA

50 CC59 ST59 t437 IV − + CA-MRSA

51 CC1 ST1 t127 IV − + CA-MRSA

52 CC59 ST59 t437 IV − + CA-MRSA

(Continued)

TABLE 1 | Continued

CC MLST spa SCCmec PVL mecA CA/HA-MRSA

53 CC5 ST5 t172 IV − + HA-MRSA

54 CC59 ST59 t437 IV − + HA-MRSA

55 CC8 ST239 t030 III − + HA-MRSA

56 CC5 ST5 t062 IV − + HA-MRSA

57 CC59 ST59 t437 IV + + CA-MRSA

58 CC59 ST59 t437 IV − + HA-MRSA

59 CC59 ST59 t437 III + + CA-MRSA

60 CC59 ST59 t1751 III − + HA-MRSA

61 CC59 ST59 t437 IV + + CA-MRSA

62 CC22 ST22 t309 III + + CA-MRSA

63 CC45 ST45 t015 IV − + CA-MRSA

64 CC15 ST15 t2613 III − + CA-MRSA

65 CC5 ST5 t062 IV + + CA-MRSA

CC, clonal complex; ST, sequence type; NT, not typing.

TABLE 2 | Comparison of resistance rates between CC59-spa t437 clones
and other types.

ST59-t437 Non- ST59-t437 χ2-value P-value

(n = 34), Ra(%) (n = 31), Ra(%)

CIP 2.9 29.1 8.48 0.004

SXT 26 16.1 1.508 0.22

CN 2.9 22.6 5.795 0.016

LEV 5.9 22.6 3.79 0.052

DA 88.2 87.1 0.019 0.889

E 88.2 83.9 0.259 0.611

RD 0 12.9 4.675 0.031

TE 35.3 38.7 0.081 0.776

CIP, ciprofloxacin; SXT, Sulfamethoxazole/trimethoprim; CN, gentamicin; LEV,
levofloxacin; DA, clindamycin; E, erythromycin; RD, rifampicin; TE, tetracycline.

mostly t030, t037, and t002 (Chen et al., 2014). The main HA-
MRSA clones in Quanzhou were ST239-MRSA-III/IV-spa t030.
ST239-MRSA-III-spa t037 was the most important MRSA clone
in Beijing before 2000. Since 2000, ST239-MRSA-III-spa t030
has replaced t037 as the main clone (Chen et al., 2010). The
most common clones in Shanghai were ST5-MRSA-II-spa t002,
followed by ST239-MRSA-III-spa t037 and ST239-MRSA-III-spa
t030 (Song et al., 2013). This inconsistent distribution means that
the prevalence of MRSA isolates varies considerably even within
the same country.

In 2014, China CHINET bacterial resistance surveillance
data showed that the resistance rate of vancomycin,
teicoplanin and linezolid was zero, ciprofloxacin,
sulfamethoxazole/trimethoprim, gentamicin, levofloxacin,
clindamycin Erythromycin, and rifampicin were 68.3, 7.0, 62.3,
71.7, 52.9, 77.1, and 47.2%, respectively (Hu et al., 2016). The
resistance rate in Quanzhou is generally lower than the national
average. CC59-spat437 is the main MRSA clone in the region,
and its resistance rates of ciprofloxacin, levofloxacin, gentamicin
and rifampicin are less than 6%, which can be used as the main
drug for the treatment of this type of MRSA.
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