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Human social interactions often involve carefully synchronized behaviours.
Musical performance in particular features precise timing and depends on
the differentiation and coordination of musical/social roles. Here, we
study the influence of musical/social roles, individual musicians and differ-
ent ensembles on rhythmic synchronization in Malian drum ensemble
music, which features synchronization accuracy near the limits of human
performance. We analysed 72 recordings of the same piece performed by
four trios, in which two drummers in each trio systematically switched
roles (lead versus accompaniment). Musical role, rather than individual or
group differences, is the main factor influencing synchronization accuracy.
Using linear causal modelling, we found a consistent pattern of bi-
directional couplings between players, in which the direction and strength
of rhythmic adaptation is asymmetrically distributed across musical roles.
This differs from notions of musical leadership, which assume that ensemble
synchronization relies predominantly on a single dominant personality
and/or musical role. We then ran simulations that varied the direction
and strength of sensorimotor coupling and found that the coupling pattern
used by the Malian musicians affords nearly optimal synchronization. More
broadly, our study showcases the importance of ecologically valid and
culturally diverse studies of human behaviour.

This article is part of the theme issue ‘Synchrony and rhythm interaction:
from the brain to behavioural ecology’.
1. Introduction
Complex human social behaviours often rely upon different members of a group
taking particular roles or tasks. These roles can be assigned for a number of reasons:
an individual’s social status, charisma, expertise, innate ability and/or extra-
personal resources may determine their role and position within a group; these
reasons are not mutually exclusive. Many human social behaviours involve joint
action(s) with varying degrees of temporal precision, from the sequence of chores
in a kitchen to the precise timing of a sequence of passes on the soccer field [1,2].

Musical ensembles combine all of these aspects: social and musical determi-
nations of seniority and status (leader/conductor versus section player; teacher
versus student; soloist versus accompanist), specialized skills and expertise
(drummer versus pianist versus violinist) and different roles as defined by the
music (melody versus accompaniment). Moreover, the coordination among
members of a musical ensemble is often highly complex in terms of its sequential
and hierarchical temporal structure, and yet, it is also both highly precise and
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Table 1. Cross-cultural comparison of synchronization tightness. Pairwise ensemble asynchronies as reported in studies of musical genres from different
geographical locations and cultures around the world. Following Rasch [16], pairwise asynchrony is the average of the root mean square (RMS) of pairwise
differences between instruments articulating the same metric position.

data source musical style pairwise asynchrony (ms)

this study Jembe drumming (Mali): 72 recordings of a single piece, ‘Suku’ 17.0

Clayton et al. [3,15] Jembe drumming (Mali): 16 recordings of three pieces, provided by author Polak 15.6

Candombe drumming (Uruguay) 18.0

Son and Salsa popular music (Cuba) 24.4

Stambeli ritual music (Tunisia) 28.0

Raga music (North India) 29.1

String quartet (UK) 35.2

Rasch [16] European chamber music 30–50

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200331

2

temporally flexible at the same time [3–5]. It is a form of
interpersonal rhythmic ‘entrainment’ or sensorimotor synchro-
nization, in which ensemble members employ adaptive timing
mechanisms for error correction to compensate for both inten-
tional and unintentional deviations from expected timing
behaviours [3–13].

Our study examines a case of extreme temporal precision
in musical performance, that of jembe drum ensembles from
Mali. Malian drummers play complex, improvised rhythmic
patterns at very fast tempos (up to 600 events per minute),
near the rate limit for human performance while maintaining
near-perfect synchrony [4,11,14]. In a recent study of synchro-
nization in musical ensembles based on the cross-culturally
broadest set of corpora available today [3,15], Malian
drummers were found to have the lowest level of timing
variability among groups studied (table 1), far lower than
has been found in Western classical music performance,
and slightly lower than other highly proficient Uruguayan
candombe drummers [17]. How can Malian drummers main-
tain this high level of temporal coordination while playing
complex improvised rhythms at such rapid tempos?

AMalian jembe trio consists of three distinct musical roles,
each assigned to a particular instrument and player: a virtuosic
and highly variative lead role (Jembe 1), a short and simple
unvarying accompaniment that projects the basic beat
( Jembe 2) and a moderately variative ‘timeline’ pattern that
is characteristic of a given piece (Dundun; figure 1; details in
electronic supplementary material, §3.1). Here, we present a
novel experimental paradigm for studying musico-social
coordination, a controlled field experiment that exploits the
conventional practice of role-switching among members of a
drum ensemble: during their hours-long performances in the
context of rituals and social celebrations, the lead and accom-
paniment jembe players will often switch roles. We collected
data from 72 studio-recordings of a single piece, ‘Suku’ (see
electronic supplementary material, figure S1) by four different
jembe trio ensembles (16–22 trials or ‘takes’ per ensemble; see
electronic supplementary material, table S1), with Jembe 1
and Jembe 2 players systematically switching roles; the
Dundun player remained constant (figure 1a). Performances
were recorded with piezoelectric transducers attached to
each drum head (inset of figure 1a), yielding over 154 000
data-points for timing analysis (see §§4a,b).

Our corpus of audio recordings of musical performance
combines four crucial aspects to an unprecedented degree: it
is ecologically valid, capturing complex, high-quality ensemble
performances of full pieces of real music; it is sufficiently large
to allow for the application of data-hungry computational
analysis; it has a stable metric pattern that allows us to perform
automatic annotation and transcription from raw timing data
(see §4c); and it allows us to study the timing relationships
among ensemble members in terms of (i) the different musical
roles of each instrument, (ii) differences among individual
players, and (iii) differences among different ensembles.

The aims of the study are four-fold. First, to document the
relative contribution of musical role, individual and group
differences to tight synchronization despite large overall
tempo changes. Second, to precisely document the degree to
which each member of the ensemble responds to timing devi-
ations made by other members of the ensemble, that is, the
pattern of ‘error correction couplings’. Third, to show whether
and how this coupling pattern is related to both the specific
musical role of each drum in the ensemble and any idio-
syncratic differences among particular performers or groups
of performers. Fourth and last, by modelling alternative
error-correction coupling patterns in simulated performances
of Suku, to determine what the optimal role-specific coupling
patterns for jembe trios would be and then compare them
with the coupling patterns we have observed in our data.
Our broader aim is to document how temporal precision in
human joint action depends on both the differentiation and
optimal coordination of social–musical roles.

Many musical factors, such as pulse clarity, event density,
onset perceptibility, musicians’ skills, musical practices
(e.g. rehearsal prior to performance, improvisation during per-
formance) and style-specific aesthetic ideals, all can contribute
to the degree of precision in ensemble synchronization.
For example, the crisp onsets produced by drum-strokes in con-
trast with other types of instrument sounds may constitute a
precondition to a particularly high degree of precision, which
may be reflected in the fact that the most precise synchrony
hitherto documented involves either percussion ensembles
(Malian jembe and Uruguayan candombe) or percussion-heavy
music (Cuban son; table 1). Relatedly, percussionists often out-
perform non-percussionist musicians in rhythm perception
skills, particularly in the context of sensorimotor synchronization
tasks [18]; the state of research on this issue is ambivalent, how-
ever [19]. Another relevant factor is the performers’ desire for
tight ensemble synchrony: while it is an aesthetic ideal character-
istic of certain African and African-diasporic musical genres,
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Figure 1. Jembe drum ensemble performance of Suku. (a) Main image: Jembe drum ensemble trio, comprising three players of instruments: Dundun (left): Modibo
Diarra; Jembe 1 (centre): Antoine Ki; and Jembe 2 (right): Salifou Sulama. The two jembe players constantly switch instruments and roles (Jembe 1 and Jembe 2)
after each take. Inset: Magnified detail of piezoelectric pickup taped to the membrane. (b) Plots of the tempo change over the course of each performance of Suku
in the corpus. The thick black line indicates the grand average of all 72 performances; the grey-shaded area marks the average ± 1 s.d. (c) Upper tier: Distribution of
all onsets within one performance of Suku, separated by instrument. X-axis, position within the rhythmic cycle; y-axis, position across all cycles in the performance.
Lower tier: histogram of all onsets (aggregated across instruments) within one performance of Suku relative to the rhythmic cycle. Note that the metric positions
within the cycle are non-isochronous.
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including jembe and candombe music [20], it is not necessarily
universal.Othermusical genresmay intentionallyprefer acertain
degree of looseness or fluctuation in ensemble synchronization
(for example, Noh theatre music from Japan [21]).

We therefore took the approach of a case study of one
specific style of music, and in this context decided to measure
naturalistic ensemble music performances that fully articulate
these factors, in contrast with more constrained performances
or simplified tapping experiments where the material is
highly reduced in complexity [11]. Our experimental design
focuses on how such precision is possible in relation to the indi-
vidual and socially interactive behaviours that constitute the
Malian jembe ensemble’s performance (figure 1). In particular,
we study differences between individual players (e.g. in exper-
tise and/or seniority), between ensembles (teams of individual
players) and between musical roles (e.g. lead versus accompa-
niment), which differ with respect to their inherent complexity
and variability.

2. Results
(a) Factors influencing synchrony in ensemble

performances
Suku, like most jembe drum ensemble pieces, is characterized
by a steady tempo increase over the course of a performance
(figure 1b; see electronic supplementary material, figure S2 for
tempo curves for each ensemble configuration). Likewise, the
musical roles of the Dundun and Jembe 2 involve highly
repetitive rhythmic patterns that allow for the automatic
identification of themusic’s cyclic temporal grid (electronic sup-
plementary material, figure S3). Figure 1c shows that relative
onset locations are clustered into 12 specific positions within
the cycle. This corresponds to a four-beat metre, with each
beat comprised of three slightly uneven subdivisions [22].
Eighty-five per cent of the drum-stroke onsets occur in wind-
owed temporal positions that collectively constitute less than
25% of the cycle span, as is visible in the histogram of the distri-
bution onset locations within the cycle (figure 1c, lower tier).
Thus, any given event can be indexed relative to its position
within the ‘local’ metric cycle (electronic supplementary
material, figure S3; details in §4c in the Methods section).

Our experimental design is specifically equipped to test
the relative contribution of three factors in maintaining
ensemble synchrony: ‘Ensemble’ indicates the four different
jembe trios; ‘Lineup’ differentiates the trials where the
Jembe 1 and Jembe 2 players switch roles in half of the
trials, and ‘Role’ indicates the musical role of each instrument
( Jembe 1, Jembe 2 and Dundun); for details, see §4a. The
dependent variables were the standard deviations and
signed means of asynchronies, the latter defined as the differ-
ence between produced onsets and their expected grid
locations (figure 2a,b; electronic supplementary material,
figure S3b). Figure 2c,d shows these standard deviations



1A

1B

2A

2B

3A

3B

4A

4B

5 10 15

standard deviation of the asynchrony (ms)

Jembe 1

instrument 1

instrument 2

event 1 event 2

time

event 3

event 3

Jembe 2
Dundun

en
se

m
bl

e/
lin

eu
p

20

1A

1B

2A

2B

3A

3B

4A

4B

–10 –5 0 5

mean signed asynchrony (ms)

Jembe 1
Jembe 2
Dundun

10

(b)(a)

(c) (d )

Figure 2. Onset asynchronies relative to the metrical grid. (a) Schematics of events and inter-onset intervals (IOIs). Event onsets played by different instruments are
marked with differently coloured circles. IOIs between adjacent events within the same instrument are marked with coloured arrows. Vertical grey-shaded bars
outline the metric grid positions; dashed dark grey lines within the bars mark the mean location of onsets within each position. (b) Schematics of asynchronies
between adjacent event onsets and between event onsets and respective metric grid location. (c) Standard deviation of onset asynchronies in Suku. The asynchronies
were computed for each instrument separately with respect to grid locations, organized by ensemble/lineup; each data point = average s.d. within a performance.
(d ) Mean signed asynchronies in Suku, organized by ensemble/lineup; each data point = average signed asynchronies within a performance.
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and mean signed asynchronies across all ensembles and line-
ups per ensemble. Each Role displays a characteristic
asynchrony (Jembe 1 is early, Jembe 2 is onbeat, Dundun is
late) and variability ( Jembe 2 is less variable than Jembe 1
or Dundun) across conditions (Ensemble and Lineup). How-
ever, the differences between instrumental roles are
nonetheless extremely small in magnitude—on the order of
5–10 ms. Indeed, they are only detectable because the overall
timing stability and precision within each individual part
provides a reference framework against which even very
small timing differences can be salient.

We used mixed-effect modelling implemented with the
fitlme function in Matlab [23] to measure the relative
contributions of Ensemble, Lineup and Role in maintaining
ensemble synchrony. As performance criteria, we used Baye-
sian information criterion (BIC), Akaike information criterion
(AIC), log-likelihood [24] and explained variance of the
model predictions. Following an exploratory analysis, we cre-
ated a model with Lineup as a fixed effect and Ensemble and
Role as random effects, using the standard deviation of the
asynchrony as our dependent measure (see electronic sup-
plementary material, §3.2). This model explained 72.0% of
the variability of the data. We compared the initial model
to the best performing model obtained by performing a
search over a reduced number of factors. We found that
omitting the Lineup or Ensemble factors resulted in a small
and modest change to the performance criteria, respectively
(omitting Lineup: ΔBIC = 11.5, ΔAIC = 70.1, Δlog-likelihood =
5.7, nearly no change in explained variance; omitting
Ensemble: ΔBIC = 70.1, ΔAIC = 74.0, Δlog-likelihood = 38.0,
explained variance = 57.3%). By contrast, we found a
large change when omitting the Role factor (ΔBIC = 212.3,
ΔAIC = 215.7, Δlog-likelihood = 108.9, explained variance =
16.3%). We repeated the same analysis with the mean onset
asynchrony as the dependent variable (figure 2d ) and obtained
similar results. Specifically, the model explained 57.4% of the
variance, and omitting the Lineup or the Ensemble factor
results in small change approximating the optimal model
(ΔBIC = 12.8, ΔAIC = 9.5, Δlog-likelihood = 3.7, nearly no
change in explained variance), whereas omitting the Role
factor results in a large degradation of performance measures
(ΔBIC = 155.9, ΔAIC = 162.7, Δlog-likelihood = 83.3, explained
variance = 0.4%). Taken together, these results suggest that
mean and standard deviation of the asynchrony are largely
determined by Role, and not by Ensemble and/or Lineup.

To validate the BIC and AIC scores, we also performed
a complementary analysis that does not rely on a mixed-
effect approach. In this simple analysis, we compared
the percentage of explained variance obtained by the
dependent variable (regressing the mean or standard
deviation of the asynchrony) with a single categorical
factor, i.e. we replaced each data point with group averages
determined by the factor category. Here, again, we found
that Lineup and Ensemble explained far less variance com-
pared with Role: for standard deviation of asynchrony,
Lineup, Ensemble and Role covered 2.1%, 15.6% and 56%
of the variance, respectively; likewise for mean asynchrony,
Lineup, Ensemble and Role covered 0.6%, 2% and 57.2% of
the variance, respectively.

Finally, we then repeated the same analysis with two
additional dependent measures, namely mean and standard
deviation of the inter-onset intervals (IOIs). The result
showed similar trends (see electronic supplementary material,
§3.2). In sum, the role of each musical instrument (Role) is
much more important than the characteristics of individuals
(Lineup) or groups of musicians (Ensemble).
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Figure 3. Measured and simulated coupling between ensemble members. (a) Schematic of coupling among individual instruments in the ensemble (α coefficients).
Coloured circles indicate event onsets. Vertical grey-shaded bars outline the metric grid positions; dark grey lines mark the mean location of onsets within each
position. Ii,jk indicates the IOI between instruments i and j at position k; α

i,j depicts the coupling constant associated with instrument i and j. (b) Measured couplings
averaged across all performances of Suku: direction of arrows indicates the influence and influencer instruments, namely the tendency to follow (adapt to) the
indicated instrument; thickness and colour of the arrow indicate coupling strength. (c) Measured coupling constants for pairs of instruments. The bars indicate
the mean value. The colouring of the bars corresponds to the colour of the respective pairs of instruments (arrows) in (b), and dots indicate individual trials,
randomly displaced horizontally for visual clarity. (d ) Simulation results. A comparison of coupling models; y-axis indicates the root mean square (RMS) of simulation
asynchrony averaged across all instruments. Values linearly scaled so that the original condition will have a normalized value of 1. Error bars represent 1 s.d.
obtained by bootstrapping. Asterisks indicate statistical significance (***, p < 0.001). (e) Simulation results. The actual coupling pattern is marked with the
green triangle. Simulated couplings indicated by the red square (original strength and equally balanced coupling) and by the blue circle (zero strength and orig-
inal/actual balance). Colours in the heatmap represent the RMS of the asynchrony. Values linearly scaled so that the original condition has a normalized RMS of 1.
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(b) Understanding coupling structure with linear
modelling

To maintain synchrony, a musician must continuously attend
to small deviations in the onset timings produced by other
musicians and adapt to them [11,25–28]. These deviations
need not be consciously detectable in order to elicit a phase
correction response [29], and when these responses are
present one can speak of ‘couplings’ among the musicians in
an ensemble. Previous literature [13,30,31] examined music
where the rhythm is largely homogeneous across all instru-
ments in the ensemble. However, the rhythmic texture of
Suku is more complex, as it comprises distinctly different
rhythmic patterns distributed across ensemble members;
every musician does not articulate every position in the rhyth-
mic cycle. Therefore, we compared actual IOIs to the
expectations based on their prototypical durations, based
upon their average onset positions within the rhythmic cycle
(figure 2a,b), from which the metrical grid can be empirically
inferred. Here, we relied on the fact that Malian drummers
are extremely stable with respect to their relative phases
(figure 1c) within the cycle despite the large tempo changes
characteristic of this repertoire (figure 1b). Formally, this
model can be written as

Ii,ikþ1 ¼ ai,iIi,ik þ Sj=iai,jIi,jk ð2:1Þ
where Ii,ik+1 is the adjusted IOI at onset k + 1, and Ii,jk is the inter-
onset difference between onset k in instrument i and the onset
that precedes onset k + 1 in instrument j, αi,i is the influence of
the previous inter-onset difference of the same instrument i
and αi,j is the influence of instrument j on the inter-onset differ-
ence of instrument i (figure 3a). Note that to account for the
complex texture, we used here adjusted IOIs, namely how
‘elongated/late’ or ‘shortened/early’ a given duration is com-
pared to the prototypical durations relative to the entire cycle
duration (Ii,jk ¼ Ji,jk � �Ji,jk , where Ji,jk and �Ji,jk are the raw
and prototypical average durations, respectively; see electronic
supplementarymaterial, §3.3 fordetails).Despite its relative sim-
plicity, themodel captures 66%of the explained variance in IOIs.

Note that coupling is dependent on two instruments: the
‘influencer’ and the ‘influenced’ (figure 3b). We therefore
incorporated these two factors (Influencer instrument, Influ-
enced instrument) into a mixed effect model as random
effects, with Ensemble also as a random effect and Lineup
as a fixed effect, as per our analysis of the mean and standard
deviation of the asynchrony given above (see electronic sup-
plementary material, figure S4 for average coupling constant
values, separated by ensemble and lineup). This model
explained 58% of the explained variance. We validated the
choice of this model by comparing it to the performance of
alternative models and we found that it was nearly optimal
(ΔBIC = ΔAIC = 0.71, Δlog-likelihood = 0.36, nearly identical
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explained variance compared with the optimal model; see
electronic supplementary material, §3.2). We then considered
all other possible models with a reduced number of factors.
Omitting the Lineup and Ensemble factors resulted in a small
change to the performance criteria, respectively (omitting
Lineup: ΔBIC = ΔAIC = 0.72, Δlog-likelihood = 0.36, explained
variance = 57.3; omitting Ensemble: ΔBIC = 2.4, ΔAIC = 6.4,
Δlog-likelihood = 4.2, explained variance = 55.6). By contrast,
we found a large changewhen omitting the instrument factors
(omitting Influencer instrument: ΔBIC = 102.2, ΔAIC = 110.4,
Δlog-likelihood = 57.2, explained variance = 42.1; omitting
Influenced instrument: ΔBIC = 133.7, ΔAIC = 141.8, Δlog-
likelihood = 72.9, explained variance = 37.7). We also performed
a complementary analysis that does not rely on a mixed-effect
model and found that, similarly, Ensemble, Lineup, Influencer
instrument and Influenced instrument constituted 1.8%, 0.11%,
37.5%and41.9%of the explainedvariance, respectively; Influen-
cer and Influenced together explained 57.3% of the variance.
Together, these results suggest that Influencer instrument and
Influenced instrument are the main contributors to coupling
strength, far more than Ensemble and Lineup.
20200331
(c) Optimal coupling patterns
Two obvious strategies for ensemble coupling are either (i) a
single musician serves as the ‘leader’ and others adapt their
timing to that musician, or (ii) error correction is distributed
equally across all members of the ensemble. Evidence of both
the former [5,32–36] and the latter [13,25,30,31,37] has been
found, though these studies also show that neither strategy is
operative in its most basic form. Figure 3b,c shows the average
coupling pattern over our entire corpus of 72 recordings of
Suku. We found that it is not the lead drum (Jembe 1) but
the non-variative accompaniment drum (Jembe 2) that exerts
the strongest influence on the other instruments in the ensem-
ble ( p < 0.001 via paired t-test, Bonferroni correction applied).
At the same time, Jembe 2 is itself influenced by the other
instruments only to a small extent; the Jembe 1 and Dundun
mutually influence each other to an approximately equal
extent. Thus, the pattern of coupling distribution can be charac-
terized as asymmetric, yet at the same time relatively balanced
rather than strictly hierarchical. Figure 3b depicts the degree
and direction of mutual influence for each instrument, where
the thickness and colour of the arrows show the coupling
strength. Figure 3c shows the individual coupling constant
for each trial as well as the means for each instrument pair.
Note that the coupling constants are on average positive.

Our results are in accord with qualitative research in jazz
performance, which suggests that ensemble synchronization
can be anchored by the accompaniment parts of the ensemble
(i.e. the ‘rhythm section’) rather than leading/soloing instru-
ments [38,39]. Our Malian musician participants’ own
understanding of the different roles in the jembe ensemble
are also in accord with this perspective. Author Polak per-
formed a series of interviews with the musicians and found
that they acknowledged that the lead drum (Jembe 1) is the
most highly variative, and is hence a less reliable guide for
ensemble coordination. In the words of Sedu Keita, jembe
player in Ensemble 1: ‘The dundun and the second jembe
player need to go along in close contact with each other;
because if the dundun or second jembe accompanist tries to
listen to the lead drummer, you will play crap; you will get
lost’. The musicians also acknowledged that the less variative
and sparser second jembe and dundun are specifically tasked
with ‘keeping the time.’ From dundun expert Draman Keita’s
(Ensemble 2) perspective: ‘The second jembe and the dundun
go along together… The soloist again will take on the time
from both the second jembe and the dundun. The dundun
player will listen to the second jembe accompanist so that
he is able to keep the regular track. I [the dundun player]
will keep track of my time, because when I lose my time,
the others, too, will go astray’ (see electronic supplementary
material, §4 for extended quotations in both the original
source language and English translation).

Testing the musicians’ self-reports, we modelled a series
of simulated musical performances in which the coupling
patterns were systematically manipulated, yet where the den-
sity and variability of each instrument were derived from
actual performance data. We compared the following simu-
lations: (i) the original coupling pattern as measured in the
recorded performances, (ii) three variants of hierarchical lea-
dership, each with a single instrument as the leader and the
two other instruments as followers, with no other couplings
among them, (iii) equally distributed coupling (balanced
between and across pairs of instruments, i.e. ‘democracy’),
and (iv) no coupling at all, involving complete independence
of instruments (see electronic supplementary material, §3.4
for more details). We found the original coupling pattern
shows the lowest level of asynchrony/error among the mod-
elled variants (figure 3d ). While setting the lead instrument
(Jembe 1) to be the leader results in very large synchroniza-
tion error, assigning leadership to either the Jembe 2 or the
Dundun also produces synchronization errors significantly
larger than the original pattern, albeit substantially smaller
than when Jembe 1 is the leader. Importantly, an equally
balanced distribution also generates a substantially larger
synchronization error than the original ( p < 0.001 via t-tests;
Bonferroni correction applied). Not surprisingly, no coupling
at all (complete independence, where all onsets are deter-
mined by prototypical metric locations with independent
random noise) results in the highest levels of asynchrony.

To further study the effects of different error correction
strategies beyond the selected hypotheses, we explored a two-
dimensional parameter space wherein we continuously
manipulated the total amount of coupling strength (y-axis)
and its allocation among the members of the ensemble from
balanced to unbalanced (x-axis). In figure 3e, we arbitrarily
positioned the no-coupling model (with zero coupling matrix)
at the origin (0,0) marked as a circle, the original/actual coup-
ling model at (0,1) marked as triangle, and the democratic
model (with all coupling constant equal) at (1,1) marked as a
square (see §4e and electronic supplementary material, §3.4
for additional details). We found that the location of actual
data simulation error was not significantly different from the
optimal location (i.e. where root mean square (RMS) of the
simulated asynchrony is lowest) within the parameter space
(p = 0.47 via Wilcoxon rank-sum test). Specifically, the optimal
location involves the same coupling structure but with slightly
reduced coupling strength. This is consistent with the idea that
Malian drummers, through sustained performance practice
over both their individual musical development and broader,
collective stylistic evolution, have discovered the optimal
attentional/coupling strategy for each part of the ensemble.

Finally, we performed a number of control analyses to
assess the robustness of our findings (electronic supplementary
material, §3.5). First, we compared our results with another
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established method of coupling analysis, namely, Granger
causality, which measures causal influence within two time-
series signals [33,34,40–42]. We found that this approach
delivers similar results to our basic analysis method (electronic
supplementarymaterial, figure S5a–c). Thenwe testedwhether
the results would be different if instead of using the absolute
and thus tempo-dependent durations of IOIs, we detrended
the data and based our analysis on phase differences. Here,
too, the results were very similar to the main approach (elec-
tronic supplementary material, figure S5d–f ), suggesting that
tempo changes scale-up, but do not qualitatively alter the con-
sistent differences between the musicians’ phases. Next, we
tested whether the results are similar if we use asynchronies
rather than IOIs as data for the coupling analysis (for compari-
son of these methods, see review in [43,44]). We found that
while the coupling constants are numerically different, the
overall pattern of results yielded from these earlier models
was similar to ours. For instance, Jembe 1 strongly adapting
to Jembe 2 is the strongest coupling relation in both analyses
(electronic supplementary material, figure S5g–i). We then
explored whether the results would be different when
adding complexity to the linear model by considering a
longer past history, namely a higher-order linear model [43].
Again, the results were similar to the main analysis (electronic
supplementary material, figure S5j–l). Finally, we explored
whether the coupling changes substantially during the piece.
Since reliable computation of coupling constants requires a
considerable amount of data, and thus can only be performed
on large segments of the data per recording [44], we tested
whether the coupling constant changes for the first versus the
second half of the piece. As in the other control analyses, we
found the coupling constant to be very similar across both sec-
tions, suggesting that the synchronization behaviour does not
change substantially in the course of performance (electronic
supplementary material, figure S5m,n). In summary, the four
different control analyses show that our approach tomodelling
the mutual adaptation relationships between the different
instruments in the ensemble is robust.

3. Discussion
In this paper, we document the extreme rhythmic precision in
Malian drum ensemble performance, characterized by their
exceptionally low temporal variability and very high degree
of synchrony. We collected performance data from four distinct
ensembles in which the two jembe drummers systematically
switched roles (lead versus accompaniment). These data
allow us to assess the effect of individual players, ensembles
and musical roles on ensemble synchronization (figure 1).
Across three measures—means of the onset asynchronies, stan-
dard deviations of the onset asynchronies and coupling
constants—we found that the dominant factor is musical role;
individual players and differences among ensembles contribute
much less to explaining the observed behaviour (figure 2). Pat-
terns of small microtiming variation were then used to identify
causal temporal coupling relations among the group members
(figure 3a–c). Small differences in synchrony and variability can
be related to differences in coupling associated with specific
musical roles—highly variative lead drum ( Jembe 1), invariant
time keeper ( Jembe 2) and near invariant timeline (Dundun)—
and their mutual relationships. Their complex dynamic is con-
sistent with the self-reports of the musicians as documented in
post-experimental interviews.
Our simulations of hypothetical coupling arrangements
suggest the Malian musicians have developed a near-optimal
coupling strategy for their particular ensemble, an ensemble
in which musical roles differ in terms of their information den-
sity and variability. In particular, an asymmetrically distributed
model (derived from what we observed in the real perform-
ances) performs substantially better than both an equally
balanced (democratic) and a hierarchical dominance model
that ascribes full leadership to the so-called mother-drum or
lead drum (Jembe 1); note that in terms of artistic interaction
and communication (and often also socio-economic organiz-
ation) the lead drummer actually does play the most
dominant social role in the ensemble, comparable to the first
violin in European chamber music (figure 3e). Our study thus
provides clear demonstration that the core component of the
human ability for temporal coordination of rhythmic behav-
iour, namely, error correction [11,45], can be optimized in
context- and task-specific ways in complex, real-world joint
action.

The roles in a musical ensemble are not simply musical
roles, but social roles as well—making music together is a
social activity [46–48], especially for and among the players
involved. The key dimension of contrast/variation along
whichMalian ensemble coordination is organized is not leader-
ship/followership (i.e. hierarchical dominance) but the extreme
differentiation of the behavioural repertoire(s) that define the
musical roles and the social interaction among them. Jembe 1
functions not only as the primary ‘melodic’ instrument and
leading ‘voice’ in the ensemble; its improvisatory character is
grounded in its need to flexibly control the participatory and
interactive aspects of the performance (individual and group
dancing, active audience response, ritual action) that are the
core functions of the social occasion where these performances
occur. By contrast, Jembe 2 is not allowed the variation of a
single note of its pattern; the Dundun must constantly present
the signature ‘timeline’ that identifies the piece as Suku and ori-
ents Jembe 2’s pulses within the metric cycle. The coupling
patterns we have uncovered, in addition to engendering the
extreme rhythmic precision we have documented, are also
reflections of the outward ( Jembe 1) and inward ( Jembe 2
andDundun) social orientations of these differentmusical roles.

While our studyattempted to collect data in a context that is
both experimentally controlled and at the same time ecologi-
cally valid, our experimental method misses some important
components of real-world jembe drum performance. Malian
drumming occurs usually in the context of dancing and sing-
ing, both of which were absent during our data collection.
Future research should apply techniques such as motion cap-
ture or machine learning video annotations to measure
dance–music interactions. In addition, in our experimental
trials, each ‘take’ ran from 2 to 3.5 min; in real-world contexts,
performances are open-ended and can last from 2 to 20 min. In
terms of our analysis of causal temporal relations, we focused
on linear models with first-order statistics assuming uniform
coupling over the course of the metric cycle. While our control
analyses supported our approach (see electronic supplemen-
tary material, figure S5 and related discussion, electronic
supplementary material, §3.5), indicating that higher-order
models and other alternative analytical approaches do not sub-
stantially change the results, additional models, including
alternative higher-order models such as differential coupling
constants across metric positions within the cycle should be
considered.



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200331

8
Our research illuminates a system of ensemble synchroni-
zation where simple accompaniment parts, rather than solo/
leading parts (e.g. a jazz soloist, the first violin in a string
quartet, an orchestra’s conductor or the lead/master drum-
mer in a West African percussion ensemble), consistently
serve as the core timing reference to which other ensemble
members adapt. This system of accompaniment-based time-
keeping has been qualitatively described in jazz and other
groove-based or dance-oriented musical genres. However,
previous empirical research in ensemble synchronization
has focused on ensembles that do not feature this kind of
musical structure, specifically piano duos and string quartets
from European art music traditions, and as a result has come
to rather different conclusions regarding role-distribution
in ensemble synchronization. Thus, while studies of ensemble
synchronization in string quartet performance found evi-
dence of asymmetric mutual couplings among players
(rather than strictly hierarchical leadership), they also
showed that string quartet performance at least partly
involves adaptation to the presumptive leading role, that is,
the first violin [13,30,31]. This stands in contrast with the con-
sistently minimal adaptation to the lead drum and
(conversely) consistently strong adaptation to the accompani-
ment roles we found in jembe performance. This speaks of
two qualitatively different approaches to ensemble synchro-
nization. Thus, our results underscore what can be gained
from studying participants and cultural performances or arte-
facts beyond the laboratory in the Western World. Focusing
solely on WEIRD groups (Western, Educated, Industrial,
Rich and Democratic [49,50]) limits what one can observe
and understand regarding human creativity and ability.
A first step towards overcoming this cultural sampling
bias is the integration of humanistic methods (in our case,
ethnomusicological thinking and expertise) into scientific
research. The ethnomusicologist member in our team of
authors, Polak, proposed the research idea for the present
study based on his practice-based knowledge of ensemble
performance processes, and our data collection was only
possible owing to the social network of musicians and
research partners in Mali that he has cultivated over three
decades of research. Polak was also able to obtain the
musicians’ qualitative assessments of our quantitative
observations (see electronic supplementary material, §4),
which paralleled our findings and modelling. Our work
would be even better were we able to have our Malian col-
leagues involved in the conception of our research
questions and hypotheses, and in the analysis of our data;
we hope and aim for them to be more centrally involved in
our future research. What our collaboration with Malian
musicians has shown is that the study of behaviours at the
limits of human abilities can give us a clearer perspective
on the mechanisms that underlie those abilities. Under-
standing those behaviours, and the mechanisms that
underlie them, can show the full range of possibilities for
human perception and action coordinated in time and
across individuals.
4. Methods
(a) Corpus design and data collection
Author Polak produced the corpus of recordings in Bamako, the
Malian capital, in February 2016. Recording, raw data and
processed data are available in an OSF repository: https://doi.
org/10.17605/OSF.IO/8WYAV. Four distinct trio ensembles,
consisting of 12 urban professional drummers, were hired and
paid for 1 day of studio work. Each of the four recording sessions
(one session per ensemble) involved about 2 h of playing time.
With technical set-up, atmospheric preparations including con-
versation and the consumption of food and tea, information
about and consent to the research, the recording itself and
post-experimental interviews, each session lasted for 5–7 h. All
musician participants gave written informed consent, in
accordance with the Declaration of Helsinki.

The drummers brought their own instruments. Piezoelectric
transducers (K&K Sound Hot-Spot) were attached to the skin
of each drum, very close to the rim where it does not compro-
mise the vibration behaviour of the membrane and thus the
sound (figure 1a). The relatively clean signal of each pick-up
was recorded into a separate channel of a portable 4-track digital
studio (Roland R44), which afforded simple and accurate
automated onset detection.

In each ensemble, one musician specialized in playing the
Dundun, while the two jembe players were proficient as both
lead drummers and accompanists. In Mali, musicians tend to
be aware of, and pay respect to, their relative seniority. This
was relevant for the two jembe players in each trio ensemble,
even though the degree of differentiation (range of variability)
was small. For example, Sedu Keita, the player of Jembe 2 in
Ensemble/Lineup 1A (born 1964) did his apprenticeship with
Drisa Kone, the player of Jembe 1 (born 1960) four decades
ago, but in the past 30 years both of them worked independently
as master drummers. In each of the four recording sessions (one
per ensemble), the more senior of the two jembe players in a trio
would start out, by self-selection, with playing the lead drum
role ( Jembe 1), which is always (both live and in studio situ-
ations) placed in the centre of the ensemble. After the first take,
the two jembe players changed seats, instruments and musical
roles (figure 1a). Thereafter, the two jembe players continued
with role-switching after each of the 16–22 takes that we recorded
per ensemble. This systematic alternation of roles was motivated
by our interest in the relative contribution of individuals when
compared with ensembles and instrumental roles, and was per-
formed by the players upon our request. We refer to the
swapping of Jembe 1 and Jembe 2 as the variable ‘Lineup’. In
each ensemble in the corpus of recordings, Lineup A denotes
that the senior jembe player is performing the lead drum
(Jembe 1), whereas Lineup B indicates that the senior jembe
player is providing accompaniment ( Jembe 2).

(b) Onset detection and markup
Each of the 72 takes in our corpus lasted between 104 and 282 s
(average 162 s); the total running time of the corpus is 201 min
(see electronic supplementary material, table S1). We used the
software ‘Sonic Visualizer’ with the plugin ‘Onsets DS’ to auto-
matically detect note onsets, accurate to ±2 ms [51,52]. False
alarms (one sound event being registered as two or three
onsets) were filtered by discarding onsets following an initial
onset within a 50 ms window. This threshold of 50 ms was
chosen based on the fact that the minimal inter-onset interval
between metric events in our corpus, at the fastest tempos
included, is about 100 ms. The filtered time-series were
reimported to an audio-editor and checked by visual inspection.

(c) Data preparation: metric annotation of onsets
The jembe performances in our corpus exhibit the large-scale
tempo accelerations characteristic of this repertoire, starting
at initial rates of approximately 120–160 b.p.m. to final speeds
of approximately 160–200 b.p.m. over the course of the piece
(see electronic supplementary material, figure S2). However, as

https://doi.org/10.17605/OSF.IO/8WYAV
https://doi.org/10.17605/OSF.IO/8WYAV
https://doi.org/10.17605/OSF.IO/8WYAV
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shown in figure 1c and electronic supplementary material, figure
S3, the phase positions of each drum-stroke (i.e. their relative
locations within the metric cycle) are extremely stable across
tempo changes. We established a process that uses this property
of the music to automatically annotate the metric positions for all
onsets of the entire piece. First, we identified the ostinato pattern
played by Jembe 2, which articulates each beat including the
turning point (downbeat) of every cycle. We then identified the
onsets articulating each downbeat in all other instruments as
onsets within a window of ±4.5% of the cycle duration defined
by Jembe 2 alone. This threshold was chosen because it dis-
tinguishes the downbeat from adjacent metric positions, each
of which covers 8.3% of the cycle duration. We then averaged
the event onset locations of all instruments that articulated a
given downbeat and re-computed the cycle durations on that
basis. Within this revised framework, we calculated the phases
associated with other onsets as the relative location within each
cycle, now calculated based on downbeats of all ensemble mem-
bers. Electronic supplementary material, figure S3A presents
histograms of these phases and it is apparent that they are con-
centrated in 12 narrow clusters corresponding to each of the
non-equal subdivisions within the 4-beat cycle [22,53–55]. We
then computed the mean position (relative to the metric cycle
duration) of each cluster, and used these prototypical locations
as a virtual metric grid. We assigned each onset to the closest
metric grid position according to its phase (electronic sup-
plementary material, figure S3B). We discarded from further
analysis all onsets located outside a symmetric window of 24%
of the beat duration for each position. In the case of an ornament
with two onsets within the same position, we considered only
the onset closest to the prototypical location. The result of this
process was an assignment of every remaining onset to a
single metric position.

The total set of raw data-points consisted of 158 263 drum-
stroke onsets. Trimming the beginnings and endings of pieces,
where ensemble coordination is unsettled and not all instru-
ments are present amounted to a loss of 3% of the onsets. The
filtering of onsets involved a further loss of 1.8% of the raw
data. The final corpus comprises 150 717 data-points.
(d) Model fitting
To obtain the results of figure 3, we employed the following
model. This equation was obtained by rewriting equation (2.1)
with explicit residual noise and intercept terms that are fitted
separately for each instrument:

Ii,ikþ1 ¼ ai,iIi,ik þ Sj=iai,jIi,jk þ ai
0 þ nik ð4:1Þ

where ai
0 is an instrument-specific intercept term, nik ∼N(0,si) is

an unbiased Gaussian residual noise with variance s2
i , and coup-

ling constant and IOIs are as in equation (2.1) (figure 3a; see
derivation and further modelling detail in electronic supplemen-
tary material, §3.3). The parameter fitting was done separately
for each performance trial (take). Electronic supplementary
material, figure S4 shows the averages across performances by
each ensemble and lineup. To help in the visualization, we normal-
ized the colour and arrowwidthwithin each plot so that the largest
coupling is always representedwith the brighter colour andwidest
arrow; numeric values are also displayed. We then computed the
averages across all performances, as shown in figure 3c, which dis-
plays the individual coupling constant for each pair of instruments
for each performance in our corpus (dot = one performance,
random jitter added to the x-axis to for visualization purpose)
and averages (bars) along with the standard error of the mean
(error bars). Note that we generally omitted from the graph the
self-coupling constants and intercepts even though theywere com-
puted within the model. The self-coupling constants were all
negative (averages were −0.18, −0.56 and −0.47 for Jembe 1,
Jembe 2 and Dundun, respectively).

(e) Simulations
We generated 500 simulations for each coupling model. We
started with the real data, and computed the model fits for
this particular performance. We then generated simulated data
based on equation (4.1) where in each simulation, we kept the
original residual noise magnitude intercept and coupling con-
stant, forming the ‘original coupling’. In other words, in each
simulation, the input was a set of coupling constants. We kept
the music texture (which metric onsets are articulated) and the
overall variability of the asynchrony associated with each instru-
ment. We then simulated artificial data where the deviations
from the metric grid were determined by the model of equation
(4.1), replacing the coupling constants with the simulated values.
The variability associated with each instrument determines the
variability of the Gaussian noise term nik: After randomizing
the noise term, we used equation (4.1) and the given coupling
constants to compute the simulation IOIs for all articulated
onsets. We measured the degree of overall variability averaged
across instruments for each set of simulations with different
structures of coupling matrices.

We created alternative coupling models (as explained in the
electronic supplementary material, §3.4) by replacing the original
coupling matrix ai,j with five alternatives

aJ1
i,j, aJ2

i,j, aD
i,j, abalanced

i,j, andano
i,j:

These correspond to Jembe 1 ( J1) as the leader, Jembe 2 ( J2) as
the leader, Dundun (D) as the leader, equally balanced (‘demo-
cratic’ coupling), and no coupling whatsoever. For each matrix,
we computed the simulated RMS of the model compared
with the metric grid. We then averaged the results across the 72
simulations. We plotted the RMS of the asynchrony, and to help
the comparison of the different conditions, we linearly scaled all
values so that the original condition will have a normalized
value of 1 (figure 3d—note that the error bars represent 1 standard
deviation obtained by bootstrapping).

To further study the effects of different phase correction
strategies, we explored a two-dimensional parameter space
wherein we continuously manipulated the phase coupling
strength (y-axis) and its allocation among the members of the
ensemble (from fully balanced (=1) to unbalanced (=0); x-axis).
This is operationalized by simulating performances such that
the phase coupling matrix is linearly interpolated between the
actual data αi,j (triangle in figure 3e), the democratic matrix
(αbalanced

i,j; square figure 3e) and no coupling (with zero coupling
matrix; circle in figure 3e). This results in the following coupling
matrix:

asim
i,j ¼ y�((1� x)�ai,j þ x�abalanced

i,j) þ (1� y)�ano
i,j: ð4:2Þ
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