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METHODOLOGY

Optimizing a Bayesian hierarchical adaptive 
platform trial design for stroke patients
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STONE Executive Committee 

Abstract 

Background:  Platform trials are well-known for their ability to investigate multiple arms on heterogeneous patient 
populations and their flexibility to add/drop treatment arms due to efficacy/lack of efficacy. Because of their complex-
ity, it is important to develop highly optimized, transparent, and rigorous designs that are cost-efficient, offer high 
statistical power, maximize patient benefit, and are robust to changes over time.

Methods:  To address these needs, we present a Bayesian platform trial design based on a beta-binomial model 
for binary outcomes that uses three key strategies: (1) hierarchical modeling of subgroups within treatment arms 
that allows for borrowing of information across subgroups, (2) utilization of response-adaptive randomization (RAR) 
schemes that seek a tradeoff between statistical power and patient benefit, and (3) adjustment for potential drift over 
time. Motivated by a proposed clinical trial that aims to find the appropriate treatment for different subgroup popu-
lations of ischemic stroke patients, extensive simulation studies were performed to validate the approach, compare 
different allocation rules, and study the model operating characteristics.

Results and conclusions:  Our proposed approach achieved high statistical power and good patient benefit and 
was also robust against population drift over time. Our design provided a good balance between the strengths of 
both the traditional RAR scheme and fixed 1:1 allocation and may be a promising choice for dichotomous outcomes 
trials investigating multiple subgroups.

Keywords:  Platform trial design, Bayesian models, Hierarchical models, Response-adaptive randomization, Beta-
binomial
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Introduction
Master protocols, including umbrella, basket, and plat-
form trials, are clinical trial designs which have received 
increased interest in the past few years. They simultane-
ously evaluate multiple drugs and/or multiple popula-
tions in multiple sub-studies and thus can accelerate the 
drug development process [1, 2]. Platform trials simul-
taneously investigate multiple treatments on multiple 
populations and are often referred to as “multi-arm, 

multi-stage” (MAMS) design trials [3–7]. This type of 
design allows for either a fixed number of treatments 
or an adaptive number of treatments by dropping and/
or adding treatments during the process of the trial [8]. 
Compared to standalone designs, they are more efficient 
at identifying effective treatments for specific subpopula-
tions and can require the enrollment of fewer subjects for 
specific subpopulations [8]. While they may still result in 
a larger overall trial, they can answer treatment questions 
for specific subpopulations. Basket trials and umbrella 
trials are subtypes of platform trials. Basket trials include 
a single investigational drug or device being tested on 
multiple diseases that share a specific biomarker or 
mutation [9–11]. They are often used in phase II studies 
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with the goal to explore potential uses of a treatment or 
identify subpopulations in which a target treatment per-
forms well or poorly [12]. Umbrella trials, on the other 
hand, compare multiple investigational drugs or devices 
in a single disease population [13–15]. They can iden-
tify treatments that perform well or poorly for a specific 
disease.

Recent studies [16–24] have shown endovascular 
thrombectomy (EVT) is a treatment of substantial ben-
efit in select acute ischemic stroke patients and suggested 
EVT is a promising potential treatment in additional, not 
yet interrogated, subpopulations of acute ischemic stroke 
patients. Given the large difference in positive outcomes 
for subjects treated with EVT plus medical manage-
ment versus standard medical management (MM) alone 
observed in these trials, significant enthusiasm exists for 
expanding indication to additional subgroups not yet 
studied, as well as evaluating whether additional syner-
gistic interventions exist. NIH-NINDS has published a 
notice of special interest (NOSI) in establishing a plat-
form with a master protocol for multi-arm, multi-stage 
EVT trials [25]. To respond to the NOSI, the current 
authors, in collaboration with a team of clinical investiga-
tors, have developed the design proposed herein, with a 
focus on developing a first trial for performance on the 
platform that studies indication expansion to additional 
patient subgroups. If funded, the proposed “StrokeNet 
ThrombEctomy Platform - STarting with OptimizatioN 
of Eligibility” (STEP-STONE) trial, a companion trial to 
the platform, is a prospective, adaptive, registry-anchored 
trial that compares EVT plus MM medical to standard 
MM treatment alone, with the goal to identify patient 
subpopulations which can benefit from EVT treatment. 
In this trial, since we expect similarities in treatment 
differences across all subpopulations, a Bayesian hierar-
chical model was used to borrow information across dif-
ferent subgroups within a treatment arm thus improving 
the trial’s efficiency. In addition, given the high efficacy 
observed in previous subgroups, clinicians do not have 
the equipoise to randomize at a fixed equal allocation; 
instead, response-adaptive randomization is proposed to 
allocate patients to the more promising treatment as sup-
portive evidence is acquired, facilitating investigator will-
ingness to enroll.

Bayesian methods are attractive in adaptive trials, since 
they allow for continuous updating of posterior decision 
quantities as new information becomes available and 
thus they facilitate adapting to information obtained as a 
trial progresses [8, 26–30]. Motivated by previous work 
[31], the Bayesian hierarchical beta-binomial model used 
in the STEP-STONE trial included a tuning parameter in 
the prior distribution of response rates that adjusts the 
“strength” of borrowing within treatment arms.

Response-adaptive randomization (RAR) was used 
in the STEP-STONE trial to maximize patient benefit 
throughout the trial. While traditional clinical trials use 
fixed allocation and usually balance sample size equally 
in different treatment groups to eliminate bias, RAR is 
a patient allocation algorithm that has been commonly 
used in adaptive clinical trials to alter patient randomiza-
tion probabilities based on interim results obtained from 
the trial. Updating the patient allocation ratio during the 
trial allows to randomize more patients to the more ben-
eficial treatment and thus reduces the overall number of 
harmful events from the clinical trial and improves indi-
vidual ethics [32–36].

There are many challenges accompanying the use of 
RAR in clinical trials, with one major challenge being 
patient population parameter drift [8, 37–39]. Drift 
occurs when the treatment response rates change over 
time. Without properly adjusting for drift effects, biased 
estimates could be obtained thus leading to wrong con-
clusions in the trial [37, 40, 41]. To alleviate this problem, 
Angus et  al. used a first-order normal dynamic linear 
model (NDLM) to account for treatment response rates 
changing over time in the REMAP-CAP platform trial 
[42]. Motivated by their work, a drift parameter was also 
incorporated in the design of the STEP-STONE trial to 
capture the change in treatment response rates.

Another potential problem that arises in complex 
designs independently from RAR is the multiplicity 
issue. Multiplicity concerns arise when multiple com-
parison objectives are being evaluated in the same clini-
cal trial [43] and failing to account for multiplicity results 
in inflation of type 1 errors. In the STEP-STONE trial, 
multiplicity occurred since multiple patient populations 
were included and multiple interim analyses were per-
formed. In practice, controlling of familywise type 1 error 
in Bayesian designs often relies on simulation [8, 38, 44, 
45]. In the STEP-STONE study, thresholds of parameters 
were determined to ensure overall type 1 error being con-
trolled at 0.05 level through extensive simulation studies.

The STEP-STONE trial is a two-arm, response-adap-
tive platform trial. Previous research has shown [39, 46–
48] that in the two-arm trial setting, compared with equal 
allocation, response-adaptive allocation achieved lower 
statistical power due to unequal sample sizes [49]. To find 
a compromise between high statistical power in equal 
allocation and the high patient benefit obtained from 
response-adaptive allocation, an innovative RAR scheme, 
“RARCOMP,” is proposed.

In summary, to address the needs of the STEP-STONE 
trial, we proposed a two-arm adaptive platform trial 
design. Our approach has three distinct characteristics: 
(1) the use of a Bayesian hierarchical model that allows 
to gain efficiency by borrowing information between 
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subgroups, (2) an innovative RAR allocation scheme 
(RARCOMP) that achieves a good balance between sta-
tistical power and patient benefit, and (3) robustness to 
changes in the response over time. While covering all 
details and issues relating to platform trials is beyond the 
scope of this paper, the viability of our approach in two-
arm trials with multiple subgroups and binary primary 
endpoints is demonstrated via extensive simulation stud-
ies and the proposed RARCOMP scheme could be easily 
adapted to multi-arm settings.

Methods
Motivating trial
In the STEP-STONE trial, the primary endpoint is 
binary and denotes if a favorable global disability level 
was observed at 90 days. Favorable outcome is assessed 
using prognosis-adjusted, sliding dichotomy analysis of 
the modified Rankin scale (mRS) [50–52]. Information 
obtained from both a prospective registry and previous 
related populations level I evidence trials is used to con-
duct patient allocation for each patient subpopulation. 
During the STEP-STONE trial, the patient allocation 
ratio is adaptively updated based on patients’ treatment 
responses at each interim. Once a prespecified success 
criterion is identified for a subgroup, all future partici-
pants in that subgroup will be assigned to the superior 
treatment.

Patient subgroups
The STEP-STONE trial will target three previously 
under-studied patient characteristics including (1) indi-
viduals with large ischemic cores, (2) individuals with 
mild deficits, and (3) individuals with distal vessel occlu-
sions. A large ischemic core is defined as a substantial 
amount of already-injured brain tissue visualized using 
neuroimaging; a mild deficit is defined as few impair-
ments in cognition, strength, vision, and other neuro-
logic functions quantified using the National Institute of 
Health Stroke Scale; finally, a distal vessel occlusion refers 
to those strokes in which the causative clot(s) are located 
in intermediate (rather than large) diameter brain arter-
ies. Of note, these characteristics are not mutually exclu-
sive, though some combinations are clinically rare or 
highly unlikely, e.g., a large area of injury but only result-
ing in mild deficits (large ischemic core + mild deficit).

Depending on whether these characteristics are pre-
sent or not, patients are grouped into five mutually exclu-
sive subgroups, which are Large Core Only, Mild Deficit 
Only, Distal Occlusion Only, Large core + Distal, and 
Mild Deficit + Distal. Figure 1 shows the Venn diagram 
of the five patient subpopulations and their respective 
expected population proportion.

Models
Three different models will be discussed in this section. 
We will first start with the simplest model, the Bayes-
ian logistic independent model in the “Bayesian logistic 
independent model” section, as it is a commonly used 
standard model for binary outcomes, and it is also the 
standard model in the Fixed and Adaptive Clinical Tri-
als Simulator (FACTS) software. We then compare this 
model with two Bayesian hierarchical models. In the 
“Bayesian hierarchical model” section, we present a 
Bayesian hierarchical beta-binomial model that allows 
for borrowing information across patient subgroups 
within each treatment. A modified Bayesian hierar-
chical beta-binomial model which also accounts for 
patient response rates drift will be discussed in detail in 
the “Bayesian hierarchical drift model” section.

In all models, each of the five occurring combinations 
of the three patient characteristics (Mild Deficit, Distal 
Occlusion, Large Core) is treated as a unique subgroup 
without specific consideration for the base character-
istics themselves. For each patient population sub-
group j = 1, …, J and each treatment k = 1, …, K, where 
in the STEP-STONE trial J = 5  and K = 2, the number 
of favorable outcomes Yjk follows a binomial distribu-
tion, with parameters njk and Pjk. njk, where njk repre-
sents number of participants and Pjk is the probability 
of obtaining a favorable outcome. We will introduce the 
three Bayesian models accordingly.

Bayesian logistic independent model
For the Bayesian logistic independent model, the 
response rates of subgroups are modeled separately 
each with its own prior in the independent model. In 
the STEP-STONE project, we assume the log odds of 
the response rate in each subgroup and each treatment 

Fig. 1  Subgroup proportion summary
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arm follows a non-informative prior normal distribu-
tion. The complete model can be written as:

which means

where the log odds βjk uses the following prior 
distribution:

The mean and variance specified in the normal distri-
bution above is roughly equivalent to a Beta (1, 1) distri-
bution on the response rate Pjk, which is widely selected 
as non-informative prior in the beta-binomial distribu-
tion scenario.

Bayesian hierarchical model
Motivated from previous work [31], in the Bayesian hier-
archical model, the prior distribution of the response rate 
in each subgroup after receiving treatment k follows a 
beta distribution with hyperparameters (mPk, m(1 − Pk)). 
This prior distribution allows response rates to bor-
row information among all subgroups within treatment 
k. Here, m is a constant that represents how strong our 
prior belief is, before the trial starts, that the treatment 
response rates Pjk are close to the average response rate 
Pk in treatment k. For example, if m is large, it means we 
are confident that Pjk is very close to Pk. In this paper, dif-
ferent m values were tested and compared.

The hyperparameter Pk is modeled through a beta dis-
tribution with parameters (αk, βk). In this project, since 
we did not have strong prior knowledge about the aver-
age response rate of favorable outcomes, we considered 
an uninformative uniform prior, which is equivalent 
to setting αk and βk to 1. This uniform prior and can be 
interpreted as every possible probability of success from 
0 to 100% being equally likely.

With this setup, the complete hierarchical model can 
be written as follows:

log

(

Pjk

1− Pjk

)

= βjk

Pjk = Pr favorable outcomes =
eβjk

1+ eβjk

βjk ∼ N
(

0, 1.822
)

Yjk ∼ Binomial
(

njk ,Pjk
)

Pjk ∼ Beta(mPk ,m(1− Pk))

Pk ∼ Beta(αk ,βk)

αk = βk = 1

Bayesian hierarchical drift model
Previous models assume the treatment response rates 
to not change over time. However, this is not always 
the case in real-life clinical trials. If the response rates 
changed over time and were not adjusted for properly, 
severely biased estimates could be obtained thus leading 
to wrong decisions. Using the same approach described 
in the REMAP-CAP study [42], the previous Bayesian 
hierarchical model can be modified to include a drift 
parameter that accounts for treatment response rates 
changing over time.

In this model, we consider time points to correspond to 
interim analyses and the final analysis after completion of 
the trial. The time-indicating variable t is an integer rang-
ing from 1 to T, with T representing the most recent time 
point. Each treatment response rate for the most recent 
time point PjkT is modeled using the same structure as in 
the previous hierarchical model. For every previous time 
point, the response rate is modeled on the log odds scale 
as the sum of the response rate of the most recent time 
point and the time effect θt. The time effect parameters 
θt are modeled with a first-order normal dynamic linear 
model (NDLM). The hyper prior of the drift parameter 
τ follows an inverse-gamma distribution. The NDLM 
allows for borrowing among effects of adjacent time peri-
ods, pulling their estimates towards each other, and can 
robustly handle different trends over time. The borrow-
ing is controlled by the drift parameter τ. The full model 
can be summarized below, for the last time point T,

For all t < T

Bayesian quantities of interest
Posterior probability of treatment difference
For each treatment, k = EVT, MM, the posterior prob-
ability of treatment difference P(Pjk − Pjk > 0) within a 
subgroup j can be understood as the posterior probability 
that one treatment k is superior to another treatment k′.

YjkT ∼ Binomial
(

njkT ,PjkT
)

PjkT ∼ Beta(mPk ,m(1− Pk))

θT = 0

Yjkt ∼ Binomial
(

njkt ,Pjkt
)

logit
(

Pj,k ,t
)

= logit
(

PjkT
)

+ θt

θt−1 ∼ N (θt , τ )

τ ∼ InvGamma(0.25, 0.1)
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After samples are drawn from each respective posterior 
distribution, the probabilities of treatment difference are 
calculated as the proportion of posterior samples where 
respectively either Pj, EVT − Pj, MM or Pj, MM − Pj, EVT is 
greater than 0.

Odds ratio
For each subgroup, we calculate the posterior odds 
ratio of the probability of obtaining a favorable outcome 
response between two treatments as such:

Study design and patient accrual
The motivating study envisions a trial which recruits and 
follows subjects for 4 years with three interim analyses 
and one final analysis. The first interim is scheduled to 
occur after 2500 participants have enrolled into the trial. 
Subsequent interims will be conducted after every addi-
tional 2500 participants are enrolled and will continue 
until a total of 10,000 participants are enrolled. Since 
interim analyses are defined by participants enrolled, 
the timing of the interims is random and will depend on 
the rate at which participants accrue to the trial. Overall, 
since we expect to enroll 10,000 participants in 4 years, 
an average of 52 participants have to be enrolled per 
week. Here, we assume the patient accrual will follow a 
Poisson distribution with parameter 52.

We considered three different study designs:

ORj =

PjMM

1−PjMM

PjEVT
1−PjEVT

1)	 A fixed allocation design in which patients are always 
allocated to the two treatment arms in a 1:1 ratio. No 
interim analysis will be performed during the trial 
process.

2)	 A response-adaptive randomization (RAR) design 
that updates allocation to favor the more promis-
ing treatment at each interim based on the Bayesian 
quantities of interest.

3)	 A modified RAR design that finds a compromise 
between the 1:1 and the pure RAR allocation ratios, 
named “RARCOMP”.

For both RAR and RARCOMP designs, three interim 
analyses and one final analysis were performed as 
described above. Details about the adaptive randomiza-
tion schemes will be explained in the next section.

Patient allocation in adaptive designs
Adaptive randomization will begin right after the trial 
starts, using within subgroup prior information, and is 
performed at each interim, with the goal to allocate more 
subjects to the treatment that appears to be more promis-
ing. Bayesian quantities of interest discussed above were 
used to guide decisions. The patient allocation flowchart 
in Fig. 2 briefly summarizes how patients were allocated 
in a single clinical trial. The posterior response rates for 
both treatment arms were compared for each patient 
subgroup. If a superiority criterion was satisfied for any 
subgroup, all future patients would be allocated to the 
superior arm for that patient subgroup. Equivalence of 
the two treatments were tested if the superiority criterion 

Fig. 2  Adaptive patient allocation flowchart
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was not met. An establishment of equivalence would lead 
to all future patients being allocated to the MM treat-
ment for lower cost. If neither superiority nor equiva-
lence were established, the patient allocation rates for the 
two treatments would be calculated using prespecified 
allocation schemes. Details about patient allocation will 
be provided in this section.

Allocation for expected success
Patient randomization information may change at each 
interim analysis due to expected success and allocate all 
future participants to the superior treatment if the fol-
lowing criteria is satisfied, where k and k′ represent dif-
ferent treatments:

The value of γ  was obtained based on simulation and 
controlled for the two-sided overall type 1 error to be 
close to 0.05. It varies for different m values and for dif-
ferent randomization schemes (the “Type 1 error calibra-
tion” section).

Allocation for equivalence (effectively MM should be used)
During each interim, if the expected success condition 
is not met, the trial may change patient randomization 
due to equivalence and allocate all future participants to 
the MM treatment, since it is a less expensive treatment 
option. Equivalence is established if the following crite-
rion is satisfied:

P
(

Pjk > Pjk ′
)

> γ

P
(

0.8 < ORj < 1.2
)

> 0.7

The utilized boundaries for odds ratios in the above 
criterion have been traditionally used in bioequivalence 
studies and were selected based on this fact.

Allocation when no success or equivalence is met
If neither superiority nor equivalence is identified, the 
patient allocation rates are calculated based on prespeci-
fied randomization schemes. They are (1) the common 
RAR allocation scheme and (2) RARCOMP — the modi-
fied RAR scheme.

For RAR, the probability Vjk  of the next participant 
being allocated to treatment k in subgroup j was calcu-
lated such that it satisfies the formula shown below:

where Var(Pjk) are the posterior variances of the mean 
response rates, njk is the current number of participants 
in subgroup j assigned to treatment k, and k′ being the 
treatment arm other than k. The randomization probabil-
ities for treatments will be updated once at each interim.

For the fixed 1:1 allocation, these probabilities were 
both 0.5.

RARCOMP represents a tradeoff between RAR and the 
fixed 1:1 allocation, where the allocation rate for treat-
ment k is then the average of Vk and 0.5. The allocation 
rate for the new RAR compromise patient allocation 
scheme can thus be written as:

Initial allocation in adaptive designs
In the RAR and RARCOMP schemes, prior knowledge 
provided by the experts was used to inform patient allo-
cation within subgroups at the start of the trial. This was 

VjkRAR ∝

√

P
(

Pjk − Pjk ′ > 0
)Var

(

Pjk
)

njk + 1

Vjkfixed = V ′

jkfixed =
1

K
= 0.5

Vjk compromise
=

VjkRAR + Vjkfixed

2

Table 1  Prior information to calculate the patient allocation 
before trial starts

Subgroup PMM PEVT

Large Core Only 0.10 0.25

Mild Deficit Only 0.70 0.84

Distal Occlusion Only 0.35 0.55

Distal Occlusion + Large core 0.25 0.45

Distal Occlusion + Mild Deficit 0.75 0.85

Table 2  A summary of five simulation scenarios without drift effect

Subgroup Equal Expected Reversed Extreme EVT Single subgroup

PMM PEVT PMM PEVT PMM PEVT PMM PEVT PMM PEVT

Large Core Only 0.1 0.1 0.1 0.25 0.25 0.1 0.1 0.30 0.25 0.45

Mild Deficit Only 0.7 0.7 0.7 0.84 0.84 0.7 0.7 0.89 0.84 0.84

Distal Occlusion Only 0.35 0.35 0.35 0.55 0.55 0.35 0.35 0.60 0.55 0.55

Distal Occlusion + Large core 0.25 0.25 0.25 0.45 0.45 0.25 0.25 0.50 0.45 0.45

Distal Occlusion + Mild Deficit 0.75 0.75 0.75 0.85 0.85 0.75 0.75 0.90 0.85 0.85
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done as follows: Let P0
jk be the current understanding of 

the rate of favorable outcome for treatment k in subgroup 
j. Let n0jk be the prior sample size for the treatment k in 
subgroup j. Before the trial starts, create a pseudo-data-
set with njk = n0jk = 10 observations in each subgroup-
treatment combination and a response of Yjk = P0

jk × n0jk . 
Sample size for the pseudo-dataset was chosen to be 10, 
so that previous information was incorporated in the 
design but not too overpowering to bias the estimates. 
Based on this data, calculate posterior quantities of 

interest and follow the allocation rules of the study proto-
col. Prior knowledge about P0

jk utilized in this trial is 
shown in Table 1.

Simulation study
In this paper, we investigated and compared scenarios 
where the m value varies from 1 to 30 (m ∈ {1, 10, 20, 30}) 
for Bayesian hierarchical models.

Simulating data without drift effect
We simulated 10,000 clinical trial studies to investigate 
the model operating characteristics for each design. 
In order to study design performance, five simulation 
scenarios were considered: (1) one “equal” scenario in 
which the favorable outcome rates of MM and EVT are 
simulated to be the same (averaging across MM and EVT 
treatment for each subgroup), (2) an “expected” scenario 
where the favorable outcome response rates in EVT is 
simulated to be higher than in MM based on the previous 

Table 3  Linear time effects for response rates used in simulation 
studies

t represents each interim analysis, θt represents time effects at different time 
points

t = 1 t = 2 t = 3 t = 4

θt 0.75 0.5 0.25 0

logit(Pjkt) logit(PjkT) + 0.75 logit(PjkT) + 0.5 logit(PjkT) + 0.25 logit(PjkT) + 0

Fig. 3  Power difference among three adaptive design schemes relative to the fixed design when m = 1
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knowledge, (3) a “reverse” scenario where the favorable 
outcome response rate in MM is simulated to be higher 
than in EVT, (4) an “extreme” case where the favorable 
outcome response rate in EVT is simulated to be much 
higher than in MM, and (5) a scenario in which “single 
subgroup” is better in EVT while the two treatments are 
the same for the rest of the subgroups. Details about the 
four scenarios are shown in Table 2.

Simulating data with drift effect
Similarly, we also simulated all five scenarios when 
a drift effect was present in the data. To achieve this, 
the true response rates for the last time point PjkT were 
chosen to be the same as the values in Table  2. How-
ever, the log odds of response rates for previous time 
points were set to decrease linearly over time. Under 
this simulation setup, response rates in earlier stages of 
the trial were higher than in the later stages. The sim-
ulated response rates for each time point are summa-
rized in Table 3.

Model operating characteristic evaluation
Bayesian hierarchical modeling was performed using 
the R (version 3.5.3) package “Nimble” [53] (version 
0.9.0) (code provided in Additional file 1: Appendix (c) 
in the supporting material). The results of the adaptive 
designs were then compared with two versions of fixed 
1:1 allocation designs: one using the Bayesian hierar-
chical model fit in Nimble and another using the inde-
pendent model fit in the Fixed and Adaptive Clinical 
Trial Simulator (FACTS) (Berry & Sanil, 2010) software 
[54] (version 6.3), having no interims. The independent 
model fitted in FACTS is served as the standard design; 
however, it is limited.

The type 1 error for a two-sided test was obtained 
from the “Equal” scenario. For models not account-
ing for drift in non-drift scenarios, it was calibrated 
to the 0.05 level by adjusting γ in designs simulated 
in R and NIMBLE. For drift models, the same thresh-
olds obtained for non-drift models were used and type 
1 error was not recalibrated. Using these γ values, 

Fig. 4  Power difference among three adaptive design schemes relative to the fixed design when m = 30
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statistical power was then evaluated in the remaining 
scenarios. Generally, the type 1 error was calculated 
as the proportion of simulations in which either EVT 
is superior, or MM is superior under the true scenario 
that EVT and MM have the same response rate; while 
power was calculated as the proportion of simulations 
which correctly exhibit superiority of either treatment 
under scenario “Expected,” “Reversed,” and “Extreme 
EVT.”

Results
Type 1 error calibration
For non-drift models, overall type 1 error was suc-
cessfully controlled at the 0.05 level in all simulated 
non-drift scenarios. The required γ thresholds tended 
to decrease with m when employing a fixed allocation 
scheme but remained stable at approximately 0.995 
when employing the response-adaptive designs. The 
simulation based overall type 1 errors for all scenarios 
as well as their corresponding γ values are provided in 

the Additional file  1: Appendix (a) in the supporting 
material.

Bayesian hierarchical model on data without drift effect
Statistical power for different randomization schemes 
was compared after calibrating the overall type 1 error 
at the 0.05 level. Figure  3 shows a comparison among 
three randomization schemes using Bayesian hierarchical 
model fit data that does not have a time drift effect under 
all alternative scenarios when m value is set to be 1. With 
the y-axis being the difference in power between the fixed 
design (with independent model) and the three adaptive 
designs with various randomization schemes respec-
tively (with hierarchical models), for example, one of the 
y value could be Powerfixed independent model − Poweradaptive 

Bayesian hierarchical. Since an equal allocation of patients in 
the two-arm setting provides higher power, treating the 
independent fixed model as a reference, a smaller y value 
in Fig. 3 indicates a higher statistical power. When m = 1, 
in all scenarios, among all randomization schemes, fixed 
allocation appeared to have the highest statistical power. 

Fig. 5  Patient benefit comparison for three randomization schemes
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This power difference was not strong for the first three 
subgroups as the sample sizes in those subgroups were 
large. However, the differences were extremely obvious 
for subgroups “Distal Occlusion + Large Core” and “Dis-
tal Occlusion + Mild Deficit” in scenarios “Expected”, 
“Reversed,” and “Extreme EVT” due to small sample 
sizes. RAR randomization scheme appeared to have the 
lowest statistical power as the y values for RAR tend to 
be the highest among the three schemes. RARCOMP 
scheme provided power higher than RAR, but lower than 
fixed 1:1 allocation rule.

Increasing the m value from 1 to 30, the statistical 
power increased for all randomization schemes in all 
scenarios for subgroup “Distal Occlusion + Mild Defi-
cit” as the y values for that subgroup dropped to 0 for all 
schemes. However, the power was decreased for subgroup 
“Distal Occlusion + Large core” (Fig. 4). In this subgroup, 
we can reach the same conclusion as before that the fixed 
1:1 allocation obtained the highest power followed by 
RARCOMP allocation scheme. The power obtained from 
the RAR scheme was the lowest among all three schemes.

The inconsistent behavior in statistical power between 
the last two subgroups was caused by increased estima-
tion bias when increasing the m value in the model. A 
brief demonstration of how power changes for scenario 
“Expected” can be found in Additional file  1: Appendix 
(b) in the supporting material.

One of the benefits of using adaptive designs is to allo-
cate more patients to the better performed treatment, 
thus improving the patient benefit within the trial. Fig-
ure  5 shows the patient benefit comparison among the 
three randomization schemes stratified by m value. The 
y-axis represents the difference between the hypotheti-
cal subjects’ proportion with good outcomes and the 
observed subject proportion with good outcomes, with 
the former being the proportion of subjects that would 
experience a good outcome in a perfect world, where all 
subjects are always allocated to the treatment arm with 
the highest success rate, and the latter being the propor-
tion of observed good outcomes in the simulated trials. 
In this way, a smaller y value indicates higher patient 
benefits. In Fig. 5, the RAR scheme obtained the highest 
patient benefit, which was closely followed by the RAR-
COMP scheme. The fixed allocation scheme achieved the 
lowest patient benefit among all three schemes. Compar-
ing m=1 to m=30 alone, although the differences were 
small, m=30 obtained higher patient benefit under all 
schemes for most of the scenarios.

In summary, the RARCOMP randomization scheme 
has shown to improve statistical power compared to the 
regular RAR scheme, without compromising too much 
patient benefit. Also, increasing m led to a higher statis-
tical power but also more biased estimates. Since m=30 
provided the best performance (higher power, higher 

Fig. 6  Type 1 error comparison for the Bayesian hierarchical model and the Bayesian hierarchical drift model
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patient benefit with moderately biased estimates), in this 
paper, we will focus on the model performance under 
m=30 setup.

Bayesian hierarchical model on data with drift effect
The previous results compare the three randomization 
schemes when Bayesian hierarchical models were fit 
to the data without a time drift effect. When fitting the 
same model to data in which the response rates changed 
over time and using response-adaptive randomization 
instead of a fixed 1:1 allocation scheme, a huge inflation 
in type 1 error was observed (Fig. 6a).

Bayesian hierarchical drift model on data with drift effect
Fitting our Bayesian hierarchical drift model to data 
in which the response rates changed over time using 
response-adaptive randomization and the same thresh-
olds as the model not accounting for drift, type 1 error 

slightly increased but was well controlled below 0.07 for 
both randomization schemes (Fig. 6b).

In addition to the well-controlled type 1 error, the 
Bayesian hierarchical drift model also established a very 
high performance. High statistical power was observed for 
all alternative scenarios for both randomization schemes. 
RARCOMP appeared to have higher power than RAR in 
subgroup “Distal Occlusion + Large core.” Although the 
differences were small, RAR showed higher power for 
“Distal Occlusion + Mild Deficit” in scenarios “Expected” 
and “Reversed” compared with RARCOMP (Fig. 7).

Patient benefit was also compared between RAR and 
RARCOMP scheme. In Fig.  8, a red circle was used to 
indicate the scenario when the drift model was fitted to 
the linear drift effect data. The y-axis represents the dif-
ferences in patient benefit between the hypothetical pro-
portion of patients obtaining good outcomes and the 
observed proportion of patients with good outcomes, a 
smaller y-axis value indicating a higher patient benefit. 

Fig. 7  Power plots: fit Bayesian hierarchical drift model to linear time effect drift data
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RAR and RARCOMP both obtained very high patient 
benefit, with the RAR scheme achieving slightly higher 
values.

Bayesian hierarchical drift model on data without drift 
effect
We have shown previously that the Bayesian hierarchical 
drift model handles response rates drift over time well when 
the drift effect is linear across time. However, to be a prom-
ising and robust model, the model still needs to perform 
well in situations where the time drift effect is absent. Fig-
ure 9 shows the power remained very high even when our 
drift model was fitted to a dataset that does not have a lin-
ear time effect. Comparing RAR and RARCOMP, the RAR-
COMP allocation scheme achieved higher statistical power 
especially in the subgroup “Distal Occlusion + Large Core.”

Patient benefit was also evaluated for this setup. In 
Fig. 8, a blue box was used to indicate the scenario when 
the drift model was fitted to the data without a drift 
effect. Comparing the patient benefit when fitting the 

same model to both data with linear drift effect (red cir-
cle in Fig. 8) and to data without linear drift effect (blue 
box in Fig.  8), values were very similar, suggesting that 
this model was very robust against whether or not a lin-
ear time effect was present in the data.

Discussion
Our simulation studies have shown that the RARCOMP 
scheme can provide high statistical power while main-
taining high patient benefit in all simulated scenarios. 
However, the use of RAR in two-arm studies has been 
controversial [39, 46, 55]. Previous work has shown using 
RAR in two-arm trials without careful planning and cali-
bration could result in biased estimates and might even 
lead to wrong conclusions. In addition to its ability to bal-
ance statistical power and patient benefit, the RARCOMP 
scheme could help to mitigate this issue. The fact that it 
averages allocation ratios between the naïve RAR and the 
fixed 1:1 randomization prevents the allocation process 
from creating highly unbalanced sample sizes between the 
two treatments and makes it more robust to RAR bias.

Fig. 8  Patient benefit when fitting the Bayesian drift model
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As response-adaptive designs are more susceptible 
to drift effects [55], in this paper, we also incorporated 
a drift parameter in the Bayesian model to account for 
response rate drift over time. Simulation results dem-
onstrated our drift model can accurately estimate lin-
ear trend drift effects over time and account for these 
changes when comparing treatments. Moreover, even 
when time effects were absent in the data, our drift 
model still performed well and retained high statisti-
cal power. In combination with the fact that the NDLM 
component used to estimate time effects is able to flex-
ibly model different shapes, our results suggest that this 
approach can be robustly applied in many clinical trial 
scenarios.

Current simulation results have confirmed our drift 
model works well on data with linear drift effect. More 
work needs to be done to confirm the drift model also 
maintains high performance in other situations. However, 
since we used non-informative priors on the drift effect τ, 

as long as the change in the response rates are not dramatic 
during a period of time, it is safe to guess our model could 
perform well even when the time effects are nonlinear.

In conclusion, with the ability to have high power and 
good patient benefit and to account for population drift, 
our design using the Bayesian hierarchical drift model 
with the RARCOMP scheme is a promising choice for 
adaptive trials. This article introduces the novel idea of 
combining the traditional RAR scheme and fixed 1:1 
allocation to provide a nice balance between them. Our 
design is robust against both severely unbalanced allo-
cation and drift over time.
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