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M-phase Promoting Factor (MPF; the cyclin B-cdk 1 complex) is activated at M-phase onset by removal of inhibitory
phosphorylation of cdk1 at thr-14 and tyr-15. At M-phase exit, MPF is destroyed by ubiquitin-dependent cyclin proteolysis.
Thus, control of MPF activity via inhibitory phosphorylation is believed to be particularly crucial in regulating transition into,
rather than out of, M-phase. Using the in vitro cell cycle system derived form Xenopus eggs, here we show, however, that
inhibitory phosphorylation of cdk1 contributes to control MPF activity during M-phase exit. By sampling extracts at very short
intervals during both meiotic and mitotic exit, we found that cyclin B1-associated cdk1 underwent transient inhibitory
phosphorylation at tyr-15 and that cyclin B1-cdk1 activity fell more rapidly than the cyclin B1 content. Inhibitory
phosphorylation of MPF correlated with phosphorylation changes of cdc25C, the MPF phosphatase, and physical interaction of
cdk1 with wee1, the MPF kinase, during M-phase exit. MPF down-regulation required Ca++/calmodulin-dependent kinase II
(CaMKII) and cAMP-dependent protein kinase (PKA) activities at meiosis and mitosis exit, respectively. Treatment of M-phase
extracts with a mutant cyclin B1-cdk1AF complex, refractory to inhibition by phosphorylation, impaired binding of the
Anaphase Promoting Complex/Cyclosome (APC/C) to its co-activator Cdc20 and altered M-phase exit. Thus, timely M-phase exit
requires a tight coupling of proteolysis-dependent and proteolysis-independent mechanisms of MPF inactivation.

Citation: D’Angiolella V, Palazzo L, Santarpia C, Costanzo V, Grieco D (2007) Role for Non-Proteolytic Control of M-phase Promoting Factor Activity at
M-phase Exit. PLoS ONE 2(2): e247. doi:10.1371/journal.pone.0000247

INTRODUCTION
Rapid MPF activation is granted by an activation loop in which

the cdc25C phosphatase removes inhibitory phosphorylations of

cdk1 at thr-14 and tyr-15, while MPF stimulates cdc25C activity

and lowers activity of wee1, the cdk1 tyr-15 kinase [1,2]. At M-

phase exit, MPF is destroyed by ubiquitin-dependent cyclin

proteolysis inactivates (Peters 2002). Cyclin degradation is initiated

by activation of the ubiquitin ligase APC/C associated with its co-

activator Cdc20 (APC/CCdc20) [3]. How timely activation of the

degradation pathway is achieved is still incompletely understood.

Several APC/C subunits and Cdc20 undergo MPF-dependent

phosphorylation during M-phase [3]. Phosphorylation of APC/C

stimulates its ubiquitin-ligase activity, however, phosphorylation of

Cdc20 hampers binding to APC/C [3,4,5]. Thus, MPF activity

may play both positive and negative actions on APC/CCdc20

activation [6,7]. Evidence suggests that interruption of the MPF

activation loop may play a role for timing M-phase exit [8,9]. To

date, however, no direct evidence that the MPF activation loop is

interrupted at M-phase exit has been provided. We set out to gain

insight into this matter using the in vitro cell cycle system derived

from Xenopus eggs.

RESULTS

MPF activity loss at M-phase exit
Fluctuations in MPF activity and cyclin B concentration mark cell

cycle progression during incubation of activated egg extracts at

23uC. At the end of M-phase, the fall in MPF activity relies on

cyclin degradation [10]. By analying samples taken at short

intervals (2 min) across the mitosis-to-interphase transition we

repeatedly found that total egg extract’s histone H1 kinase (a

measure of MPF activity) [10], declined ahead of the cyclin B1

content and concomitantly with the decline of cyclin A (Fig. 1 A;

upper panels; cyclins were detected from total extracts aliquots by

immunoblot and total histone H1 kinase by autoradiograph of

phosphorylated histone; P-HH1; note the decline in activity

between 32 to 34 min and the stability of cyclin B1). By

determining the amount of cyclin B1-associated cdk1 and kinase

activity in cyclin B1 immunoprecipitates, we found a linear

relationship in decline of cyclin B1-bound cdk1 and cyclin B1

content, thus excluding significant cyclin B1-cdk1 dissociation

before degradation (Fig. 1A; graph; Cyc B1 and Cdk1). Neverthe-

less, cyclin B1-associated kinase activity declined ahead of the

cyclin B1-cdk1 content (Fig. 1 A; graph; Cyc B1 activity). We

asked whether inhibitory cdk1 tyr-15 phosphorylation could

contribute to the observed loss of MPF activity. Samples of

extracts, incubated in the presence of [35S]labelled methionine,

were taken at 2 min intervals (Fig. 1 B, C). Probing total extracts

aliquots with an anti cdk1-phospho-tyr-15 antibody showed that

cdk1 underwent tyr-15 phosphorylation twice during the mitosis-

to-interphase transition (Fig. 1 B, C; upper panels; shown are two

independent extracts). After an initial decrease, that accompanied

MPF activation and reached a minimum at the MPF activity peak

(Fig. 1 B; 26 min; Fig. 1 C; 28 min), the cdk1-phopsho-tyr-15

signal transiently increased just around the time cyclin degradation
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begun (Fig. 1 B; 28 min; Fig. 1 C; 30, 32 min), to decrease again

when substantial cyclin degradation was achieved (Fig. 1 B;

32 min; Fig. 1 C; 34 min). Determination of [35S]labelled cyclin

and total histone H1 kinase activity also showed that activity fell

more rapidly cyclin content (Fig. 1 B, C, graphs). We, next, deter-

mined the amount of [35S]labelled-cyclin, cdk1, cdk1-phospho-tyr-

15 and kinase activity in cyclin B1 and cyclin A immunopreci-

pitates from extracts samples taken across the mitosis-to-interphase

transition (Fig. 1 D, E). The decline in cyclin B1-associated kinase

activity was accompanied by increased cyclin B1-associated cdk1-

phospho-tyr-15 signal (Fig. 1 D). Cyclin A-associated kinase

activity and cyclin A content decreased with parallel kinetics and

begun when cyclin B1-associated kinase activity started to decline

while cdk1-phospho-tyr15 was undetectable in cyclin A immuno-

Figure 1. Cyclin B1, cyclin A abundance and MPF activity in cycling extracts. (A) Left panels, Cyclin B1 and cyclin A were visualised by immunoblot and
total histone H1 kinase activity by autoradiograph of phosphorylated histone H1 (P-HH1) from samples of a cycling extract taken at the indicated time
points during incubation at 23uC. Right panels, quantisation (percent of peak value) of cyclin B (open squares; from immunoblot in the left panel),
cyclin B1-bound cdk1 (filled triangles; from cdk1 immunoblot of cyclin B1 immunoprecipitates; Ips) and histone H1 kinase (filled squares;
autoradiographs of histone H1 kinase assayes from cyclin B1 Ips). (B, C) Left panels, cyclin B (extracts proteins autoradiograph; cyclin B position is
indicated) and cdk1-phospho-tyr15 (Cdk1-Y15-P), cdk1 (Cdk1), cdc25C-phospho-ser-287 (Cdc25C-S287-P), cdc25C (Cdc25C) contents (immunoblot)
from samples of two independent cycling extracts, incubated in the presence of [35S]methionine, taken at 2 min intervals. Right panels, quantisation
of total extract histone H1 kinase (filled squares) and cyclin B (open squares) from the same samples. (D) Upper panels, cyclin B1, cyclin B1-associated
kinase activity (Cyc B1-activity; phosphorylated histone H1 autoradiograph), cdk1-phospho-tyr-15 and cdk1 contents in cyclin B1 Ips from samples of
an extract, incubated in the presence of [35S]methionine, taken across the mitosis-interphase transition. Lower graph, quantisation, expressed as
percent of peak value, of cyclin B1 content (open squares) and cyclin B1-associated kinase activity (filled squares). (E) Upper panels, cyclin A (Cyc A)
and cyclin A-associated kinase activity (Cyc A-activity; phosphorylated histone H1 autoradiograph), cdk1-phospho-tyr-15 and cdk1 contents in cyclin
A Ips from the samples described in Fig 1D. Lower graph, quantisation, expressed as percent of peak value, of cyclin A content (open triangles) and
cyclin A-associated kinase activity (filled triangles). (F) Samples from a cycling extracts, incubated in the presence of [35S]methionine, were taken at
2 min intervals. Samples were immunoprecipitated with an anti cyclin B1 antibody. Left panels, cyclin B1 (Cyc B1; autoradiograph), cyclin B1-
associated cdk1 (Cdk1) was visualised by immunoblotting after resolving cyclin B1 Ips by long SDS-PAGE runs and cyclin B1-associated histone H1
kinase activity (Cyc B1 activity; autoradiograph). Right, quantisation of the autoradiographs of labelled cyclin B1 (open square) and phosphorylated
histone H1 (filled square). From 34 to 38 min, the fastest migrating, dephosphorylated, cdk1 form accumulated as activity reached the maximum
(38 min). Subsequently (40, 42, 44, 46 min), the slower migrating, phosphorylated, cdk1 forms reappeared as activity begun declining. (G) Cyclin B1
(Cyc B1 Ip) and cyclin A (Cyc A Ip) Ips from samples of a cycling extract taken 2 min after the cyclin B1-cdk1 activity peak. The cdk1-phospho-tyr-15
(Cdk1-Y15-P) and cdk1 were visualised by immunoblot after resolving the Ips by long SDS-PAGE runs. Since cyclin A is about 5 fold less abundant
than cyclin B1 and cyclin A degradation was already started in the samples used, cyclin A Ips were from 6 times more extract sample than for cyclin B1
Ips to have comparable amounts of cdk1 on the blot.
doi:10.1371/journal.pone.0000247.g001
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precipitates (Fig. 1 E). These findings were also revealed by

changes in cdk1 migration after resolving cyclin B1 and cyclin A

immunoprecipitates by longer SDS/PAGE runs (Fig. 1 F, G). At

peak activity (Fig. 1 F; 38 min), cyclin B1-bound cdk1 was mostly

in the fastest migrating form, dephosphorylated at inhibitory sites,

while slower migrating cdk1 forms were present at earlier and later

time points (Fig. 1. F; 40, 42, 44, 46). Cyclin A-bound cdk1,

isolated from samples of an extract taken 2 min after MPF activity

peak, did not reacted with an anti cdk1-phospho-tyr15 antibody

nor showed slow migrating forms, unlike cyclin B1-bound cdk1

(Fig. 1 G). Similar changes in MPF activity, cdk1 phosphorylation

and cyclin content were detected at meiotic metaphase II exit,

analysing samples from non-activated eggs extracts after CaCl2
addition (to inactivate the calcium-sensitive Cytostatic Factor,

CSF, that maintains metaphase II-arrest; Fig. 2 A) [11]. A wave of

cdk1-tyr-15 phosphorylation was evident shortly after CaCl2
addition and analysis of cyclin B1 immunoprecipitates also

revealed that activity fell ahead of cyclin content (Fig. 2 A, B).

Sustained MPF activation loop delays M-phase exit
These data suggest that the MPF activation loop is interrupted at

M-phase exit. Cdc25C inactivation correlates with its dephos-

phorylation at several sites and phosphorylation at the inhibitory

site ser-287 [1,12,13]. At peak MPF activity, cdc25C-ser-287 and

cdk1-tyr-15 phosphorylations were at minimum (Figs, 1 B, C;

26 min and 28 min respectively; Fig. 2 A; time 0). Cdc25C-ser-

287 and cdk1-tyr-15 phosphorylations ensued when MPF activity

begun declining (Figs, 1 B, C; Fig. 2 A). Cdc25C ser-287 phos-

phorylation increased as cell cycle progressed towards interphase,

while cdk1-tyr-15 phosphorylation was lost along with the cyclin

signal (Fig., 1 A, B; Fig. 2 A). Cdc25C also underwent a shift in

migration on SDS/PAGE indicative of loss of multiple activating

phosphorylations [1]. That only a small portion of cdc25C

appeared to undergo inhibitory phosphorylation changes by the

time of significant cdk1 phospho-tyr-15 reappearance may suggest

that, in addition to dephosphorylation, cdk1-tyr-15 phosphoryla-

tion could possibly be regulated at M-phase exit (see below

Fig. 5).

CaMKII and PKA appear relevant for direct cdc25C-ser-287

phosphorylation during unperturbed extract’s cell cycle, CaMKII

for the first mitotic interphase following CSF inactivation, while

PKA for subsequent mitotic cycles [12,13,14,15,16]. PKA also

stimulates a phosphatase activity, in egg extracts, that removes

multiple activating cdc25C phosphorylations [14]. In cycling

extract, addition of excess recombinant, glutathione-S-tranferase

(GST)-fused, PKA regulatory subunit RIIb (GST-RII), which

inhibited PKA activity and delayed cyclin degradation as

previously shown [15], also delayed the appearance of cdc25C-

ser-287 and cdk1-tyr-15 phosphorylations, while cdc25C re-

mained in its mitotic hyperphosphorylated state (Figs. 3 A, B).

To determine whether sustained MPF activity had a role in

delaying mitosis exit, cdk1 activity was lowered by adding the

cdk inhibitor roscovitine to a PKA-inhibited extract. Cdk

inhibition restored rapid cyclin degradation (Fig. 3 B). Thus,

when the MPF activation loop is sustained by PKA inhibition,

cyclin degradation is delayed in an MPF-dependent fashion. In

CSF-arrested extracts, cdc25C-ser-287 and cdk1-tyr-15 phosphor-

ylations were induced rapidly after calcium addition and

prevented by treatment with the CaMKII inhibitor peptide

CaMKII Ntide (Fig. S1).

Figure 2. Cyclin B1 abundance and MPF activity in CSF-arrested extracts. (A) Cyclin B, cdk1-phospho-tyr15, cdk1, cdc25C-phospho-ser-287 and cdc25C
contents from total extract samples of a CSF-arrested extract, pre-incubated with [35S]methionine, at the indicated time points after CaCl2 addition.
(B) Left panels, cyclin B1, cyclin B1-associated kinase activity, cdk1-phospho-tyr15 and cdk1 contents in cyclin B1 Ips from CSF-arrested extract
samples at the indicated time points after CaCl2 addition. Right, quantisation of cyclin B1 content (open squares), cyclin B1-associated kinase activity
(filled squares) from cyclin B1 Ips.
doi:10.1371/journal.pone.0000247.g002
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Cdk1AF delays M-phase exit and hinders

Cdc20-APC/C interaction
It has been recently published that cycling extracts forced to use

a mutant cdk1AF (cdk1AF; thr 14.ala, and tyr 15.phe),

refractory to inhibitory phosphorylation, enter mitosis with slower

kinetics than control extracts and are delayed in exiting mitosis

[17]. However, in that report the defects in M-phase exit were

ascribed to the slower onset of M-phase caused by cdk1AF rather

than to a direct interference of cdk1AF with the M-phase exit

mechanisms. To determine whether cdk1AF had a direct effect on

M-phase exit, regardless of how the mitotic state was reached, we

treated a CSF-arrested extract, that is already naturally arrested in

M-phase, with a cyclin B1-cdk1AF complex and monitored cyclin

degradation kinetics upon calcium addition. We found that cyclin

degradation was delayed in cyclin B1-cdk1AF-treated but not in

cyclin B1-cdk1wt-treated extract, as control (Fig. 4 A). Rapid

cyclin degradation was, however, restored in the cyclin B1-

cdk1AF-treated extract by lowering cdk activity with roscovitine

(Fig. 4 A). Although only slightly delayed degradation of cyclin A,

cyclin B1-cdk1AF treatment significantly affected the morpholog-

ical changes of added nuclei hindering the metaphase-to-anaphase

transition as well as subsequent chromosome disjunction (Figs. S2,

S3).

We asked why interruption of the MPF activation loop was

required for timely activation of cyclin degradation. In this system,

cyclin degradation tightly relies on the ubiquitin ligase Anaphase

Promoting Complex/Cyclosome (APC/C) in association with its

co-activator Cdc20 and assembly of APC/CCdc20 is required for

efficient ubiquitin ligase activity [3,18]. By analyzing the amount

of Cdc20 that co-immunoprecipitated with Cdc27, an APC/C

component, we found that CSF-arrested extracts already con-

tained some APC/C-Cdc20 complex, but APC/C-Cdc20 in-

teraction was transiently stimulated after calcium addition (Fig. S4

and Fig. 4 B; cyc B1-cdk1wt). Treatment with cyclin B1-cdk1AF

delayed induction of APC/C-cdc20 interaction after calcium

addition (Fig. 4 B). APC/C and Cdc20 undergo phosphorylation

in M-phase. While APC/C phosphorylation stimulates its

ubiquitin-ligase activity and affinity for cdc20 [3], cdk-dependent

phosphorylation of Cdc20 appears to hamper binding to APC/C,

thus restraining APC/CCdc20 activation [4,5]. To determine

whether Cdc20 phosphorylation affected binding to APC/C in

egg extracts, CSF extracts were incubated with in vitro translated

wild type human Cdc20 and a mutant Cdc20 version, non-

phosphorylatable at 7 cdk1 consensus sites (Cdc207A) [4], for

40 min, to allow Cdc20 phosphorylation (that caused retarded

mobility on SDS/PAGE; Fig. 4 C) [5]. After incubation, more

Cdc207A than wild type Cdc20 could be recovered in Cdc27

immunoprecipitates (Fig. 4 C), indicating that Cdc20 phosphor-

ylation hampered APC/C-Cdc20 interaction in the extracts.

Indeed, treatment of extracts with Cdc207A, rather than wild type

Cdc20, partly reversed the cyclin B1-cdk1AF-induced delay in

cyclin degradation (Fig. 4 D, E). Thus, loss of MPF-dependent

Cdc20 phosphorylation helps APC/CCdc20 activation [4,5].

Wee1 and cdk1 physically interact in M-phase
By our analysis it cannot be excluded that the pathways leading to

MPF inactivation via inhibitory phosphorylation take the upper

hand only after initial degradation of small cyclin B amounts. In

addition, the fact that cyclin degradation is activated when cdk1

activity is sustained by non-degradable cyclin B [19] suggests that

a reduction in MPF activity is not absolutely required to initiate

cyclin degradation. To gain further insight into this aspect, we

assayed cdk1 activity in cdk1 immunoprecipitates from samples

taken at 5 min intervals from the time of recombinant non-

Figure 3. MPF hampers Cdc20-APC/C interaction. (A) Cdc25C-phospho-ser-287, cdc25C and cdk1-phospho-tyr15 contents during incubation time of
a control cycling extract, treated with GST, and a portion of the same extract treated with GST-RIIb (+GST-RIIb) to inhibit PKA. To a portion of the GST-
RIIb-treated extract, cAMP (4 mM) was added at 40 min of incubation, to reactivate PKA, and samples taken at 45 min (-+cAMP). (B) Cyclin B stability
during incubation time in a control extract and in portions of a GST-RIIb-treated extract to which either roscovitine (2 mM; 1/30 extract volume), to
inhibit cdk activity, or DMSO (1/30 extract volume), as control, were added.
doi:10.1371/journal.pone.0000247.g003
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degradable sea urchin cyclin B (DB; at 100 nM) addition to

interphase extracts. We found that, after the already described lag

of 10–20 min [20], cdk1 activity did not increase continuously

during incubation (Fig. 5 A). Shortly after reaching M-phase

activity levels (Fig. 5 A; around 35–40 min after DB addition),

activity underwent fluctuations with decrements up to 20–25%

relatively to M-phase activity (Fig. 5 A; 40 to 60 min). Later, it

further increased with relatively steady increments (Fig. 5 A; from

60 min on). As previously demonstrated [20], cdk1-tyr-15 phos-

phorylation was stimulated shortly after DB addition and

decreased as cdk1 activity reached M-phase activity levels (Fig. 5

B, 10 to 40 min). Subsequently, the fluctuation in cdk1 activity was

accompanied by a relative increase in cdk1-tyr-15 phosphorylation

(albeit rather lower than that observed at early time points; Fig. 5

B, 45–50–55 min). Cdc25C has been reported to be hyperpho-

sphorylated at activating sites and non-phosphorylated at ser-287

[21] under DB-induced M-phase arrest, making unlikely its

involvement in cdk1 phosphorylation control under these condi-

tions. Wee1 activity is believed to be down-regulated in M-phase

by cdk1-dependent phosphorylations [22]. Recent evidence

Figure 4. MPF hampers Cdc20-APC/C interaction through Cdc20 phopshorylation. (A) Cyclin B stability after CaCl2 addition in [35S]labelled CSF-
arrested extract portions treated with buffer, as control, recombinant cyclin B1-cdk1wt or cyclin B1-cdk1AF complexes. To portions of the cyclin B1-
cdk1AF-treated extract, either roscovitine (2 mM; 1/30 extract volume), or DMSO (1/30 extract volume) as control, were added 1 min after CaCl2. (B)
Total Cdc27 and Cdc27-bound Cdc20 (IpCdc27/IbCdc20) from CSF-arrested samples treated with recombinant cyclin B1-cdk1wt and cyclin B1-cdk1AF
complexes at the indicated time points after CaCl2 addition (the time 0 sample received no CaCl2). [35S]labelled Cdc20 wild type (wt) and a 7
phosphorylation sites mutant version (7A) were produced in reticulocyte lysates (lanes 1, 2). Labelled proteins were incubated with portions of a CHX-
treated CSF-arrested extract for 30 min (lanes 3, 4). Cdc27 was, then, immunoprecipitated (Cdc 27 Ip) and the amount of bound wt (lane 7) and 7A
(lane 8) Cdc20 detected by autoradiography. Lanes 5, 6, mock Ips (Mk Ip). (C) Portions of a [35S]labelled CSF-arrested extract were incubated for
40 min with mock (contr.), cdc20 wt or cdc20 7A programmed reticulocyte lysates in the presence of CHX. (D) The cdc20 wt- and cdc20 7A-treated
portions where further incubated for 20 min with cyclin B1-cdk1AF. Then, aliquots were taken at the indicated time points after CaCl2 addition.
Shown is an autoradiograph of [35S]labelled extracts proteins (the position of cyclin B is indicated). (E) Quantisation of remaining cyclin, expressed as
percent, from cyclin B1-cdk1AF-treated extract portions in the presence of cdc20 wt (open squares) or cdc20 7A (filled squares). Error bars refer to
variability within three independent experiments.
doi:10.1371/journal.pone.0000247.g004
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indicated that wee1 undergoes phosphorylation at ser-549 in M-

phase of unperturbed cell cycle as well as under DB conditions

[21]. However, by in vitro kinase assays, wee1-ser-549 phosphor-

ylation did not increase wee1 activity and wee1 isolated from

interphase was slightly more active than that isolated from M-

phase [21]. What mechanism could, then, lead to mitotic cdk1-tyr-

15 phosphorylation under DB conditions? We investigated whether

wee1 and MPF could physically interact in M-phase, as recently

shown for the budding yeast wee1 homolog swe1 [23], providing

a possible mechanism for mitotic cdk1-tyr-15 phosphorylation.

Indeed, cdk1 was detected in wee1 immunoprecipitates from CSF-

arrested extracts, while little cdk1 co-precipitated with wee1 from

interphase samples (Fig 5 C). Under DB conditions, wee1-cdk1

iteraction was detectable 10–20 min after DB addition, when cdk1

activity was still low (Fig. 5 C). Subsequently, the complex signifi-

cantly dissociated (Fig. 5 C; 20–35 min). However, after cdk1

regained M-phase activity levels and then started to fluctuate,

wee1-cdk1 interaction was regained (Fig. 5 C; 35–45 min).

Probing wee1 immunoprecipitates for cdk1 phospho-tyr-15 showed

that the cdk1-phospho-tyr-15 signal was detectable at early

(interphase; Fig. 5 D; 10 min) and, more pronouncedly, at later

(M-phase; Fig. 5 D; 40–45 min) time points after DB addition,

further indicating that wee1-cdk1 interaction is accompanied by

cdk1-tyr-15 phosphorylation. When cdk1 activity further in-

creased, upon prolonged incubation, cdk1 appeared to dissociate

from wee1 (Fig. 5 D; 90 min), possibly because of wee1

hyperphosphorylation [23]. Preliminary results indicate that

wee1-cdk1 interaction is also detected during unperturbed M-

phase exit in cycling extracts (not shown).

Under our experimental conditions, degradation of full-length

cyclin initiated 40–45 min from addition of non-degradable cyclin

B (Fig. 5 E). To determine whether DB-cdk1 activity affected

cyclin degradation timing, we inhibited cdk1 activity after signifi-

cant cdk1 activity had been reached following DB addition

(33 min; Figs. 5 E, F) and monitored full-length cyclin B degrada-

tion. Cdk1 inhibition slightly but consistently accelerated initiation

of degradation (Figs. 5 E, F). Toghether these data indicate that

the cdk1-tyr-15 phosphorylation state at M-phase exit may also be

regulated via wee1-cdk1 interaction and indicate that cyclin B-

cdk1 activity can affect the cyclin degradation pathway even under

conditions in which degradation is prevented.

Further investigation will be required to establish the role for

phosphorylations [21,22,23] in the wee1-cdk1 interaction and in

wee1 activity towards wee1-bound cdk1 as well as the domains

involved in binding and other potential M-phase aspects for which

interaction is relevant [24].

DISCUSSION
Our data show that timely completion of M-phase requires

proteolysis-independent control of MPF activity. Nevertheless,

M-phase exit strictly relies on proteolysis and phosphorylation-

dependent MPF down-regulation is insufficient to lower MPF

activity to the levels required to exit M-phase if proteolysis cannot

take over. We propose that proteolysis and inhibitory cdk1

phosphorylation are interconnected in a MPF inactivation loop for

M-phase exit. Initial partial, phosphorylation-dependent, loss of

MPF activity stimulates APC/CCdc20 activation. MPF degradation

further weakens the MPF activation loop promoting MPF

inhibitory phosphorylation. Consequent additional MPF activity

loss further helps APC/CCdc20 activation. We cannot exclude that

degradation of a small pool of cyclin initiates the loop. However,

the observation that MPF binds to wee1 in M-phase even in the

absence of cyclin degradation (Fig. 5) further witnesses that a tight

coupling of proteolysis-independent and proteolysis-dependent

mechanisms of MPF inactivation coordinate M-phase exit.

MATERIALS AND METHODS

Egg extracts and immunoprecipitations
Xenopus egg extracts were prepared essentially as described [10].

Where indicated extracts were incubated in the presence of

[35S]methionine (400 mCi/ml; Amersham). Histone H1 kinase

assays were performed as described [15] and quantified as

percentage from densitometry values of phosphorylated histone

H1 autoradiographs. Roscovitine and CaMKII Ntide peptide

were purchased from Calbiochem. Immunoprecipitations (Ips)

were performed as follows: 5 to 40 ml of extracts samples were

diluted in 250 or 500 ml ice cold buffer containing 15 mM Hepes

pH 7.4, 150 mM NaCl, 0.1% NP40 and phsosphatase and

protease inhibitors (Sigma). Samples, pre-cleared with protein A-

+G-sepharose, were incubated with 2 mg antibody for 1 hour on

ice, mixed with 20 ml of 50% protein A+G-sepharose suspension

and incubated with rotation at 4uC for 1 hour. Bead pellets were

washed once with low (150 mM NaCl) and high (400 mM NaCl)

salt buffer and once again with low (150 mM NaCl). At the final

wash, when needed, Ips were divided into various portions for to

analyse activity or protein content. Mock precipitations were

performed with non-immune Ig from time 0 samples. Cdc20-

Cdc27 co-Ips were performed according to previously published

methods [25]; briefly: at the end of each treatment, 50 ml extract

samples were quickly frozen in liquid nitrogen. Samples were

subsequently thawed in 20 vol. of XB/EB (1/1) [10] and 100 nM

okadaic acid (Roche). Samples were incubated with 1 mg of anti

Cdc27 antibody for 1 hours on ice, mixed with 20 ml of 50%

protein A+G-sepharose suspension and further incubated with

rotation at 4uC for 1 hour. Bead pellets were washed 4 times with

XB/EB (1/1) and processed for immunoblot analysis according to

standard procedures. Co-Ips between cdc27 and exogenous,

labelled, cdc20 wt and 7A were performed similarly. Nuclear

morphology was analysed as described [26]. Briefly, demembra-

nated sperm nuclei (300/ml extract) were allowed to undergo DNA

replication by 120 min incubation with interphase extracts. Nuclei

were then moved into metaphase by incubating one part of the

r

Figure 5. Wee1 and cdk1 physically interact in M-phase. (A) Histone H1 kinase activity in cdk1 Ips from samples of CSF-arrested extract (M), interphase
extract (I; 40 min after CaCl2 and CHX additions) and from samples taken at the indicated time points after sea urchin DB (100nM) addition to an
interphase extract. Left panel, phosphorylated histone H1 autoradiograph (P-HH1). Right panel, quantisation of cdk1 activity from three independent
experiments. (B) Cdk1 activity, cdk1-phospho-tyr15 and cdk1 content in cdk1 Ips from extract samples taken at the indicated time points after DB
addition. (C, D) Wee1 and cdk1 were immunoprecipitated from samples of CSF-arrested (M), interphase (I) extracts and interphase extract samples
from the time of DB addition. Left panels, wee1 and wee1-associated cdk1 in wee1 Ips. Right, histone H1 kinase activity in cdk1 Ips. In (D) the lower
part of the wee1 Ips immunoblot was first probed for cdk1-phospho-tyr15 and subsequently for cdk1. (E, F) Full-length, [35S]labelled, Xenopus cyclin
B1 was added to two independent interphase extracts along with DB. The extracts were spilt into two portions and DMSO, as control, or roscovitine
(10 mM) were added after 33 min incubation, samples were, then, taken at the indicated time points after DB addition. Shown are autoradiographs
and quantisations of percent remaining [35S]labelled, full-length cyclin B1.
doi:10.1371/journal.pone.0000247.g005
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interphase extract (+nuclei) with two parts of a CSF-arrested

extract. Incubations with recombinant proteins were performed as

indicated in legends. Anti Xenopus cyclin B1 and cyclin A,

antibodies were a generous gift of J. Maller; anti Xenopus Cdc20/

Fizzy and anti cdc25C-phospho-ser 287 were a generous gift of M.

Dasso, A. Arnoutov and J. Ruderman; anti Xenopus cdc25C was

a gift of J. Gannon. Other antibodies were purchased from Santa

Cruz Biotechnology, Zymed and Transduction Laboratories.

Recombinant proteins
Cdc20 wt and 7A plasmids were a generous gift of A. Hershko.

Proteins were in vitro translated in the presence of [35S]labelled

methionine and cysteine (promix; Amersham) using a T7-TNT

coupled system (Promega). Production and purification of GST-

human cyclin B1-cdk1wt and GST-human cyclin B1-cdk1AF

kinases frombaculovirus-infected Sf9 cells was performed as

described [26]. Egg extracts were pre-incubated with either buffer,

recombinant cyclin B1-cdk1wt or cyclin B1-cdk1AF for 20 min at

30uC before CaCl2 addition. Equal amounts to the endogenous

level of cyclin B1-cdk1 activity were added of recombinant

enzymes.

SUPPORTING INFORMATION

Figure S1 Cdc25C and cdk1 phosphorylation changes are

induced upon CaCl2 addition to CSF-arrested extracts and

prevented by CaMKII inhibition. Cdc25C and cdc25C-phospho-

ser-287 (Cdc25; two exposures of the immunoblot are shown; the

asterisks mark non-specific signals) and cdk1-phospho-tyr15

contents from portions of a CSF-arrested extract, pre-incubated

for 20 min with buffer, as control, or with the CaMKII inhbitor

peptide CaMKII Ntide (0.5 mM), taken at the indicated time

points after CaCl2 addition.

Found at: doi:10.1371/journal.pone.0000247.s001 (0.16 MB TIF)

Figure S2 Cyclin B and cyclin A stability in cyclin B1-cdk1AF-

treated CSF-arrested extracts. Portions of a CSF-arrested extract

were pre-incubated for 20 min at 23 degrees C with buffer or

recombinant cyclin B1-cdk1AF. Then, CaCl2 was added and

samples taken at the indicated time points. Upper panels, Cyclin

B1 and cyclin A were detected by immunoblot. Lower left panel,

densitometric quantisation (from immunoblot signals; expressed as

percent of peak value) of the cyclin A content in control (filled

squares; Cyc A cont.-ertx.) and cyclin B1-AF-treated (open

squares; Cyc A AF-ertx.) extrac portions. Lower right panel,

densitometric quantisation (from immunoblot signals; expressed as

percent of peak value) of the cyclin B1 content in control (filled

squares; Cyc B1 cont.-ertx.) and cyclin B1-AF-treated (open

squares; Cyc B1 AF-ertx.) extract portions. Error bars refer to

variability within three independent experiments.

Found at: doi:10.1371/journal.pone.0000247.s002 (0.10 MB TIF)

Figure S3 Nuclear morphology in cyclin B1-cdk1AF-treated

CSF-arrested extracts. Demembranated sperm nuclei (300/ml

extract) were allowed to undergo DNA replication by 120 min

incubation with interphase extracts. Nuclei were then moved into

metaphase by incubating one part of the interphase extract

(+nuclei) with two parts of a CSF-arrested extract for 50 min. After

incubation, portions were treated either with buffer (control) or

cyclin B1-AF and further incubated at 23 degrees C for 20 min.

Samples were fixed at the indicated time points after CaCl2

addition and visualised by Hoechst staining. A portion of the

cyclin B1-cdk1AF-treated extract also received roscovitine (2 mM

in DMSO) 1 min after CaCl2 addition (Cyclin B1-AF+Rosco).

DMSO addition alone did not affect morphological changes in

cyclin B1-AF-treated extracts (not shown).

Found at: doi:10.1371/journal.pone.0000247.s003 (0.08 MB TIF)

Figure S4 Cdc20-Cdc27 interaction in CSF-arrested extracts.

Cdc27 was immunoprecipitated (Cdc27 Ip) and bound Cdc20

visualised by immunoblot to from untreated CSF-arrested

samples, pre-incubated for 20 min at 23 degrees C before CaCl2

addition to maintain similar conditions to the experiments with

recombinant cyclin B1-cdk1 complexes. Samples were taken at the

indicated time points after CaCl2 addition. Mock precipitations

(MkIp) were performed with non-immune Ig from time 0 samples

Found at: doi:10.1371/journal.pone.0000247.s004 (0.05 MB TIF)
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