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ABSTRACT: The rational design of novel drug candidates presents a formidable challenge in modern drug discovery. Proteolysis-
targeting chimeras (PROTACs) drug design is particularly demanding due to their limited crystal structure availability and design of
a viable small molecule to bridge the protein of interest (POI) and ubiquitin−protein ligase (E3). An integrated approach that
combines superimposition techniques and deep neural networks is demonstrated in this study to leverage the power of deep learning
and structural biology to generate structurally diverse molecules with enhanced binding affinities. The superimposition technique
ensures the congruence of initial and new protein−ligand pairs, which are evaluated via subsequent comprehensive screening using
the root-mean-square deviation (RMSD), binding free energy (BFE), and buried solvent-accessible surface area (SASA). The final
candidates are subjected to the incorporation of molecular dynamics (MD) and free energy perturbation (FEP) simulations to
provide a quantitative evaluation of relative binding energies, reinforcing the efficacy and reliability of the generated molecules. The
outcomes of the generated novel PROTACs molecules exhibit comparable structural attributes while demonstrating superior binding
affinities within the binding pockets when contrasted with those of the established cocrystal ternary complexes. To enhance the
generalizability of the workflow, we chose the ternary structure of the cellular inhibitor of apoptosis protein 1 (cIAP1) and Bruton’s
Tyrosine Kinase (BTK) for validating the chemical properties generated from the processes. The new linker molecules additionally
showed superior affinity from the simulations. In summary, this methodology serves as an effective workflow to align computational
predictions with current limitations, thereby introducing a novel paradigm in AI-driven drug design.

■ INTRODUCTION
Drug design faces several limitations and challenges that hinder
the discovery and development of new therapeutics. These
include the high cost and time associated with experimental
screening methods, the limited availability of structural
information for target molecules, and the inability to effectively
address complex biological processes and interactions.
Proteolysis-targeting chimeras (PROTACs) have recently
been highlighted in the realm of therapeutic modalities for
their potential to degrade targeted protein. PROTACs are
heterobifunctional small molecules, which connect a target
protein of interest (POI) and an E3 ubiquitin-protein ligase
(E3) on each side via functional ligands.1 The POI and E3
proteins are linked with an appropriate linker that conjugates
the two ligands on an individual protein.2 Degradation is
initiated when a ternary complex is formed as POI-PROTACs-
E3.3 The ubiquitin-proteasome system subsequently seizes the
targeted protein, facilitating its polyubiquitination, which is

then followed by proteasomal degradation.4 From a small
molecule drug discovery point of view, designing a druggable
PROTACs requires identifying the best spatial combination of
the ternary complex and a thorough study of the structural and
chemical properties of the POI and E3 ligase-complemented
molecular dynamics.5,6

Multiple E3 ubiquitin ligases have been targeted for
PROTACs development and represent promising chemical
properties in drug discovery. One of the largest focuses with
targeted protein degradation (TPD) is the members of the
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cullin RING ubiquitin ligase (CRL), which are modular
protein assemblies centered around a cullin backbone.7−9

Among the CRLs, the most commonly targeted ligases in
clinical evaluation or approval are CRL2VHL (hereafter called
Von Hippel−Lindau tumor suppressor and abbreviated as
VHL) and CRL4CRBN. VHL is a substrate receptor that
facilitates the specific recognition of target substrates to hijack
ligases, along with other substrate receptors, contributing to
the substrate specificity of CRLs. The concept of PROTACs
involving the recruitment of E3 ubiquitin ligase and the POI
has demonstrated successful applications, particularly in the
case of VHL. This tumor suppressor plays a crucial role in
oxygen sensing by targeting hypoxia-inducible factor α (HIF-
α) subunits for ubiquitination and degradation. Hanzl et al.10

have proven the innovative hybrid compounds, including
PROTACs, effective in mapping mutations that confer
resistance to degraders for a handful of E3 ligases.11

The application of PROTACs has shown success in the case
of BRD4BD2 (hereinafter termed BRD4), which is a member of
the bromodomain and extra terminal (BET) family. BRD4 is
recognized for its involvement in orchestrating superenhancers
and controlling the expression of oncogenes, thus making it a
significant player in cancer biology.12 Its significant POI
associated with critical cancer pathways has been targeted for
degradation. Recent studies showed PROTACs molecule
structure of AT710 and MZ113 targeting on BRD414 to
demonstrate successful BRD4 degradation through PROTACs
that engage the VHL ligand on the BD2 domain. AT7
represents a potential small molecule inhibitor targeting BRD4,
aiming to disrupt its interaction with acetylated histones and
subsequently inhibit downstream oncogenic signaling path-
ways. The ternary complex formed by BRD4, AT7, and VHL
represents a molecular assembly in which AT7 binds to BRD4,
potentially influencing its activity, and VHL serves as a
bridging molecule or a potential target for therapeutic
intervention. However, the current ternary structure can be
improved in its druggable potential and structural stability via
state-of-the-art deep learning techniques.

Current studies leverage the deep neural network in
PROTACs drug discovery for the rapid simulation and
generation of novel structures. The technique demonstrates
the feasibility of screening more druggable targets.15,16 Graph
neural networks (GNN) have emerged as a prominent
technology for their intrinsic capability to learn specific task
characteristics via graph representations while simultaneously
retaining vital atom and bond interactions within the molecular
structure.17,18 By skillfully aggregating information from
surrounding atoms encoded via the atom feature vector, the
GNN effectively retains the representation of each atom with
the option to feed chemistry laws to the network. The network
employs recursive encoding to capture the connected bond
feature vector in addition to atom information through
messages passing across the molecular graphs. The ensuing
readout operation consolidates these representations, atom-
bond interactions, and incoherence.19−21 Notably, the GNN
models have demonstrated their superiority or comparability
to traditional descriptor-based models in predicting chemical
properties.22,23

Further, the utilization of a gated graph neural network
(GGNN) has proven to surpass conventional molecular graph
generation methods in deep generative models, showcasing its
practicality in structure formation for drug design.17,24,25

Currently, multiple studies rely on two-dimensional SMILES-
based representations embedded in the feature vector to
generate novel molecules.26−29 However, these approaches
overlook the crucial aspects of molecular structures in three-
dimensional space, leading to significant deviation from the
initial structure design. DeLinker, inspired by Liu et al.,
represents the first endeavor to incorporate GGNN in linker
design, with the emphasis on retaining three-dimensional
structural information and generating novel small molecules
from the input fragments.27,30 Nonetheless, the lack of effective
methods for refining the generated molecules and the absence
of comprehensive validation in molecular conformations
remain evident in these studies.

Figure 1. Schematic of the proposed workflow. The process includes (1) retrieving the ternary cocrystal structure of the POI-PROTACs-E3
ubiquitin ligase, (2) superimposing the POI and its linker with an identical POI attaching to a new ligand, (3) the new POI and E3 ubiquitin ligase
are fed into the deep neural network so that the individual ligands are treated as fragments for linker design, (4) the generated novel molecules are
filtered with multiple steps of chemical property screenings to remove the less druggable molecules, and (5) the final remaining candidates are
validated with MD and FEP analysis to test the structural stability and dynamics of the generated molecules.
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To overcome the limitation of sparse PROTACs ternary
structure and adopt the emerging computational networks, this
study demonstrates the first methodology to integrate the
superimposition of a POI-ligand pair and deep neural network
in PROTACs linker generation. First, we superimpose the new
POI-ligand pair to substitute the POI-AT7 pair. The new POI-
ligand pairs, BRD4-MS417 and BRD4-Compound 18 (C18)
complexes, are verified via molecular docking, indicating that
these molecules reside in the same binding pocket as the initial
BRD4-AT7 pair. Further, the adopted deep neural network,
AIMLinker,31 generates novel molecules to bridge the POI and
E3 ligands with consideration of the structural 3D information.
The generated molecules are subjected to molecular docking
analysis to extract the molecules with better chemical
properties. This docking assessment includes the calculation
of root-mean-square deviation (RMSD), evaluation of relative
binding free energy (BFE), and buried solvent-accessible
surface area (SASA). Lastly, the molecular dynamics (MD)
and free energy perturbation (FEP) simulations are applied to
measure the robustness and effectiveness of the candidate
molecules. This comprehensive pipeline establishes a pioneer-
ing approach, wherein overcoming the current limited POI-

PROTACs-E3 ternary structure and implementing state-of-the-
art deep learning are required to advance the domain of drug
discovery. Additionaly, we validate the pipeline with another
POI-linker-E3 pair to show the reliability.

■ METHODS
We provide the pipeline of our proposed methodology in
Figure 1. The original ternary structure of POI-PROTACs-E3
ubiquitin ligase is retrieved from Protein Data Bank (PDB).32

A crucial aspect of TPD involves the binding of ligands to the
POI and the E3 ubiquitin ligase on each end and a PROTACs
molecule that enhances affinity and leads to the formation of a
ternary structure. We then superimpose the POI and its
associated linker with a POI variant, which includes a new
ligand for further PROTACs design. Next, the new POI and
initial E3 ubiquitin ligase are treated as input data for the deep
neural network as fragments, providing the initial anchors to
design novel PROTACs linkers. The produced novel
molecules from the network form new ternary structures
with diverse binding chemical properties. We filtered the novel
ternary complexes with buried SASA, BFE, and RMSD to
exclude the molecules with less viability and less potential to be

Figure 2. BRD4-AT7-VHL ternary structure and the chemical structural formula of AT7 are depicted in the following manner. (A) The spatial
information on 7znt structure. The proteins of BRD4 and VHL are labeled by red and blue labels. (B) The chemical structural formula illustration
of the AT7 molecule shows its ligand linkage to the E3 ubiquitin ligase and POI.
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druggable. Lastly, we validate the final candidates with MD and
FEP analyses to verify the robustness of the generated
molecules.
Superimposition. The plastic binding of the PROTACs

between the ligase and the substrate exhibits diverse
conformations influenced by both linker length and relative
position. The PROTACs molecule AT7 stands out for its
remarkable selectivity properties with degradation activity
(DC50) of approximately 20.8 nM and BFE of −30.94 kcal/
mol, and its ternary cocrystal structure, BRD4-AT7-VHL
(PDB: 7znt), has been elucidated by Hanzl et al. and deposited
in the PDB.10 This 7znt ternary complex, integrating structural,
biochemical, and cellular aspects, represents a neodegrader-
mediated PROTACs structure. To visualize the relative spatial
arrangement of the BRD4-AT7-VHL complex, Figure 2A
displays BRD4 and VHL structures via Discovery Studio
Visualizer (DSV),33 with AT7 acting as the bridging molecule
connecting E3 ubiquitin ligase VHL and target protein ligase
BRD4. Figure 2B illustrates the chemical structural formula of
AT7.
The core of our methodology involves a robust structural

alignment and superimposition procedure to seamlessly
integrate the new protein−ligand complex within the binding
pocket of interest. We leverage the relatively larger availability
of POI-ligand structure with better chemical properties in the
same binding pocket as BRD4-AT7-VHL. We identify BRD4-
C18 (PDB: 6vix) and BRD4-MS417 (PDB: 6duv) as two
superimposition POI-ligand targets, which contain better or
comparable inhibition activity.34 Since the chosen POI-ligand
targets lie in the same binding pocket as the AT ternary
structure, the superimposition pose shows a structurally
reasonable length between BRD4 and VHL for PROTACs
linker design and is favorable to be druggable. The RMSD tool
in BIOVIA Discovery Studio (DS) was used to perform the
superimposition process. During the alignment process, it is
not solely based on the protein backbone; it also encompasses
side-chain conformations and ligand orientations.
We retrieve the BRD4-ligand structure from Faivre et al.,35

where the BRD4 along with its ligand chemical structure is
released to logically select the reasonable begin atom when
designing the PROTACs linker molecule. Next, this BRD4-
ligand is replaced with the new BRD4 attaching to a new
ligand, and we ensure the protein backbone alignment to form
a new POI-ligand pair. We then identify the starting atoms for
designing linker molecules on the new BRD4-ligand pair.
Lastly, we superimpose the new POI-ligand pair to form a
configuration of separate POI-ligand and E3-ligand molecules.
PROTACs Generation. In preparation for linker gener-

ation, we employ the crystal pose of the BRD4-AT7-VHL
complex and the corresponding binding moieties to design the
PROTACs linker. The input data for the deep neural network
are two fragments comprising individual ligands from BRD4
and VHL, respectively. The original linker moiety from the
cocrystal structure is removed. We extracted the AT7 molecule
from the 7znt structure. Notably, the fragment of the BRD4
ligand, established as a potent inhibitor by Filippakopoulos et
al.,36 is visually depicted in Figure 2B. The VHL ligand is
characterized by a structure akin to the ligand released by Frost
et al.37 The closest unlinked atoms are predefined as the
anchors for parameter calculations for the network. The
processed fragments provide essential 3D spatial data, namely,
the relative angle and distance in the free space. The
information is calculated by the predetermined and unchang-

ing nature of the cocrystal structure obtained from the PDB.
Subsequently, the network utilizes this spatial information
along with the two fragments as input parameters. The details
about the multimodal neural network are described in the
following sections.

Architecture. The multimodal encoder-decoder network,
AIMLinker, presents a data-driven deep learning network that
seamlessly integrates the generation and design of novel
structural linkers between input fragments. This is followed by
a postprocessing step to refine the predicted structures. This
work adopts a network for PROTACs linker generation. Built
upon insights from prior works by Imrie et al.30 and Liu et
al.,27 AIMLinker capitalizes on unlinked fragments, leveraging
their relative spatial position and orientation data to produce
linker structures. AIMLinker is fine-tuned through training and
modifications to meet the unique requirements of producing
PROTACs molecules, subsequently undergoing postprocessing
to enhance the drug-like potential of the generated molecules.
The generation process involves iterative edge generation

and atom addition, with a focus on 14 permitted atom types.
Utilizing a breadth-first approach, the model generates
molecules while adhering to basic atomic valency rules through
a masking step. Additionally, it is flexible to specify the number
of atoms between anchors, thus maximizing variation in linker
molecules while ensuring validity of the generated structures.
The network is also capable of determining the quantity of
generated molecules, followed by a postprocessing stage that
removes chemically unsound, duplicate, and illogical struc-
tures. This process serves as the additional step to remove the
unwanted molecules due to the nature of the noisy output
from the network.
The architecture utilizes a standard GGNN to process input

fragments into a graph representation. Within this structure,
each atom and bond corresponds to a node and edge,
respectively, labeled as a and k. The graph information is
channeled through the GGNN core encoder structure,
facilitating the seamless integration and continuous refinement
of the hidden states associated with nodes and edges. This
dynamic integration occurs iteratively throughout the learning
process, enabling the network to progressively enhance its
understanding of the structural relationships within the
molecular entities.
Initiating with node expansion, each node holds a random

hidden state, zv, extracted from a d-dimensional normal
distribution, where l signifies the number of features of the
hidden state. The expansion nodes are subsequently denoted
as hv, accompanied by structural information derived from the
SoftMax output of a learned mapping function, represented as
y. This mapping function can be substituted with other
functions to associate hidden state zv with diverse atom types,
influenced by the selected linker length. Next, the iterative
process of edge selection, edge labeling, and node updating
generates new molecules. The initial node u considers the
length and spatial information on the neighborhood node v,
configured by the initial input fragment anchors. The graph
representation of the connected node is repeatedly added to
the chain until the expansion nodes are all chained without
further formation. The subsequent stages involve assessing the
potential for edge formation based on the basic valency
constraint and updating nodes through GGNN. The
constructed feature vector Φu,v

t with subsequent node v is
denoted as hv ∼ y(zut ). The feature vector at time point t
considers the adjacent node:
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where hut and hvt are the hidden states with the distance dv,u in
the graph representation. H0 and Ht indicate the local and
global information on the nodes at the time point t,
respectively. The length and relative angle of the anchors in
the 3D structural information are stored as I. The probability
distribution of the candidate edge is represented as
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where the edge k can be single, double, or triple bonds subject
to the basin valency constraints.
Upon completion of the iteration process, the network

produces the largest intact molecule while discarding
unconnected nodes. Notably, the stereochemistry information
on the generated molecules is not provided during the
generative process, necessitating postprocessing steps to screen
the predicted molecules and test their robustness. In essence,
the model emerges as a comprehensive and versatile approach
for designing PROTACs molecules, fusing deep learning and
graph-based methodologies to achieve tailored structural
linkers.
Model Training. A training data set consisting of a

conventional ZINC data set38,39 and PROTAC-DB40 is
employed for training within a variational autoencoder
(VAE) framework. The data set includes 160,491 molecules,
with 157,221 molecules from ZINC and 3270 PROTACs-
specific molecules from PROTAC-DB. The ZINC data set
contains chemically complex compounds to emulate the ligand
buried in the large POI-PROTACs-E3 ternary structure, while
the PROTAC-DB data set encompassed all available
compounds. Each molecule is divided into two fragments
and a linker segment, ensuring that the linker has a minimum
of three heavy atoms while retaining the possibility of
generating intact ring structures.
The data set is split into 90% for training and 10% for

validation utilizing 10-fold cross-validation to mitigate over-
fitting. The hyperparameters are tuned for optimal perform-
ance. The model focuses on fragment-molecule pairs, aiming to
reconstruct a linked molecule Ŷ from input fragments Y and a
latent code z, which represents the learned mapping. The
latent code was constrained to a low-dimensional vector to
enforce effective learning from input fragments and subsequent
regeneration. The loss function combined a reconstruction
term and a Kullback−Leibler regularization loss, with an
encoder representing the Gaussian probability density of node
positions and a decoder aiming to reconstruct input molecules
from the fragments. The Kullback−Leibler regularization term
managed the divergence between predicted molecular spatial
distributions and the probability vector derived from the linked
molecule. This approach introduced variations to the tradi-
tional VAE loss, as previously suggested by Yeung et al.41 The
training process focused on enhancing the network’s ability to
predict atom types and reconstruct targeted molecules.
Postprocessing. The model generates a library of 2D

chemical structures for PROTACs molecules, which undergo
postprocessing to eliminate undesirable targets. The post-
processing involves several filters integrated into the model,
addressing issues arising from the graph computational process
and linked substructures. The first filter removes duplicate
predictions, resulting in a unique molecule set. Additionally,
nonlinker substructures, where two fragments do not form a
compound with the linker moiety, are filtered out. Another

filter identifies unfavorable substructures that are unsuitable for
chemical synthesis or as druggable targets such as acid halides,
disulfide bonds, and small cyclic rings with double bonds. This
library is further refined by assessing the feasibility of newly
generated substructures as potential drug leads.
Moreover, molecules violating Bredt’s Rule,42 containing

specific bridged-ring structures with a carbon−carbon double
bond at a bridgehead atom, are excluded from the target pool.
These filtration steps effectively reduce unwanted molecules,
optimizing computational resources and simulation time. The
systematic utilization of these filters ensures that the resulting
molecule pool consists of candidates with promising drug-like
properties, enhancing the quality and applicability of the
generated novel PROTACs molecules.
Molecular Properties Filtration. Molecular Docking. In

order to select potential molecular candidates, it is essential to
construct 3D protein−protein interaction poses and 3D
conformations of the generated molecules. The cocrystal
structure of BRD4-AT7-VHL is available in the PDB and the
simulated spatial conformations were retrieved via DSV (Table
S1). Additionally, the 2D chemical structures of postprocessed
molecules were converted into 3D PROTACs conformations
through DSV. To validate the robustness of our docking
methodology, the reference compound AT7 was subjected to
the same process, transforming it into a series of 3D
conformations. The energy minimization techniques were
subsequently applied to optimize these 3D forms of
molecules.43

Following the preparation of protein−protein interaction
poses and 3D conformations for PROTAC candidates, the
docking analysis employs CDOCKER program44 embedded in
DS to retrieve optimal PROTACs binding poses. This was
achieved by configuring the binding pocket as a grid, enabling
each 3D PROTACs to bind freely to our superimposed BRD4-
VHL structure. The binding site sphere was defined as having
an 8 Å radius surrounding the entire PROTACs binding
pocket. During the docking procedure, aspects such as the
binding energy, biochemical properties, and entropy are
comprehensively considered. For each PROTACs candidate,
10 docking poses were generated and passed to subsequent
RMSD analysis.

RMSD Calculation. The RMSD introduced by Bell et al.45

was employed as a quantitative tool to measure the structural
similarity between corresponding atoms within two molecules:

=
=

v w
n

v wRMSD( , )
1

( )
i

n

i i
1

2

where v and w denoted as the atoms in AT7 and generated
molecule, receptively. Notably, n represents the atom count in
the ligand, while vi signifies the Euclidean distance between the
i-th pair of the corresponding atom wi. By using the RMSD
tool within DS, the superimposing and calculating RMSD
values allows for evaluating the structural similarity level of the
generated linker molecules against the cocrystal structure
reference compound in the PDB.

Binding Free Energy Simulation. To access the binding
affinity between the protein and ligand, we employed the
Calculation Binding Energies protocol in DS, coupled with the
Generalized Born with Molecular Volume implicit solvent
model46 for predictive analysis. The BFE between a protein
and a ligand within a solvent environment was determined
through the following formulation:
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= +G G G G( )c l pBFE

where Gc indicates the total free energy associated with the
protein−ligand complex, whereas Gl and Gp correspond to the
respective total free energies of the separated ligand and
protein in the solvent.
To further enhance the rigor of our investigation, we

incorporated spatial constraints by imposing a fixed spatial
position for the BRD4-VHL interactions. We afford the
generated bridging molecules freedom of movement to allow a
more accurate assessment of their interaction potential.
Through this ΔGBFE analysis and consideration of spatial
constraints, we provided a reliable evaluation of the validity
and potential interaction capability of the generated molecules
within the protein−ligand complex context.
Buried SASA Calculation. We measured the SASA of the

ligand within the protein binding pocket via the Analyze Ligand
Poses protocol to provide valuable insights into the interaction
dynamics between the ligand and the receptor. Specifically, we
calculated the SASAligand‑pocket, which corresponds to the SASA
of the ligand when it was situated within the protein binding
pocket. Furthermore, we determined the ligand SASA in
isolation, representing SASAligand without the presence of the
receptor. This isolated SASA measurement served as a baseline
reference for the ligand surface area when not engaged with the
protein.
The SASAburied ratio was then computed as a means to

quantitatively assess the extent of burial or burial efficiency of
the ligand within the binding pocket.47 It is calculated as

= ×SASA (%) 1
SASA

SASA
100%buried

ligand pocket

ligand

i
k
jjjjjj

y
{
zzzzzz

where SASAligand‑pocket represents the ligand SASA value in the
binding pocket, and SASAligand is the SASA of the ligand
without the receptor. The resulting SASAburied value provided a
percentage representation of the ligand surface area that was
shielded or “buried” upon interaction with the receptor.
This detailed SASA analysis contributed to the ligand−

receptor interaction landscape. The SASAligand‑pocket, SASAligand,
and SASAburied ratios collectively offered valuable quantitative
metrics to characterize the binding mode and binding
efficiency of ligands within the binding pocket of the protein.
This approach enhanced our ability to discern the structural
aspects of ligand−protein interactions to facilitate the
verification of the chemical properties of the generated
molecules.
Molecular Dynamics Simulation. MD simulates the

motion of atoms and molecules according to classical
mechanics, offering insights into the conformational changes
and the flexibility of biomolecular systems. It allows various
binding modes and the prediction of ligand−protein
interactions with a high accuracy. By doing MD simulations,
we can capture dynamic events such as protein−ligand binding
and unbinding processes, enabling the characterization of
binding kinetics and thermodynamics.
The binding affinities of the eight selected PROTACs (AT7

crystal pose, C18−02−0014, C18−02−0019, C18−02−0055,
C18−02−0130, MS417−01−0019, MS417−01−0157, and
MS417−01−0164) with BRD4-VHL were further evaluated
via 10 ns MD simulations perturbation. All MD simulations
were conducted using the DS with the CHARMM force field,48

which was used to obtain the energy-minimized conformations

of all the processed complexes. Next, the generated complexes
were solvated with an explicit periodic boundary model with
added TIP3P water molecules to the cubic simulation boxes.49

The solvated complexes were followed by neutralization using
sodium and chloride ions.
Each BRD4-PROTACs-VHL complex was initially mini-

mized to remove the unfavorable contacts for 200 steps by
using the steepest descent method and subjected to 20 ps of
heating from 50 to 300 K. Subsequently, a 50 ps equilibrium
run was performed. Finally, periodic boundary dynamics
simulations of 10 ns were conducted for the production step
in a constant-temperature, constant-pressure ensemble at 1
atm and 300 K. All covalent bonds involving hydrogen were
constrained during the simulations using the SHAKE
algorithm.50 The particle mesh Ewald method was used to
treat the long-range electrostatic interactions.51 The output
trajectory files were saved every 2 ps from a 10 ns period and
used for subsequent structural stability analysis, encompassing
binding free energy, ligand nonbonded interactions, and the
protein Radius of Gyration (Rg). The number of ligand
nonbonded interactions was calculated between the PROTACs
molecule and the BRD4-VHL. In the MD simulations of
proteins, Rg is often used to assess the compactness of a
protein, which represents the root-mean-square distance of all
atoms in a molecule from their common center of mass. The
calculated Rg value was subtracted from the initial Rg value
(starting structure).
Free Energy Perturbation Simulation. FEP comple-

ments MD simulation by systematically calculating the ligand
structure perturbation and the corresponding free energy
differences, providing insights into the energetics of ligand
binding. This approach facilitates rational drug design by
enabling the prediction of relative binding affinities for a range
of ligand analogs, thereby guiding scaffold hopping and
optimization efforts.
We employed FEP simulations to measure the binding

affinities of the generated molecules with the reference
cocrystal structure complex. FEP simulations provided
ligand−protein interactions and quantified the associated
binding energies, thereby enabling insights into molecular
recognition and phase transitions. To facilitate accurate
prediction and characterization, we selected the best two
distinct PROTACs configurations of each generated structure
with relatively better chemical properties of conformation with
BRD4-VHL. Notably, the ternary structure was free of
constraints to emulate the natural in vivo conditions. By
using the CHARMM Relative and FEP calculations protocol in
DS, we conducted FEP simulations employing a lambda
window protocol. Specifically, we employed a range of 20
lambda windows (0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.85, 0.9, 0.91, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99, and 1.0)
throughout the FEP schedule. Each simulation run encom-
passed a duration of 8 ns, and we performed three independent
FEP schedule runs to ensure the robustness and reproducibility
of our results.
The core objective of our FEP simulations was the

computation of the relative BFE between two ligand states,
denoted as l0 and l1. This quantification was expressed as
ΔΔGbinding

l0 → l1 , capturing the energetic difference associated with
the transformation from ligand state l0 to l1 in the binding
complex:

=G G Gl l
c
l l

l
l l

binding
0 1 0 1 0 1
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The formula is defined as the difference between the free
energy change in the complex (ΔGc

l0 → l1) and the energy
change of the ligand in solution (ΔGl

l0 → l1). This formulation
enabled us to evaluate and compare the binding affinities of
different ligand states within the BRD4-PROTACs-VHL
complex. By leveraging the FEP simulation, we provided the
thermodynamics of ligand−protein interactions to test the
rational design of potent ligands with improved binding
affinities.

■ RESULTS
We demonstrate a first-in-class methodology of integrating
POI-ligand pair superimposition and designing novel PRO-
TACs linkers via deep neural networks. The following results
first show the superimposition of the structural similarity to
validate that the POI-ligand pair is effectively overlaying on the
protein backbone and leaving the ligand part to be the target
designing PROTACs molecules. Next, we show the perform-
ance of generating molecules via a deep neural network. The
model provides novel PROTACs molecules that are favorable
to be druggable. Further, the docking process includes RMSD,
BFE, and buried SASA calculations to subsequently validate
and screen the generated molecules to retain better structures
with better chemical properties as the final candidates. Finally,
MD and FEP analyses are adopted to compare the robustness
of the candidates with the AT7 crystal structure.
Superimposition. In Figure 3, the application of the

superimposition technique is demonstrated to show the extent
of structural congruence between the POI and its respective
ligand. The visualization is facilitated by DSV to employ
distinct color coding and highlight the matched structural
elements. Specifically, the original BRD4 (labeled in green) in
Figure 3A serves as the reference configuration, showing the
structural alignment of the new protein−ligand pair. The
superimposed structure includes new BRD4 with C18 and
MS417, respectively. Figure 3B showcases the alignment of
BRD4-C18 (labeled in light blue) accompanied by the
chemical formula of C18 presented on the adjacent side.
The new structure of the BRD4-C18 pair shows high

congruence with the initial BRD4 structure. Subsequently,
Figure 3C illustrates the alignment between the reference pair
and BRD4-MS417, which is labeled in dark blue. Both POI-
ligand pairs exhibit high structural congruence with the
reference complex.
PROTACs Generation. We utilize a deep neural network

architecture to take the ligands on BRD4 and VHL as input,
leading to the generation of novel PROTACs molecules
through a deep GGNN architecture. The model operation
entails the utilization of unlinked fragments located on either
side of the ligands, with predefined anchor points offering
crucial spatial angle and distance information, thus serving as
essential parameters for the model configuration. The
individual fragments from BRD4-C18 and BRD4-MS417 are
inputted, enabling the model to harness its acquired knowledge
from the training data set to produce novel linker molecules
with precision and ingenuity.
We employ a controlled fragment range during molecule

generation, affording the neural network the flexibility to craft
structures ranging from linear to ring-like architectures. To
ensure the production of viable drug leads, we systematically
refine these outputs through a postprocessing regimen
consisting of two filters. The first filter is designed to remove
redundancy and nonlinker configurations, ensuring that the
fragments effectively combine to form a unified compound via
the linker structure. The resulting subset of molecules from
this filter embodies uniqueness and novelty while falling short
of possessing the characteristics necessary for drug candidacy.
The second filter targets substructures incompatible with drug-
like molecules, thereby eliminating elements unsuitable for our
intended application. Upon the completion of these post-
process procedures, the network generates a final set of 220
and 224 molecules for C18 and MS417, respectively. The
generated molecules are novel and valid PROTACs structures
that possess the capability of being druggable and potential
leading targets.
Docking Process. We utilize CDOCKER as a docking and

validation tool to facilitate the evaluation of the generated
molecules in comparison with the established AT7 structure.

Figure 3. Schematic of the superimposition process of BRD4-ligand pairs. (A) The initial structure of BRD4 is labeled in green. We superimpose
the reference complex with a new BRD4-ligand pair. (B) The superimposition structure of BRD4-C18 is labeled in light blue and the C18 ligand
chemical formula is shown on the far right. (C) MS417 and its BRD4 structures are depicted as dark blue and superimposed with the reference
complex. The congruence shows a high structural similarity of the new and old POI-ligand pairs. Note that the protein backbone similarity is the
focus compared to the ligand congruent level.
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The redocking procedure of the compound within the binding
pockets of both BRD4 and VHL further solidifies the role of
CDOCKER as a benchmarking instrument for estimating the
quality of the generated molecules. To ensure accuracy, the
free energy of AT7 is constrained to enable the retrieval of the
nearest docking pose and binding affinity, as evidenced in the
7znt crystal structure. The cohorts of 220 and 224 molecules
generated through the deep neural network is evaluated.
Adhering to established protocols and congruent with
biological interactions, each molecule is allowed a maximum
of 10 binding poses to align with best practices in emulating
binding interactions within the binding pocket. We select an
RMSD threshold to ensure molecules exhibiting superior
values are selectively retained and attain potential drug-like
entities.
The outcome of the screening process is visually presented

in Figure 4A and B, where ligands from POI and E3 are
individually extracted and designated as input fragments. These
molecules are the final candidates to be further simulated by
FEP calculations. The atoms potentially to be the initial linking
positions are marked with an R* and are designated as anchors,

imparting spatial information vital to the network generation
process. The chemical composition of the generated molecules
is presented alongside the reference compound, AT7,
illustrated in Figure 2B, providing a comprehensive visual-
ization of the molecular attributes.

RMSD and BFE Calculations. Table 1 presents an overview
of the RMSD and ΔGBFE values to demonstrate the structural
and thermodynamic congruence between the reference and
generated molecules. Within the context of C18 molecule
generation, C18−02−0019 shows an RMSD of 1.20 Å,
surpassing its group in terms of structural congruence. An
evaluation of the MS417 molecules reflects that MS417−01−
0157 notably shows a better structural alignment of 0.69 Å,
outperforming both the MS417−01−0164 and MS417−01−
0019 molecules.
In the evaluation of ΔGBFE, C18−02−0019 shows a value of

−43.71, which is significantly better than that of the reference
molecule. A lower BFE indicates a more favorable binding
affinity, an attribute that reinforces the better chemical
properties of C18−02−0019. Meanwhile, within the MS417

Figure 4. Superimposition process replaces the protein backbone and its ligand on BRD4 while retaining the identical ligand on VHL. In A, the
MS417 PROTACs molecule without a linker structure is shown as the input fragments, and the potent initial atom for designing novel linker
molecules is denoted as R*. The input fragments of C18 are shown in part B with the individual ligands on POI and E3. The labeling method is
applied to the potential atom on both BRD4 and VHL ligands. The R* serves as the anchor to the deep neural network and provides spatial
information about the relative spatial position of the input fragments. The generated molecules of the C18 and MS417 groups are separately shown
in parts A and B, respectively. Note that these final candidate molecules were screened with RMSD, buried SASA, and BFE calculations.
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cohort, MS417−01−0164 stands out in BFE evaluation with
slightly better BFE than that of C18−02−0019.
In the SASAburied analysis, the C18 group shows a

consistently higher buried percentage than AT7. This suggests
a stronger binding affinity within the binding pocket compared
with the reference molecule. However, the MS417 group
shows a comparable or lower value than AT7.
Buried SASA Calculations. In order to establish the viability

of the buried SASA ratio as a substantive screening metric for
the assessment of the generated molecules, the interplay
between the RMSD and the buried SASA ratio is employed.
The study conducted by Mukherjee et al. underscores the
augmentation of SASA upon protein−protein binding and
consequently leads to an expansion in ligand buried extent.52

We infer an increase in the binding affinity and structural
congruence as a consequence of the binding process. We apply
the buried SASA ratio within both the C18 and MS417 groups
to collectively measure groups of the C18 and MS417
molecules. The relationship as depicted in Figure 5, aligning
with the established findings demonstrates a negative slope
between RMSD and the buried SASA ratio.
The relationship is further supported by the r-square value,

which serves as an indicator of the fitting quality. In particular,
the C18 group exhibits an enhanced r-square value to denote a
more uniformly distributed set of values, thus bolstering the
correlation. This alignment between the theoretical concepts
and computational simulations converges to support the robust
rationale underlying the adoption of the buried SASA ratio for
molecular screening. We further provide a detailed calculation
of the individual values in Table S4. These values include the

buried SASA ratio, SASAligand‑pocket, and SASAligand of the
reference AT7 structure and each final candidate molecule.
MD and FEP Simulations. We show the relative binding

free energy results from each simulation in Table 3. The
ternary complexes were subjected to 10 ns MD simulations
and calculation of the BFE. The ternary complex formed by
C18−02−0014 presents the lowest calculated values, suggest-
ing that this conformation has the most stable complexes
among the C18 group. In the MS417 group, MS417−01−0157
shows a better binding free energy in the group.
Figure 6 shows the POI-PROTACs-E3 ternary complexes of

reference AT7 compound and the final candidates of C18 and
MS417 groups before and after 10 ns MD simulation. The
ternary complexes can freely rotate and move during the
simulation to reach stable conformation within certain time
frames. The snapshots were taken at the beginning and final
time points of the simulations.
In Table 2, we demonstrate the substantial number of

nonbonded interactions and ΔRg to validate the stability of the
generated molecular structures. C18−02−0130 has the
greatest number of nonbonded interactions and the lowest
ΔRg value in the C-18 group. Both values are significantly
better than those of the reference AT7 molecule. In the MS417
group, MS417−01−0157 has a greater number of nonbonded
interactions, and MS417−01−0157 shows the lowest ΔRg.
Note that the number of nonbonded interactions and ΔRg
consistently show better molecular stability in both groups
except MS417−01−0019.
We show the FEP method to calculate the relative binding

affinity of the protein−ligand interaction. Table 3 shows that
the binding affinity exhibited by the final candidates in
comparison to the crystal structure is superior, except MS417−
01−0019. The relative binding energy appears particularly
pronounced within C18−02−0130 and MS417−01−0164 to
reflect the establishment of robust POI-PROTACs-E3 ternary
complexes of the generated molecules. Among the final
candidates, C18−02−0130 possesses the best relative binding
affinity with an average value of −1.91 kcal/mol. This result
supports the previous docking measurement and further
reflects the potency of adopting the state-of-the-art deep
neural networks for the systematic generation of novel drug-
like molecules.
Validation of Generalizability. In order to validate the

robustness and generalizability of the study, we chose the
ternary structure of the cellular inhibitor of apoptosis protein 1
(cIAP1) and Bruton’s Tyrosine Kinase (BTK) (PDB: 6w7o)

Table 1. Docking Performance of the Crystal Structure of
BRD4-AT7 and the Generated Molecules on BRD4-C18
and BRD4-MS417a

Linker molecules RMSD (Å) ΔGBFE (kcal/mol) SASAburied (%)

AT7 (reference) − −24.44 81.77
C18−02−0014 1.22 −37.60 84.75
C18−02−0019 1.20b −43.71 84.74
C18−02−0055 1.26 −35.77 84.08
C18−02−0130 1.23 −36.54 84.97
MS417−01−0019 0.76 −44.98 80.75
MS417−01−0157 0.69b −35.29 80.21
MS417−01−0164 0.74 −46.68 81.73

aWe individually calculate the RMSD, BFE, and SASAburied values on
each final candidate molecule. bThe lowest RMSD value of the group.

Figure 5. The relationship between RMSD and SASAburied. The linear fitting curve shows a negative slope. This finding coincides with Mukherjee et
al.’s finding that both SASA and protein−protein binding affinity increase to provide a high extent of structural similarity. The correlation slopes of
compound 18 and MS417 are shown in A and B, respectively.
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and repeated the above processes for measuring their chemical
properties generated from each step.53−55 There were three
molecules selected as the final candidates. Table S6 presents
the RMSD and ΔGBFE results, highlighting that all three novel
molecules exhibit a significantly higher BFE than the reference
molecule (TL7). Notably, the SASAburied values for all three
molecules are marginally lower than that of TL7, indicating
slight differences in the extent of burial ratio upon binding.
The comparable MD simulation trajectory analysis results are

detailed in Table S7, providing further insights into the
stability and conformational behavior of the novel molecules.
Additionally, the averaged MD and FEP simulation results are
also summarized in Table S8 to demonstrate that the newly
generated molecules possess comparable binding character-
istics. When benchmarked against the BRD4-linker-CRBN
ternary structure, all three novel molecules exhibit reasonable
binding energy, suggesting that they maintain effective

Figure 6. Spatial conformation movement of the reference AT7 compound and the final candidates of C18 and MS417 groups before and after 10
ns MD simulation. BRD4 and VHL are labeled in red and blue, respectively, and the generated PROTACs are labeled in yellow. The reference
conformations of AT7 are shown in A. The generated novel PROTACs of C18 and MS417 conformations are shown in B and C, respectively.

Table 2. MD Simulation Trajectory Analysis for the Number
of Interactions and ΔRg of AT7 and the Generated
Molecules on BRD4-C18 and BRD4-MS417

Compound name Number of nonbonded interactions ΔRg (Å)

AT7 (reference) 28.68 ± 3.67 0.88 ± 0.26
C18−02−0014 35.18 ± 3.76 0.62 ± 0.39
C18−02−0019 32.07 ± 4.76 0.55 ± 0.27
C18−02−0055 33.03 ± 3.63 0.83 ± 0.41
C18−02−0130 36.73 ± 3.75 0.13 ± 0.29
MS417−01−0019 26.53 ± 4.59 1.06 ± 0.40
MS417−01−0157 38.95 ± 4.87 0.88 ± 0.56
MS417−01−0164 30.75 ± 3.72 0.46 ± 0.34

Table 3. Averaged MD and FEP Simulation Results between
AT7 and the Generated Moleculesa

Compound name
MD (ΔGbinding
(kcal/mol))

FEP (ΔΔGbinding
(kcal/mol))

C18−02−0014 −69.83 ± 7.09 −0.40 ± 3.96
C18−02−0019 −58.03 ± 6.91 −0.86 ± 2.31
C18−02−0055 −69.03 ± 7.39 −0.90 ± 1.07
C18−02−0130 −63.24 ± 7.18 −1.91 ± 1.51
MS417−01−0019 −47.67 ± 6.94 0.14 ± 0.61
MS417−01−0157 −63.14 ± 13.25 −1.41 ± 1.78
MS417−01−0164 −59.89 ± 8.78 −1.50 ± 2.56
aWe evaluated the FEP experiment in triplicate independent runs and
retrieved the average and error range.
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interactions within the binding pocket. This indicates that the
new molecules could potentially serve as viable alternatives or
enhancements to TL7 in the context of this biochemical
framework. Figure 7 shows the ternary structure movement at
the 10 ns MD simulation. The complexes were allowed to
move freely during the simulation to achieve the most stable
conformation and reach the minimum energy state. The
snapshots were taken at the starting and ending time points.
The validation results substantially support our proposed
workflow and demonstrate the generalizability of the process.

■ DISCUSSION
This work shows that the integration of superimposition
techniques and deep neural networks in PROTACs drug
design offers multifaceted benefits that significantly advance
the field of AI-driven drug design. The utilization of
superimposition provides a crucial bridge between the available
crystallographic structures and the broader design space. By
enabling the replacement of the initial POI and its linker with
new protein−ligand pairs that share the same binding pocket,
superimposition bypasses the limitations posed by a sparsity of
crystallographic data for the specific POI-PROTACs-E3
ternary complex. This is especially relevant in the realm of
PROTACs, where the intricate nature of these molecules often
poses challenges in elucidating their precise binding modes due
to their dynamic and adaptable nature.
The deep neural network further introduces a layer of

complexity into the drug design process. By leveraging
advanced graph learning, the neural network excels in
capturing intricate spatial and structural relationships inherent
in ligands and proteins. The ability to generate novel
PROTACs linker molecules based on learned patterns from
the training data set reinforces the potential of adopting a
state-of-the-art deep neural network as a powerful tool for
molecular design. During the process, we demonstrate a careful
selection of fragments on each side of the ligands, employing
predefined anchors to impart spatial angle and distance
information. The generated molecules are substantially
screened by a postprocessing step to ensure their viability.
The resultant molecules exhibit success rates comparable to

those of other advanced machine learning methods, affirming
the effectiveness of our approach.
The utility of chemical property screening using RMSD,

BFE, and buried SASA simulations is particularly significant to
retaining the potent novel molecules to become druggable.
The RMSD values provide a quantitative assessment of the
structural similarity between the generated molecules and the
reference compounds. A lower RMSD indicates higher
congruence between the two structures. The BFE calculation
provides insight into whether the molecule has a stronger
affinity to the protein and the capability to bridge the protein−
protein interaction. The results show that the final candidates
consistently exhibit stronger binding affinity. Additionally, the
SASA parameter offers insights into the extent of surface burial
upon protein−ligand interaction, serving as a relevant metric
for molecular screening. Our study establishes a discernible
relationship between the RMSD, BFE, and buried SASA ratio,
providing a robust rationale for employing the potent
screening criterion. Furthermore, MD and FEP simulations
exemplify the true essence of molecular interactions, offering a
comprehensive view of the binding affinity between POI-
PROTACs-E3. The simulation of calculating the relative
binding affinity interactions demonstrates the predictive
power of our approach. The better relative binding affinity
observed in certain molecules, including C18−02−0055,
C18−02−0130, and MS417−01−0164 underlines their
suitability for drug-like applications. These findings substan-
tiate the potency of the integrated approach, wherein the
neural network generates molecules that exhibit superior
chemical properties and binding affinities in validating the
viability of the generated PROTACs linker molecules.
The limitation of the study pertains to the quality and

availability of crystallographic structures for the initial and new
protein−ligand pairs. The assumption that the binding pockets
of the new proteins and ligands are identical with those of the
initial complex may not hold in all cases. In some cases, the
binding pocket conformations are subject to inherent
variability influenced by factors such as protein flexibility, the
solvent environment, and even ligand-induced conformational
changes. These dynamic aspects introduce a layer of

Figure 7. Trajectory movement of the validated ternary structure acquired from the 10 ns MD simulation. The pink and orange conformations are
BTK and cIAP1, respectively. The green structures are the novel linker molecules generated by the deep neural network. A is the reference structure
of TL7, and B−D are the structures of the generated novel PROTACs.
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complexity that can potentially compromise the applicability of
the superimposition process. Variations in the binding pocket
conformation and side chain orientations could lead to
inaccuracies in the superimposition process, potentially
affecting the subsequent analysis and interpretation of
screening results. The other limitation is the time scale of
the simulations, which may not fully capture the complex
dynamics of the system. Classical MD simulations of
nanosecond scale, as utilized in this study, may not provide a
sufficient potential energy surface to represent the system
behavior and various structural-dynamic properties. Recent
studies may incorporate a few millisecond time frames for
sufficient time to allow for molecular dynamics. Incorporating
accelerated sampling approaches such as replica exchange or
metadynamics could enhance the coverage of conformational
space and provide a more comprehensive understanding of the
system’s dynamics and interactions.

■ CONCLUSION
This study demonstrates a first-in-class integration of super-
imposition techniques and deep neural networks that holds
significant promise in advancing PROTACs drug design. This
innovative approach offers a systematic and efficient means of
generating novel molecules by harnessing the capabilities of
deep learning, while ensuring structural congruence through
superimposition. The successful alignment of initial and new
protein−ligand pairs enables comprehensive screening using
metrics such as the RMSD, BFE, and buried SASA simulations.
In the future, the convergence of cutting-edge deep learning

methodologies and structural biology tools holds the potential
to reshape the landscape of drug discovery. Further refinement
of the integrated approach could be beneficial in the design of
PROTACs molecules and other therapeutics. By harnessing
the strengths of deep learning and structural alignment
simulations, this approach offers a promising avenue for
accelerating drug development, optimizing lead compounds,
and ultimately contributing to the advancement of precision
medicine.
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