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Introduction
A broad array of variant callers and computational pipelines 
serving a diverse range of research requirements has been 
developed to identify somatic mutations from DNA sequenc-
ing data. Each method comes with its own set of performance 
characteristics.1 Despite differences in calling algorithms and 
applications, most use tumour and normal next-generation 
sequencing (NGS) data, aligned to a reference as input and 
output detailed tumour-specific single nucleotide variants 
and indel records in variant call format (VCF).2 One of the 
most popular callers in clinical oncology,3 Mutect2,4 has been 
shown to perform well in terms of overall balanced accuracy.1 
It employs a series of filters to flag likely false-positive vari-
ants, resulting from biases, artefacts, or failure to meet confi-
dence thresholds.

The frequency spectrum of mutations is often of particular 
interest. Somatic mutations with relatively high frequency 
(>0.25, accounting for ploidy and sample purity)5 are often 
clonal (i.e. they occur in every cancer cell) and some of these 
may be cancer driver mutations and therefore of particular 
interest for precision oncology. The somatic mutation spec-
trum can also provide information about the evolutionary 

dynamics of the tumour.5,6 In the case of blood cancers, variant 
frequencies are used for risk stratification and prognosis for a 
number of myeloid malignancies.7,8 High throughput sequenc-
ing can be used as an alternative to polymerase chain reaction 
(PCR)-based clinical analysis of mutant allele burden,9 with 
the advantage that it has the potential to provide an accurate 
estimate of the mutant frequency and can detect clinically rel-
evant mutations that are not targeted a priori. Moreover, 
mutational signatures that can be recovered from high 
throughput sequencing data have been associated with distinct 
clinical outcomes and are emerging as potential biomarkers 
for novel targeted therapies.10

There are significant technical challenges that inhibit the 
application of next-generation sequencing in cancer treat-
ment, including the lack of user-friendly tools and data anal-
ysis pipelines.11 The data derived from cancer sequencing is 
complex, making it difficult to extract information on rele-
vant variants. Candidate variants flagged by the caller as hav-
ing failed quality filters are routinely removed from analysis; 
however, they have the potential to highlight sources of tech-
nical artefacts. These variants may also contain false negatives 
that are of clinical or research interest. Command-line based, 
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hard-filtering approaches such as VCFtools,2 GATK 
VariantFiltration,12 and SnpSift13 use variant attribute values 
combined with logical operators to further subset a VCF file. 
Such tools are complex to configure and lack a means to 
review the impact of analytical choices involved when subset-
ting the data. This significantly limits the scope and pace of 
exploratory analysis of VCF data.

We developed vcfView as an interactive graphical tool to 
support filtering of putative somatic variants. vcfView displays 
the allele frequency spectrum as well as mutation patterns and 
signatures inferred from all putative mutations so that the user 
can assess the impact of different filtering choices on the vari-
ants discovered. All displays are updated dynamically as the 
user adjusts the filters that are applied to the data. Users can 
also display somatic mutations on a gene of interest, gaining 
insights about which mutations are lost from the gene as differ-
ent filters are applied. To demonstrate its utility, we use vcfView 
to isolate putative tumour-in-normal (TiN) variants in acute 
myeloid leukaemia (AML) samples from The Cancer Genome 
Atlas (TCGA). These variants, which were removed from 
analysis in TCGA, were significant enrichment for known 
AML driver mutations.

Features
vcfView enables users to analyse mutations that fall within a 
region of the mutation frequency spectrum and that pass or fail 
user-specified quality filters. Analyses available by default 
include mutation patterns, mutational signatures and the func-
tional effects of the mutations on proteins of interest. The user 
can explore how these change in different regions of the fre-
quency spectrum or when different filters or other user 

configurable thresholds are applied. The interface features a 
variant allele frequency (VAF) density plot within which a 
region of interest may be selected for further filtering or analy-
sis. The results are displayed inset within the top corner of the 
density plot. An additional feature allows for a summary file 
created from a number of individual VCF files to be analysed 
to identify patterns that may exist across a collection of sam-
ples. High-resolution publication standard plots and a filtered 
copy of the original VCF file may be saved at any stage.

Density plot, thresholds, and f ilters

The central window of the vcfView user interface is the VAF 
Density plot (Figure 1) that displays the frequency spectrum of 
somatic mutations. To the right, a series of checkboxes present 
the researcher with the available quality filters, which are parsed 
directly from the input file, as well as user configurable thresh-
olds for calling somatic mutations. These provide a means to 
threshold on the evidence for a somatic mutation at a site. 
Variants that pass all these filters are displayed in the VAF den-
sity plot. The colour in the plot indicates the median sequencing 
depth of variants in the VAF bin shown on the x-axis. All plot 
data are updated when the user modifies any filter or threshold 
settings. The density plot also includes interactive click and 
drag functionality, enabling the researcher to extract a region of 
interest from the allelic spectrum for further analysis.

Inset plots

Variants that are included within the selected frequency range 
can be visualized in several alternative inset plots on the main 

Figure 1. vcfView user interface. Display shows the VAF Density plot with signatures inset plot active, filter panel to the right and inset function selection 

below.
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VAF display (Figure 2). The required inset function is speci-
fied using the radio button list below the density plot. The 
inset plot is triggered when one of these buttons is activated 
and redrawn when a region of the allelic spectrum is selected 
(either with the mouse or by updating the relevant numeric 
inputs on the user interface) or when filter/threshold settings 
are updated. vcfView is configured with four inset plots by 
default, displaying mutation signatures, mutation processes, 
functional impacts of variants on a selected protein, and can-
didate filters. The architecture is extensible allowing integra-
tion of third-party or custom algorithms to produce alternative 
inset plots. The signatures inset plot displays the estimated 
contribution of each of the Catalogue of Somatic Mutations 
in Cancer (COSMIC)14 reference signatures to the selected 
mutations. The mutation processes plot shows a bar plot of 
the fraction of the mutations in each of the 96 trinucleotide 
contexts.14 The protein function inset plot is a lollipop dia-
gram indicating the functional impacts of mutations in the 
selected frequency range on the specified gene. The drop-
down list from which this gene is chosen is updated dynami-
cally so that only genes with a protein impacting variant in 
the selected frequency range are displayed. Finally, the candi-
date filters function shows the number of variants that have 
failed each variant caller filter within the selected range.

Package vignette

The package vignette demonstrates the functionality of 
vcfView using publicly available data from The Texas Cancer 
Research Biobank (TCRB). It is composed of three main sec-
tions. It first demonstrates exploratory analysis of a single 
VCF file from the data set. Mutational processes and signa-
tures within a somatic allele frequency window are identified. 
Candidate variants within that region are subsetted according 
to various thresholds and filter settings, and the impact of 
selected variants on proteins of interest is visualized. This ena-
bles the evidence for the presence of potential driver variants 
to be assessed.

The vignette also describes how to generate a summary of 
all VCF files within a data set to identify patterns that may 
exist across that cohort. A summary file is loaded into vcfView 
and analysed in the same way as an individual VCF file. It may 
be used, for example, to identify mutational signatures or pro-
cesses across a data set from patients with the same cancer type 
or who have undergone the same therapy. It can help to deter-
mine if variants are impacting a putative driver gene across 
multiple patients. A subset of candidate variants that have 
failed specific filters may be re-examined in an attempt to 
recover information previously excluded from analysis. In the 
vignette, a summary file is created and used to check for the 
existence of putative tumour-in-normal variants within the 
TCRB data set that may have resulted in failure to call some 
cancer somatic variants.

Finally, the vignette shows how to integrate other packages 
into vcfView to produce additional inset plots. It provides a 
simple wrapper example that integrates a third-party algorithm 
with vcfView’s extensible function set. This enables the 
researcher to use that library within the inset window of 
vcfView and take advantage of its preprocessing capabilities.

vcf View Architecture
Interactive visualization is implemented in R15 with Shiny.16 
All data processing is performed within the R environment to 
facilitate platform independence. It leverages several 
Bioconductor packages17–21 to functionally annotate VCF-
formatted data and drive exploratory visualizations within a 
user-selectable allele frequency window.

VCF-based record details together with amino acid and tri-
nucleotide context annotation is maintained in two internal 
data structures for ease of manipulation and subsetting. An 
index into the original VCF object is used to save a subsetted 
version of the VCF as required. Functional annotation of pro-
tein impact (enumerated as frameshift, nonsense, nonsynony-
mous, or synonymous) provided by the UCSC transcript 
annotation library19 is displayed by the protein inset function 
using ggplot22 and labelled using ggrepel.23

Figure 2. vcfView inset analysis function plots showing (A) protein analysis plot, (B) mutational signatures, (C) trinucleotide contexts, and (D) candidate 

filters plot.
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Single base substitution (SBS) trinucleotide sequence con-
text annotation for inset function signatures and mutational 
processes is provided by the Bsgenome annotation library.18 In 
the signatures inset function, a summary of this annotation is 
used in conjunction with the lsqnonneg method (from pracma 
library)24 to create the optimal combination of COSMIC v3 
SBS signatures required to reconstruct the variant subset. This 
returns a non-negative linear least-squares fit of the 65 
COSMIC mutational signatures (version 3). Processing is 
similar to that used in the MutationalPatterns25 library but 
streamlined to reduce demands on system memory. All plots 
are rendered using the ggplot22 library.

Visualization of Putative Tumour in Normal Variants 
in Leukaemia Samples With vcf View
To demonstrate the utility of vcfView, we used it to re-exam-
ine TCGA AML data to determine whether potentially rel-
evant prognostic or diagnostic information could be recovered 
from candidate variants that have previously been excluded 
from analysis. Mutect2 filters potential false positives result-
ing from germline variants by scoring the confidence that a 
mutation is present in the tumour sample and absent from 
matched normal, typically a skin sample in the case of blood 
cancers. This could result in the failure to detect true somatic 
variants in the cancer if the same mutation is found in a sub-
set of the cells in the skin sample or if the skin sample includes 
a proportion of cancer cells or cell-free DNA. Many cancer 
driver mutations have been found to be relatively common in 
normal skin cells.26 Moreover, 3% to 5% of all nucleated cells 
in the epidermis are myeloid derived.27 Therefore, it is possi-
ble that some of the driver mutations that are critical for gain-
ing an insight into the cancer may also occur, albeit potentially 
at a lower level, in the skin sample. The use of skin as a nor-
mal sample for the identification of somatic mutations in leu-
kaemia cells risks removing these variants from analysis. 
Mutect2 filters variants that are identified in a panel of nor-
mal samples to reduce the effects of recurrent sequencing 
artefacts and common genetic variation. This variant blacklist 
is usually derived from blood samples; however, a substantial 
proportion of blood samples may be affected by clonal haema-
topoiesis and contain somatic mutations that are relevant for 
blood cancers.28 Here, we used vcfView to re-examine data 
from TCGA LAML samples for evidence of somatic variant 
exclusion due to the presence in the matched normal sample 
or in the panel of normals. We refer to these variants as puta-
tive tumour-in-normal (pTiN).

Exploratory analysis with vcfView highlighted a significant 
number of candidate variants that had been removed solely 
because they failed the allele in normal filter despite being pre-
sent in extremely low amounts in the normal sample relative to 
the tumour. Further inspection with the protein inset function 
revealed a large number of these were in known AML drivers. 
We tested for enrichment of pTiN variants among known 
AML driver genes and isolated a significant number of pTiN 

AML driver variants previously excluded from analysis in 
TCGA LAML.

Methods
We downloaded the protected mutation annotation format 
(MAF) file containing variants previously identified in the 
TCGA LAML data set of 149 AML patient samples from the 
NCI’s Genomic Data Commons (GDC, https://portal.gdc.
cancer.gov/files/66124158-7feb-4b8e-8fc4-393a5e641fea). 
We retrieved all protein-truncating variants that had failed the 
allele in normal and/or panel of normal Mutect2 filters for 
which the VAF was greater than 0.1 and at least 10 times the 
frequency of the variant in the normal samples. We further 
restricted to variants at loci with a read depth of at least 20 in 
both the tumour and normal samples and that were not found 
in dbSNP.

We next obtained a list of canonical transcript lengths for all 
protein coding genes in the exome from Ensembl. Further 
annotation was added to each gene in this list identifying it as 
AML driver or non-AML driver (as indicated by IntOGen)29 
and recording the number of pTiN variants contained per base 
of coding sequence. We performed Fisher’s exact test for 
enrichment of known AML drivers among genes containing 
pTiN variants. To account for coding sequence length, we also 
compared the number of pTiN variants per base between 
AML driver genes and non-AML drivers using the Wilcoxon 
rank sum test.

Results
A total of 3549 protein-truncating variants were flagged as 
occurring in the normal sample or panel of normals and were, 
therefore, not called as cancer somatic variants. Of these, 129 
met  all of the criteria we used for identifying pTiN variants 
(Table 1: see Methods for details). Among these pTiN variants, 
16 occurred in AML driver genes obtained from IntOGen29 
(Figure 3A). One additional variant, RUNX11, not listed as a 
driver in IntOGen, was reported to be relevant to AML30 and 
is included in Figure 3A.

AML driver genes were significantly enriched among the 
set of genes affected by these 129 pTiN variants (P = 3 × 10−11, 
Fisher’s Exact Test). This difference was also highly statisti-
cally significant when we compared the number of pTiN 
variants per base pair between AML driver genes and other 
genes to account for differences in length between genes in 
the two groups (P = 1 × 10−53, Wilcoxon rank-sum test). In 
all, variants in 9 genes of prognostic or diagnostic value were 
identified in 15 patients (Table 1). Thus, 10% of TCGA 
LAML patients had potential clinically actionable variants 
overlooked due to pTiN. For example, two patients had 
pTiN variants in NPM1 (Figure 3B). This would be of 
potential prognostic value for these patients, as mutations in 
NPM1, which occur in approximately 30% of patients with 
AML, are associated with favourable response to standard 
intensive chemotherapy.35

https://portal.gdc.cancer.gov/files/66124158-7feb-4b8e-8fc4-393a5e641fea
https://portal.gdc.cancer.gov/files/66124158-7feb-4b8e-8fc4-393a5e641fea
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Limitations
This tool is intended for use with matched cancer/normal VCF 
files only (not for germline VCFs). Although it has been used 
with VCFs generated by other callers, it is recommended for 
use with Mutect2 VCFs. It uses the Mutect2-specific ‘TLOD’ 
subfield to select within records that contain multiple possible 

alternative alleles. As other callers do not provide this value in 
their VCFs non-Mutect2 records containing multiple possible 
alternative alleles are currently discarded by vcfView. We intend 
to add an option in a future release allowing the user to specify 
the field and condition used to calculate the index required to 
select among multiple possible alternative alleles when using 
vcfView with VCFs generated by callers other than Mutect2. 
vcfView has been tested with tumour exome data from 
MuTect2 GATK3 and Mutect2 GATK4 VCF files.4 We can-
not guarantee it will work with all future versions of GATK 
without requiring modification. Mitochondrial DNA variants 
are currently excluded. We intend to add an option for their 
inclusion in a future release.
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