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Background. Delayed rectifier K+-channel, Kv1.3, is most predominantly expressed in T-lymphocytes and macrophages. In such
leukocytes, Kv1.3-channels play pivotal roles in the activation and proliferation of cells, promoting cellular immunity. Since
leukocyte-derived cytokines stimulate fibroblasts to produce collagen fibers in inflamed kidneys, Kv1.3-channels expressed in
leukocytes would contribute to the progression of tubulointerstitial renal fibrosis. Methods. Male Sprague-Dawley rats that
underwent unilateral ureteral obstruction (UUO) were used at 1, 2, or 3 weeks after the operation. We examined the histological
features of the kidneys and the leukocyte expression of Kv1.3-channels. We also examined the therapeutic effects of a selective
channel inhibitor, margatoxin, on the progression of renal fibrosis and the proliferation of leukocytes within the cortical
interstitium. Results. In rat kidneys with UUO, progression of renal fibrosis and the infiltration of leukocytes became most
prominent at 3 weeks after the operation, when Kv1.3-channels were overexpressed in proliferating leukocytes. In the cortical
interstitium of margatoxin-treated UUO rat kidneys, immunohistochemistry revealed reduced expression of fibrosis markers.
Additionally, margatoxin significantly decreased the numbers of leukocytes and suppressed their proliferation. Conclusions. ,is
study clearly demonstrated that the numbers of T-lymphocytes and macrophages were markedly increased in UUO rat kidneys
with longer postobstructive days. ,e overexpression of Kv1.3-channels in leukocytes was thought to be responsible for the
proliferation of these cells and the progression of renal fibrosis. ,is study strongly suggested the therapeutic usefulness of
targeting lymphocyte Kv1.3-channels in the treatment of renal fibrosis.

1. Introduction

Chronic tubulointerstitial nephritis (TIN) is an entity of
renal disease characterized by a progressive scarring of
tubulointerstitium [1], sometimes deteriorating into end-
stage renal disease [2, 3]. ,e lesion includes tubular atro-
phy, leukocyte infiltration, and interstitial fibrosis. In ad-
dition to drugs and toxins, such as analgesics, antibiotics,
Chinese herbs, and heavy metals [4–6], chronic ureteral
obstruction and repetitive infection are also the leading
causes of chronic TIN, especially in infants [7, 8]. To re-
produce the lesion characteristic to renal fibrosis, the animal

model of unilateral ureteral obstruction (UUO) was de-
veloped in 1970s, which primarily represented the pathology
of obstructive nephropathy [9]. In rodent models of UUO,
leukocytes, such as lymphocytes, macrophages, neutrophils,
and mast cells, are known to infiltrate into the renal
interstitium [9–11]. Among them, many studies have fo-
cused on the involvement of mast cells in the development of
renal fibrosis [12–14], in whichmast cells were demonstrated
to produce fibroblast-activating factors in addition to
chemical mediators [15, 16]. However, we know little about
the pathological roles of T-lymphocytes or macrophages in
the progression of renal fibrosis, despite their predominance
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in the renal interstitium [9–11]. ,ese leukocytes principally
express delayed rectifier K+-channels (Kv1.3) in their plasma
membranes, and the channels play critical roles in the ac-
tivation and proliferation of the cells [17, 18]. Since the
cytokines produced by the inflammatory leukocytes directly
stimulate the collagen synthesis from interstitial fibroblasts
[19], the channels expressed in the leukocytes would con-
tribute to the progression of renal fibrosis in UUO. To clarify
this, using a rat model of UUO, we examined the Kv1.3-
channel expression in the kidneys and the therapeutic effects
of a selective channel inhibitor, margatoxin, on the pro-
gression of renal fibrosis and the proliferation/activation of
leukocytes there. Here, we clearly show that the numbers of
T-lymphocytes and macrophages were markedly increased
in UUO rat kidneys at 3 weeks after the operation. We also
show that the overexpression of Kv1.3-channels in leuko-
cytes was responsible for the proliferation of these cells and
the progression of renal fibrosis.,is study strongly suggests
the therapeutic usefulness of targeting lymphocyte Kv1.3-
channels in the treatment of renal fibrosis.

2. Materials and Methods

2.1. Animal Preparation and UUO Induction. Male Sprague-
Dawley rats weighing 150–180 g (Japan SLC Inc., Shizuoka,
Japan) underwent unilateral ureteral ligation, as described in
previous studies [9–11]. Briefly, after the rats were deeply
anesthetized with isoflurane, the left ureter was exposed
through a lateral flank incision. ,en the ureter was ligated
with 3-0 silk at two points under sterile conditions. During
the subsequent 1 to 3 weeks, rats had free access to standard
rat chow and water ad libitum and were maintained in a
humidity- and temperature-controlled room on a 12-hour
light-dark cycle. One, two, or three weeks after the opera-
tion, the rats were deeply anesthetized and then killed by
cervical dislocation. ,e left kidneys were removed for
histological examination and RNA extraction. ,e contra-
lateral kidneys at 3 weeks after the operation were used as
controls. Trunk blood was withdrawn for the measurements
of serum creatinine and urea nitrogen levels. All experi-
mental protocols described in the present study were ap-
proved by the Ethics Review Committee for Animal
Experimentation of Tohoku University.

2.2. Margatoxin Treatment. For the treatment with Kv1.3-
channel inhibitor, margatoxin (Peptide Institute, Osaka, Ja-
pan) was dissolved in normal saline to prepare a concentration
of 200nM. After inducing unilateral ureteral obstruction, the
rats were intraperitoneally injected with 200nM/ml marga-
toxin daily for 3 weeks (margatoxin-treated group). In our
previous study, using rat models with advanced chronic renal
failure (CRF), 100nM/ml margatoxin actually ameliorated the
progression of renal fibrosis without causing any adverse
events [20]. In our preliminary study, since 100nM marga-
toxin did not ameliorate the progression of renal fibrosis in
UUO rat kidneys, we selected higher dose in the present study.
At the end of the observation period, the left kidneys were
removed for histological examination and RNA extraction.

2.3. Histological Analyses. Renal cross sections were fixed in
4% paraformaldehyde, embedded in paraffin, and depar-
affinized in xylene, and then 3 μm sections were stained with
hematoxylin-eosin (H&E) and Masson’s trichrome. For fi-
brosis analysis, Masson’s trichrome deposition, expressed as
percentages of Masson’s trichrome-positive areas relative to
the total area, was quantified in each field and averaged, as
described in our previous studies [16, 21–23].

2.4. Immunohistochemistry. ,e 3 μm paraffin sections of
4% paraformaldehyde-fixed kidneys were placed in citrate-
buffered solution (pH 6.0) and then boiled for 30min for
antigen retrieval. Endogenous peroxidase was blocked with
3% hydrogen peroxide, and nonspecific binding was blocked
with 10% BSA. Primary antibodies were as follows: Mouse
anti-collagen type III (1 :100; Abnova, Taipei City, Taiwan),
anti-α-smooth muscle actin (α-SMA) (1 :100;,ermo Fisher
Scientific, Cheshire, UK), anti-CD3 (1 : 50; ,ermo Fisher
Scientific), anti-ED-1 (1 : 50; AbD Serotec, Oxfordshire, UK),
anti-myeloperoxidase (MPO; 1 :100; Novus Biologicals,
Littleton, CO, USA), rabbit anti-Ki-67 (1 :100; Lab Vision
Co., Fremont, CA, USA), and anti-Kv1.3 (1 :100; Bioss Inc.,
Woburn, MA, USA). Diaminobenzidine substrate (Sigma
Chemical Co., St. Louis, MO, USA) was used for the color
reaction. At the end of the staining, the sections were
counterstained with hematoxylin. ,e secondary antibody
alone was consistently negative on all sections. Toluidine
blue staining was performed by immersion of the sections in
0.1% toluidine blue (Muto Pure Chemical Co., Tokyo, Japan)
for 30min at room temperature. Mast cells were identified
by their characteristic metachromasia. For quantitative
analysis, the numbers of CD3-, ED-1-, toluidine blue-,
MPO-, Ki-67-, and α-SMA-positive cells were counted in
high-power fields of the cortical interstitium as described in
our previous studies [16, 21–23].

2.5. Real-Time RT-PCR. Total RNAs from freshly isolated
renal cortex were extracted using the RNeasy mini kit
(Qiagen, Hilden, Germany). First-stand cDNA was syn-
thesized from 2 μg of total RNA of each tissue in 20 μl of
reaction mixture using the SuperScript VILO first-strand
synthesis kit (Invitrogen, Carlsbad, CA, USA). ,e quan-
titative RT-PCR was carried out using the Applied Bio-
systems 7500 Real-Time PCR System (Life Technologies Inc,
Gaithersburg, MD, USA) with SYBR Premix Ex Taq II
(Takara Bio, Kyoto, Japan). ,e sequences of the primers
used were as follows: KCNA3, forward 5′-GCTCTCC
CGCCATTCTAAG-3′, reverse 5′-TCGTCTGCCTCAG-
CAAAGT-3′; GAPDH, forward 5′-GGCACAGTCAAGG
CTGAGAATG-3′, reverse 5′-ATGGTGGTGAAGACGCC
AGTA-3′. ,e quantity of RNA samples was normalized by
the expression level of GAPDH.

2.6. Other Measurements and Statistical Analyses. Serum
electrolytes, creatinine, and blood urea nitrogen levels were
measured using a chemical autoanalyzer (DRI-CHEM
3500V; Fuji, Tokyo, Japan). Data were analyzed using
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Microsoft Excel (Microsoft Co., Redmond, WA, USA) and
reported as means± SEM. Statistical significance was
assessed by two-way ANOVA followed by Dunnett’s or
Student’s t-test. A value of P< 0.05 was considered
significant.

3. Results

3.1. Progression of Renal Fibrosis and Leukocyte Proliferation
in UUO Rat Kidneys. Serum creatinine and blood urea ni-
trogen levels in rats 3 weeks after UUOwere compatible with
those in normal rats (serum creatinine, 0.43± 0.06mg/dl;
blood urea nitrogen, 17.7± 0.60mg/dl; n� 4), indicating that
renal function was well preserved in UUO rats. However, in
these rat kidneys, Masson’s trichrome staining and the
immunohistochemistry for collagen III, a marker of fibrosis,
demonstrated a wide range of staining in the cortical
interstitium (Figure 1(a) (A versus B–D), (E versus F–H)),
which expanded progressively with the increasing number of
postobstructive days. Immunohistochemistry for α-SMA, a
marker of myofibroblasts, also demonstrated increasing
numbers of positively stained cells within the interstitium
(Figure 1(a) (I versus J–L)). ,ese results indicated the
progression of renal fibrosis in rat kidneys with UUO, which
confirmed the propriety of our rat model [9–11]. In the
present study, we did not perform urine examination, since
the unobstructed contralateral kidneys in UUO models
usually offset the loss of renal function [24]. Additionally,
previous studies indicated the lack of proteinuria in UUO
models because the injured kidneys were completely
obstructed and had no urine output [10]. However, by di-
rectly collecting the urine from the injured kidneys, recent
studies have revealed the presence of several urinary proteins
in UUO rat models, which may serve as candidate bio-
markers of renal tubular injury and interstitial fibrosis [9].

In UUO rat kidneys, in addition to the progressive tu-
bular dilatation and atrophy (Figure 1(b) (A versus B–D)),
there were an increasing number of small round cells in the
cortical interstitium, suggesting the increase in the in-
flammatory leukocytes. Since these small round cells were
positive for Ki-67, a marker for cellular proliferation
(Figure 1(b) (E–H)), these leukocytes were considered to
proliferate in situ within the cortical interstitium.

3.2. T-Lymphocytes and Macrophages Are Prominently In-
creased in UUO Rat Kidneys. Previously, in our rat models
with advanced CRF, the increased numbers of T-lympho-
cytes or macrophages in the cortical interstitium primarily
contributed to the progression of renal fibrosis, since the
cytokines produced by the leukocytes stimulated the fi-
broblasts’ activity to produce collagen [20, 22].,erefore, we
examined the distribution of these leukocytes within the
interstitium of the UUO rat kidneys (Figures 2(a) and 2(b)).
One or two weeks after the induction of UUO, immuno-
histochemistry demonstrated the infiltration of some CD3
or ED-1-positive cells within the interstitium (Figures 2(a)
(A versus B, C) and 2(b) (A versus B, C)). ,en by 3 weeks,
most of the interstitial leukocytes were positive for either

CD3 or ED-1 (Figures 2(a) (D) and 2(b) (D)), indicating that
the increased leukocytes were mainly T-lymphocytes or
macrophages. In contrast to these leukocytes, there were
only a few toluidine blue-positive mast cells in the renal
subcapsular interstitial space (Figure 2(c), arrow heads),
which did not increase despite the increasing numbers of
postobstructive days (Figure 2(c) (A versus B–D)). Immu-
nohistochemistry for myeloperoxidase demonstrated the
presence of only a few positive cells through the observation
period (Figure 2(d), arrow heads), indicating few infiltration
of neutrophils. Figure 2(e) depicts the postobstructive
changes in the numbers of CD3-, ED-1-, toluidine blue-, and
myeloperoxidase-positive cells, which were counted in high-
power views of the cortical interstitium. ,e differences
between the numbers of T-lymphocytes or macrophages and
those of mast cells or neutrophils became most prominent at
3 weeks after UUO (Figure 2(e)).

3.3. Leukocytes Overexpressed Kv1.3-Channels in UUO Rat
Kidneys. In addition to megakaryocytes or platelets [25, 26],
leukocyte, such as T-lymphocytes, or macrophages, pre-
dominantly express Kv1.3-channels in their plasma mem-
branes [27]. ,ese channels play pivotal roles in cellular
immunity by facilitating calcium influx required for cellular
proliferation and activation [18].,erefore, we examined the
leukocyte expression of Kv1.3-channels in UUO rat kidneys
(Figure 3). By 2 weeks after UUO, the expression of Kv1.3
mRNA, KCNA3, was significantly increased in the cortex
isolated from the rat kidneys (Figure 3(a)). By 3 weeks after
UUO, the expression was dramatically increased, which
showed similar patterns to the time-dependent progression
of renal fibrosis (Figure 1(a)) and the proliferation of leu-
kocytes (Figures 1(b) and 2). In control rat kidneys, as we
previously demonstrated [20], immunohistochemistry for
Kv1.3 showed weak staining in the cytoplasm of normal
proximal tubular cells (Figure 3(b) A). However, at 3 weeks
after UUO, Kv1.3 became overexpressed within the cyto-
plasm of proliferating leukocytes in the cortical interstitium
(Figure 3(b) B).

3.4.6erapeutic Effects of a Selective Kv1.3-Channel Inhibitor
in UUO Rat Kidneys. In our previous patch-clamp studies,
margatoxin, a highly selective Kv1.3-channel inhibitor, al-
most totally suppressed the channel currents in lymphocytes
[28, 29]. In both in vitro and in vivo studies, this drug was
actually demonstrated to repress the proliferation
of lymphocytes and their cytokine production [20, 30]. In
the present study, to obtain the direct evidence that the
overexpression of Kv1.3-channels contributes to the pro-
liferation of leukocytes and to the progression of renal fi-
brosis, we actually treated the UUO rats with margatoxin
and examined the fibrosis or leukocyte marker expression
within the kidneys.

3.4.1. Effects of Margatoxin on the Progression of Renal
Fibrosis. In margatoxin-treated UUO rat kidneys, Mas-
son’s trichrome staining demonstrated much smaller size
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of the cortical interstitium compared to that in marga-
toxin-untreated kidneys (Figure 4(a) (B versus A)). ,ere
was actually a statistical significance in the percentages of
the Masson’s trichrome-stained areas relative to the total
areas between the margatoxin-untreated and margatoxin-
treated UUO rat kidneys (Figure 4(a) C). Additionally,
immunohistochemistry α-SMA demonstrated a signifi-
cant decrease in the number of myofibroblasts in mar-
gatoxin-treated UUO rat kidneys (Figure 4(b) B versus A),
which was quantitatively confirmed by the decreased
number of α-SMA-positive cells in high-power fields
(Figure 4(b) C). ,ese results strongly suggested that
margatoxin suppressed the number of myofibroblasts and

thus halted the progression of renal fibrosis in UUO rat
kidneys.

3.4.2. Effects of Margatoxin on Infiltration and Proliferation
of Interstitial Leukocytes. In the cortical interstitium of
margatoxin-untreated UUO rat kidneys, there were a sub-
stantial number of infiltrating leukocytes (Figure 5(a) A),
such as CD3-positve T-lymphocytes and ED-1-positive
macrophages (Figure 5(a) (C, E)). However, in margatoxin-
treated UUO rat kidneys, the numbers of these cells were
much smaller in the cortical interstitium (Figure 5(a) (B, D,
F)). As shown in Figure 5(a) (G), significant difference was
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Figure 1: Fibrotic marker expression and leukocyte proliferation in UUO rat kidneys. (a) Masson’s trichrome staining and immuno-
histochemistry using antibodies for collagen III (brown) and α-smooth muscle actin (α-SMA) (brown) in control (A, E, I) and UUO rat
kidneys with 1 week (UUO-1w; B, F, J), 2 weeks (UUO-2w; C, G, K), and 3 weeks (UUO-3w; D, H, L) after unilateral ureteral obstruction.
Magnification: ×20. (b) Hematoxylin and eosin (H&E) staining and immunohistochemistry for Ki-67 (brown) in control (A, E) and UUO
rat kidneys with 1 week (UUO-1w; B, F), 2 weeks (UUO-2w; C, G), and 3 weeks (UUO-3w; D, H) after unilateral ureteral obstruction. (A–D)
Magnification: ×20. (E–H) Magnification: ×60.
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Figure 2: Markers for T-lymphocytes, macrophages, mast cells, and neutrophils expression in the cortical interstitium of UUO rat kidneys.
Immunohistochemistry using antibodies for CD3 (a), ED-1 (b) (brown), toluidine blue (TB) staining (c) (blue, arrow heads), and im-
munohistochemistry for myeloperoxidase (MPO) (d) (brown, arrow heads) in control (A) and UUO rat kidneys with 1 week (UUO-1w, B),
2 weeks (UUO-2w, C), and 3 weeks (UUO-3w, D) after unilateral ureteral obstruction. Magnification: ×60. (e) Numbers of CD3-positive T-
lymphocytes, ED-1-positive macrophages, toluidine blue-positive mast cells, and myeloperoxidase-positive neutrophils were counted in
high-power views within the cortical interstitium of control, UUO-1w, UUO-2w, and UUO-3w rat kidneys. Values are means± SEM (n� 5).
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obtained in the number of CD3-positive cells between
margatoxin-treated and margatoxin-untreated UUO rat
kidneys. ,ese results indicated that margatoxin actually
decreased the numbers of inflammatory leukocytes in the
renal interstitium of UUO rat kidneys.

Immunohistochemistry for Ki-67 demonstrated a large
number of positively stained inflammatory leukocytes
within the cortical interstitium of margatoxin-untreated
UUO rat kidneys (Figure 5(b) A). However, in margatoxin-
treated UUO rat kidneys, there were much less leukocytes
positively stained with Ki-67 (Figure 5(b) B). As shown in
Figure 5(b) (C), a marked difference was obtained in the
numbers of Ki-67-positive cells between margatoxin-treated
and margatoxin-untreated UUO rat kidneys. From these
results, margatoxin was thought to suppress the in situ
proliferation of infiltrating leukocytes and thus decreased
their numbers within the UUO rat kidneys.

4. Discussion

Using animal models of UUO, previous studies revealed the
involvement of mast cells in the development renal fibrosis
[12–14] because mast cells release growth factors or cyto-
kines that stimulate the collagen synthesis from fibroblasts

[15, 16]. In some studies, tranilast, a mast cell stabilizer,
actually ameliorated the progression of renal fibrosis in
UUO [31, 32]. However, due to their small occupation in
leukocytes that infiltrated into the cortical interstitium,
targeting mast cells alone was not enough for the treatment.
In the pathogenesis of renal fibrosis, transforming growth
factor beta-1 (TGF-β1) plays a major role, since it directly
promotes the fibroblast proliferation and stimulates their
collagen synthesis [33]. TGF-β1 also activates the down-
stream Smad signal transduction pathway to generate ex-
tracellular matrix [34]. Regarding the mechanism by which
tranilast exerted antifibrotic effects [16, 35], this drug was
considered to decrease the TGF-β1 expression and repress
its activity in the fibrotic kidneys [31, 32, 36, 37], in addition
to its mast cell-stabilizing properties [16, 38]. In the present
study, we clearly demonstrated the predominance of
T-lymphocytes or macrophages over mast cells or neutro-
phils in UUO rat kidneys, which became most prominent at
3 weeks after inducing UUO (Figure 2). In our previous
study using rat models with advanced CRF, proin-
flammatory cytokines produced by the inflammatory leu-
kocytes actually activated fibroblasts to produce collagen
[22]. Additionally, in UUO rat kidneys, the time-dependent
increase in T-lymphocytes and macrophages was well
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Figure 3: Kv1.3 expression in UUO rat kidneys. (a) KCNA3 mRNA abundance in the renal cortex of control and UUO rat kidneys with 1
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antibody for Kv1.3 (brown, arrow heads) in control (A) and UUO-3w (B) rat kidneys. High-power views of cortical interstitium.
Magnification: ×60.
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Figure 4: Fibrotic marker expression inmargatoxin-untreated andmargatoxin-treated UUO rat kidneys. (a)Masson’s trichrome staining in
margatoxin- (Mgx-) untreated (A) and margatoxin-treated (B) UUO rat kidneys. Low-power views of cortex. Magnification: ×20. (C)
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rat kidneys. Magnification: ×20. (C) α-SMA-positive cells were counted in high-power views of the cortical interstitium. ∗P< 0.05 versus
margatoxin-untreated UUO rats. Values are means± SEM (n� 5). Differences were analyzed by ANOVA followed by Dunnett’s or Student’s
t test.
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Figure 5: Markers for leukocytes and their proliferation in margatoxin-untreated and margatoxin-treated UUO rat kidneys. (a) He-
matoxylin and eosin (H&E) staining and immunohistochemistry using antibodies for CD3 and ED-1 (brown) in margatoxin- (Mgx-)
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Magnification: ×60. (C) Ki-67-positive cells were counted in high-power views of the cortical interstitium. ∗P< 0.05 versus margatoxin-
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correlated with such a progression pattern of renal fibrosis
(Figures 1(a) and 2). ,erefore, these inflammatory leuko-
cytes were thought to be directly responsible for the pro-
gression of interstitial renal fibrosis in UUO.

T-lymphocytes andmacrophages predominantly express
Kv1.3-channels in their plasma membrane [18]. In UUO rat
kidneys with longer postobstructive days, these leukocytes
overexpressed the Kv1.3-channels within the cortical
interstitium of fibrotic kidneys (Figure 3). In previous
studies, the overexpression of Kv1.3-channels was noted in
isolated cells under certain pathological conditions, such as
cancer [39, 40], neuroinflammatory disorder, or ischemic
heart disease [41, 42]. In these cells, Kv1.3-channels stim-
ulate calcium signals to facilitate cellular proliferation by
generating a driving force for inward calcium flow [17, 43].
In the present study, margatoxin, a selective inhibitor of
Kv1.3-channels, suppressed the proliferation of leukocytes
(Figure 5) and actually ameliorated the progression of renal
fibrosis in UUO rat kidneys (Figure 4). ,erefore, as pre-
viously shown in cancer cells or neuroinflammatory cells
[42, 44], the membrane hyperpolarization bought about by
the channels was thought to be responsible for the leukocyte
proliferation/activation and the subsequent progression of
renal fibrosis. Using a murine model of UUO, Grgic et al.
demonstrated a therapeutic usefulness of targeting the in-
termediate-conductance Ca2+-activated K+-channels
(Kca3.1) in the treatment of renal fibrosis, since these
channels were overexpressed in proliferating fibroblasts
[45]. From our results, the Kv1.3-channels overexpressed
in lymphocytes or macrophages could also be the useful
therapeutic target in the treatment of renal fibrosis.

Our recent patch-clamp study revealed that antiallergic
drugs, such as cetirizine, fexofenadine, azelastine, and ter-
fenadine, effectively suppressed lymphocyte Kv1.3-channels
[46]. ,ese lipophilic drugs were thought to distribute freely
into the phospholipid bilayers of cell membrane [46, 47] and
thus directly intruded into the composite domains of the
channels from inside the membranes. Of note, since aze-
lastine and terfenadine are more lipophilic than the other
drugs [47], they would remain within the membranes for a
long time, bringing about more continuous inhibitory
pattern of the Kv1.3-channels [46]. In previous patch-clamp
studies, we also revealed that so-called “commonly used
drugs,” such as antimicrobials, anti-hypertensives, and an-
ticholesterol drugs, actually exerted inhibitory properties on
the Kv1.3-channel currents in lymphocytes [28, 48–51].
Based on such pharmacological characteristics, we could
clinically apply these commonly used drugs in the treatment
of renal fibrosis. Since these drugs have long been used in
daily medical practice, they are more reliable and safer drugs
than the selective channel inhibitors that were chemically
synthesized originally from venom or scorpion toxins
[52–55].

In summary, this study clearly demonstrated that the
numbers of T-lymphocytes andmacrophages were markedly
increased in UUO rat kidneys at 3weeks after the operation.
,e overexpression of Kv1.3-channels in leukocytes was
thought to be responsible for the proliferation of these cells
and the progression of renal fibrosis. ,is study strongly

suggested the therapeutic usefulness of targeting lymphocyte
Kv1.3-channels in the treatment of renal fibrosis.
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