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Abstract
Background: Stereotactic body radiotherapy (SBRT) is the standard care for
inoperable early stage non-small cell lung cancer (NSCLC). The purpose of our
study was to investigate whether a prediction model based on cone-beam CT
(CBCT) plus pretreatment CT radiomics features could improve the prediction
of tumor control and lung toxicity after SBRT in comparison to a model based
on pretreatment CT radiomics features alone.
Methods: A total of 34 cases of stage I NSCLC patients who received SBRT were
included in the study. The pretreatment planning CT and serial CBCT radiomics
features were analyzed using the imaging biomarker explorer (IBEX) software
platform. Multivariate logistic regression was conducted for the association
between progression-free survival (PFS), lung toxicity and features. The predic-
tive capabilities of the models based on CBCT and CT features were compared
using receiver operating characteristic (ROC) curves.
Results: Five CBCT features and two planning CT features were correlated with
disease progression. Six CBCT features and two planning CT features were
related to lung injury. The ROC curves indicated that the model based on the
CBCT plus planning CT features might be better than the model based on the
planning CT features in predicting lung injury. The other ROC curves indicated
that the model based on the planning CT features was similar to the model based
on the CBCT plus planning CT features in predicting disease progression.
Conclusions: Both pretreatment CT and CBCT radiomics features could predict
disease progression and lung injury. A model with CBCT plus pretreatment CT
radiomics features might improve the prediction of lung toxicity in comparison
with a model with pretreatment CT features alone.
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Key points

• Significant findings of the study: A model with cone-beam CT radiomics fea-
tures plus pre-treatment CT radiomics features might improve the prediction
of lung toxicity after SBRT in stage I NSCLC patients.

• What this study adds: In the prediction of PFS and lung toxicity in early-stage
NSCLC patients treated with SBRT, CBCT radiomics could be another effec-
tive method.

Introduction

Stereotactic body radiotherapy (SBRT) uses modern radia-
tion technologies and high conformal radiation treatment
planning to deliver high radiation doses to restricted vol-
umes through multiple precisely aimed radiotherapy
beams, which maximizes the dose within the target volume
and minimizes the dose to the surrounding organs at risk
(OARs).1–3 SBRT is a guideline-recommended treatment
choice for patients with early-stage non-small cell lung
cancer (NSCLC) who are not surgical candidates or do not
accept the risk of surgery.4 Most phase I and II trials have
confirmed the feasibility, safety, and efficacy of SBRT with
excellent local control and quality of life. Several retrospec-
tive studies and prospective trials have also reported that
the survival outcomes after SBRT were comparable with
those after surgical resection.5–9 The phase III randomized
trial (CHISEL) of SBRT versus conventional radiotherapy
for stage I inoperable NSCLC demonstrated that the two-
year local control (LC) and overall survival (OS) rates
improved from 65% and 59% in standard radiotherapy to
89% and 77% in SBRT, respectively.10

Moreover, investigations have found that a proportion of
patients would develop local failure (9%), regional lymph
node metastases (1%) or more distant metastasis (9%) after
SBRT.10 Therefore, improved disease outcomes and reduced
chances of lung injury can be achieved with individualized
treatment.11–13 In recent years, medical imaging as a way to
predict clinical outcomes and lung injury has become a cor-
nerstone of personalized cancer. Novel advanced imaging
analysis techniques, including radiomics to extract quantita-
tive features from medical images such as computed tomog-
raphy (CT) and positron emission tomography (PET), can
identify a patient’s response to treatment or the probability
of developing side effects.11,14–20 However, the role of pre-
treatment CT radiomics features in predicting tumor control
or lung injury still warrants validation by summarizing pre-
vious research.18–20

In addition to baseline PET or CT images, cone-beam
CT (CBCT) images can provide very useful information for
tumor control and/or toxicity. Three-dimensional
(3D) cone-beam CT (CBCT) images are routinely acquired

during SBRT in NSCLC for patient setup and positioning
verification.21 These images can provide data on the day-to-
day changes of the tumor and normal tissue during the
course of irradiation.22 Previous studies have shown that
tumor volume reduction and CT number changes in CBCT
images could potentially predict the treatment response for
lung cancer.23–25 However, these findings were inconsistent
and inconclusive. In the present study, we analyzed the
radiomics features of pretreatment CT and series of CBCT
images. The aim of the study was to investigate whether a
model that combined cone-beam CT (CBCT) with pre-
treatment CT radiomics features could better predict tumor
control and lung toxicity after SBRT than a model with pre-
treatment CT features alone.

Methods

Patient selection

Patients with stage I NSCLC treated with SBRT from July
2016 to April 2018 at the Shandong Cancer Hospital were
retrospectively included. The inclusion criteria were as fol-
lows: primary NSCLC confirmed by biopsy, TNM stage I
(AJCC version 7), and treatment with SBRT. The exclusion
criteria were previous lung radiation, more than one lung
tumor or other concurrent tumors and lack of follow-up
data. The clinical information included sex, age, pathology,
clinical stage information, smoking history, radiation treat-
ment planning, treatment response and lung injury data
collected from the electronic medical records. The study
was approved by the Research Ethics Committee of Shan-
dong Cancer Hospital. All the protocols and methods were
in accordance with the guidelines and regulations.
Informed consent was provided by all participants.

SBRT simulation, planning and treatment

All patients were immobilized in a customized mold in the
supine position with their arms raised above their heads
for simulation in the CT simulator (Philips Big-bore bril-
liance CT). Briefly, the patients were immobilized on a
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vacuum couch, and a free-breathing simulation CT (such
as 4D-CT) was performed. Abdominal compression was
utilized if the tumor motion was greater than 1 cm. Cone-
beam CT and portal imaging combined with a linear
accelerator were used for daily setup and image-guided
treatment. The gross tumor volume (GTV) was delineated
in the lung window, and an internal target volume (ITV)
was generated in light of the breathing form of the patient.
Finally, an isotropic margin of 5 mm axially and 1 cm
craniocaudally was added to generate the planning target
volume (PTV) with no clinical target volume (CTV) mar-
gin. The designed and normalized radiotherapy plans were
generated on the Varian treatment planning system
(Eclipse version 13.6, Varian, USA). To calculate the bio-
logical effective dose (BED), the value of α/β was defined
as 10. As shown in Table 1, 76.5% of the BED for radiation
treatment in our study was concentrated in the range of
100–120 Gy.

Planning CT and CBCT image analysis

As a part of the SBRT course, planning CT images were
obtained from the SBRT simulation, and chest CBCT
images were obtained prior to each radiation delivery. All
CBCT images were acquired using the thoracic imaging
protocol on a Varian Linac CBCT with a voltage of
110 kV, tube current of 20 mA, and exposure time (total
pulsed beam-on time) of 7–14 seconds. The detector size
was 25 cm × 25 cm, and the source to detector distance

was 150 cm. The 2.5 mm contiguous axial images were
transferred to the Varian workstation, and the view was
reconstructed into a 250 × 250 × 200 mm field. Each serial
CBCT image used Monte Carlo-based scatter correction
and ring artifact correction.26,27 A radiation oncologist
(XLG, with 20 years of experience) manually contoured the
region of interest (ROI) using the open-source imaging
biomarker explorer (IBEX) software (http://bit.ly/IBEX_
MDAnderson). All the planning CT and CBCT images
were set to a window/level of 600/1000 HU to contour the
ROI (Fig 1) of the primary tumor, and the radiomics fea-
tures were analyzed using IBEX. A total of 187 radiomics
features were initially selected automatically, including the
Gray Level Co-occurrence Matrix, Gray Level Run Length
Matrix, Intensity Direct, Neighbor Intensity Difference and
Shape. The features calculation was performed using IBEX.

Patient follow-up and outcomes

The patients were followed-up with clinical examinations
and chest CT imaging in the first month, every three
months in the first year, and every six months in the sec-
ond year after the treatment, and annually thereafter. Sus-
picious findings were further evaluated with bone
scintigraphy or brain magnetic resonance (MR) imaging,
PET scans, biopsy, or other methods.
Radiation pneumonitis was graded according to the

Common Terminology Criteria for Adverse Events
(CTCAE) version 4.0. Disease progression was based on
the RECIST systems. The form of disease progression,
including local failure (LF), nodal failure (NF), and distant
failure (DF), was determined by reviewing all imaging
studies and clinical information. Progression was con-
firmed by biopsy, PET/CT, or CT images at follow-up. The
above data were recorded as the date of the first CT or
PET/CT scan.

Statistics analysis

All statistical analyses were performed using the Statistical
Package for Social Sciences software (SPSS v20; Chicago,
IL, USA) and MedCalc 19.0. At first, 187 radiomics fea-
tures were automatically selected for each CBCT or plan-
ning CT image. The CBCT images of each patient included
the first CBCT (CBCT1), intermediate CBCT (CBCTmid),
and last CBCT (CBCTlast) during SBRT. A total of
144 radiomics features of each CBCT or planning CT
image were used to conduct a multivariate logistic regres-
sion after deleting the missing and identical radiomics fea-
tures. The missing radiomics features were supplemented
using the multiple interpolation method. The radiomics
features were selected using the forward stepwise selection
method. Finally, the effective radiomics features of the

Table 1 Clinical characteristics

Clinical features n %

Gender
Female 8 23.5
Male 26 77.5

Age, median (range) (years)
69 (50–84)

Age
≤ 65 12 35.3
65–80 17 50
≥ 81 5 14.7

Pathological type
Adenocarcinoma 19 55.9
Squamous cell carcinoma 9 26.5
Other 6 17.6

T stage
T1 22 64.7
T2 12 35.3

Smoker
No 11 32.4
Yes 23 67.6

Biological effective dose
<100 Gy 8 23.5
100–120 Gy 26 76.5
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CBCT and planning CT images were associated with the
progression and lung injury of early-stage NSCLC patients
treated with SBRT. Comparisons of different prediction
models based on CBCT and CT radiomics features were
conducted with ROC curves. DeLong’s test was used for
difference in area under the curve (AUC).28

Results

Patient characteristics and clinical
outcomes

The demographic information is provided in Table 1.
A total of 34 patients were enrolled, including 26 males
and eight females, with an average age of 69 years (58–
84 years). Pathological types were classified as adenocarci-
noma (55.9%), squamous cell carcinoma (26.5%) and other
types (17.6%). All patients had stage I NSCLC, including
T1 stage (64.7%) and T2 stage (35.3%) disease.
The median follow-up time was 20 months. A total of

5.9% patients had local failure alone (n = 2), 2.9% had
mediastinal lymph node metastasis alone (n = 1), 8.8% had
both lymph node and distant metastases (n = 3), and 5.9%
had distant failure only (n = 2). A total of 23.5% of

patients (n = 8) experienced lung injury, with 17.6% being
grades 1 and 2 (n = 6) and 5.9% being grade 3 (n = 2).

Correlation between radiomics features
analysis and PFS

Two planning CT radiomics features (GLCM3: Variance
and ID: Global Media) were significantly correlated with
progression. With each unit increase of the index (GLCM3:
Variance and ID: Global Media), the risk of disease progres-
sion increased 8.580 (OR = Exp [B] = 9.58) and 50.8%
(OR = Exp [B] = 1.508) times, respectively. AUC was 0.894,
and the 95% CI was 0.766–1.000 (Table 2).
Three radiomics features (GLCM3: Cluster Shade, ID:

LocalEntropyMax and SHAPE: Orientation) of CBCT1
were significantly correlated with disease progression. With
each unit increase of the index GLCM3: Cluster Shade, the
risk of disease progression increased 1.778 times
(OR = Exp [B] = 2.778); with each unit increase of the
index ID: Localtropy Max, the risk of disease progression
decreased (OR = Exp [B] = 0.000); with each unit increase
of the index SHAPE: Orientation, the risk of disease pro-
gression decreased (OR = Exp [B] = 0.943); and with each
unit decrease of the index (SHAPE: Orientation, the risk of
disease progression was 1.06 times lower (OR = Exp

Figure 1 Region of interest (ROI) on the (a)
planning CT (b) CBCT1 (c) CBCTmid and (d)
CBCTlast for a representative case.
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[-B] = 1.060). The area under the curve was 0.918, and the
95% CI was 0.819–1.000. One radiomics feature (GLCM3:
InformationMeasureCorr2) of CBCTmid was significantly
correlated with disease progression. For each additional
unit of GLCM3:InformationMeasureCorr2, the risk of pro-
gression increased by 6.6% (OR = Exp [B] = 1.066), and
the area under the curve was 0.697 (95% CI: 0.486–0.908).
One radiomics feature (GLCM3: Information Measure
Corr2) of CBCTlast was significantly correlated with pro-
gression. With each unit increase in the GLCM3: Informa-
tion Measure Corr2 radiomics feature, the risk of
progression increased by 10.2%. The area under the curve
was 0.764, and the 95% CI was 0.563–0.966. (Table 2).
The ROC curves of the prognostic model based on the

planning CT radiomic features and that based on the
radiomics features of the CBCTs plus planning CT (plan-
ning CT + CBCT1 + CBCTmid + CBCTlast) were com-
pared. The ROC curves were used to evaluate the
predictive ability of the models. The AUCs were 0.913 and
0.885, respectively. The results indicated that the model
based on the planning CT had a similar prediction ability
to the model based on the planning CT plus CBCT (Fig 2).

Correlation between radiomics features
and lung injury

Two planning CT radiomics features (SHAPE: Mass and
SHAPE: Orientation) were significantly correlated with
lung injury. With each unit increase in radiomics feature
SHAPE: Mass, the risk of lung injury increased by 32.456
times (OR = Exp [B] = 33.456). For each additional unit of
SHAPE: Orientation, the risk of lung injury increased by
4.7% (OR = Exp [B] = 1.047). The area under the curve
was 0.832, and the 95% CI was 0.621–1.000 (Table 3).
Two CBCT1 radiomics features (NGTDM25: Contras

and SHAPE: Max3D Diameter) were correlated with lung

injury. The risk of lung injury increased by 0.1%
(OR = Exp [B] = 1.001) for each additional unit of
NGTDM25: Contras. The risk of lung injury increased by
3.094 times (OR = Exp [B] = 4.094) for each additional
unit of SHAPE: Max3D Diameter. AUC was 0.87, and the
95% CI was 0.683–0.990. Two CBCTmid radiomics fea-
tures (ID: 60Percentile and NGTDM25: Complexity) were
correlated with lung injury. With each unit increase in
radiomics feature (ID: 60Percentile), the risk of lung injury

Table 2 The radiomic features correlated with disease progression

Exp (B) 95% CI

Radiomic features P-value Exp (B) Lower Upper Logistic regression AUC (95%CI)

Planning CT
GLCM3:Variance 0.012 9.58 1.643 55.862 0.894 (0.766–1.000)
ID:GlobalMedian 0.043 1.508 1.012 2.246

CBCT1
GLCM3:ClusterShade 0.022 2.778 1.158 6.661 0.918 (0.819–1.000)
ID:LocalEntropyMax 0.037 0 0 0.517
SHAPE:Orientation 0.113 0.943 0.878 1.014

CBCTmid
GLCM3: InformationMeasureCorr2 0.049 1.066 1 1.135 0.697 (0.486–0.908)

CBCTlast
GLCM3: InformationMeasureCorr2 0.029 1.102 1.01 1.202 0.764 (0.563–0.966)

CBCT1, the first CBCT during SBRT; CBCTmid, intermediate CBCT during SBRT; CBCTlast, last CBCT during SBRT.

Figure 2 Receiver operating characteristic (ROC) curve for disease pro-
gression. The ROC curves of the prognostic models based on the plan-
ning CT radiomics features alone and on the radiomics features of the
CBCTs and planning CT (CBCT1 + CBCTmid + CBCTlast + planning CT)
were compared. The ROC curves were used to evaluate the prediction
models, and the AUCs were 0.913 and 0.885, respectively. CT,

CT + CBCTs, Reference line.
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increased by 19.7% (OR = Exp [B] = 1.197). The radiomics
feature NGTDM25 Complexity showed a weak correlation
with lung injury (OR = Exp [B] = 1.000). The area under
the curve was 0.861 (95% CI: 0.735–0.986). Two CBCTlast
radiomics features (GLCM3: ClusterProminence and
SHAPE: ConvexHullVolume) were significantly correlated
with lung injury. With each unit increase in the radiomics
feature GLCM3: ClusterProminence, the risk of lung injury
increased by 45% (OR = Exp [B] = 1.450). With each unit

increase in the radiomics feature SHAPE: Con-
vexHullVolume, the risk of lung injury increased by 10.2%
(OR = Exp [B] = 1.102). The AUC was 0.952, and the 95%
CI (0.885–1.000) (Table 3).
The ROC curves of the prediction models of lung injury

based on planning CT radiomics features alone and on the
radiomics features of CBCTs plus the planning CT (plan-
ning CT + CBCT1 + CBCTmid + CBCTlast) were com-
pared. ROC curves were used to evaluate the models, and
AUCs were 0.832 and 0.885, respectively (P = 0.367).
When the sensitivity of the CBCTs plus the planning CT
model and the planning CT model was constant (87.5%),
the specificity of the CBCTs plus the planning CT model
was 84.62%, the specificity of the planning CT model was
80.77%. The results indicated that the model based on
CBCTs combined with planning CT might have a better
prediction ability than the model based on the planning
CT alone (Fig 3 and Table 4).

Discussion

With the development of lung cancer screening and radio-
therapy techniques, more and more early-stage NSCLC
patients will be diagnosed and treated with SBRT. There-
fore, it becomes important to look for more features to
predict or monitor treatment efficacy and/or toxicity. In
this study, the predictive effect of a model that combined
CBCT radiomics features with planning CT radiomics fea-
tures for disease progression and radiation pneumonitis in
stage I NSCLC patients treated with SBRT was explored.
The results suggested that a model based on CBCT radio-
mics features combined with planning CT radiomics fea-
tures might improve the prediction of lung toxicity after
SBRT in comparison to a model based on pretreatment CT
features alone.

Table 3 The radiomic features correlated with lung injury

Exp (B) 95% CI

Radiomic features P-value Exp (B) Lower Upper Logistic regression AUC (95%CI)

Planning CT
SHAPE:Mass 0.011 33.456 2.257 496.017 0.832 (0.621–1.000)
SHAPE:Orientation 0.036 1.047 1.003 1.093

CBCT1
NGTDM25:Contrast 0.077 1.001 1 1.003 0.837 (0.683–0.990)
SHAPE:Max3DDiameter 0.008 4.094 1.438 11.659

CBCTmid
ID:60Percentile 0.074 1.197 0.983 1.457 0.861 (0.735–0.986)
NGTDM25:Complexity 0.065 1 1 1

CBCTlast
GLCM3:ClusterProminence 0.047 1.45 1.006 2.09 0.952 (0.885–1.000)
SHAPE:ConvexHullVolume 0.019 1.102 1.016 1.194

CBCT1, the first CBCT during SBRT; CBCTmid, intermediate CBCT during SBRT; CBCTlast, last CBCT during SBRT.

Figure 3 Receiver operating characteristic (ROC) curve for lung injury.
The ROC curves of prediction models of lung injury based on planning
CT radiomics features alone and on the radiomics features of the
CBCTs plus planning CT (planning CT + CBCT1 + CBCTmid + CBCTlast)
were compared. The ROC curves were used to evaluate the models,
and the areas under the curve AUCs were 0.832 and 0.885, respec-
tively. CT, CT + CBCTs, Reference line.
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Previous studies found that changes in tumor density
and volume obtained from CBCT images predicted treat-
ment response to chemoradiation therapy in advanced
NSCLC patients. A reduction in tumor volume on CBCT
during definitive chemoradiotherapy correlated with
improved disease control and overall survival of stage III–
IV non-small cell lung cancer patients.23–25 These studies
have reported inconsistent time points, CBCT-measured
tumor volumes and/or density changes associated with the
clinical outcomes. To address this problem, in this study,
the radiomics features of CBCTs acquired at three different
time points (CBCT1, CBCTmid and CBCTlast) were
explored. The results showed that the CBCT radiomics fea-
tures were significantly correlated with PFS. However, the
model that combined CBCT and planning CT radiomics
features did not yield an improved prediction capacity. Pre-
vious studies have shown that the CBCT imaging features
could assess response to treatment and serve as an early bio-
marker.29,30 By summarizing previous research findings on
NSCLC, we found that the radiomics features of CT and
CBCT were interchangeable and that the radiomics features
of the CBCT prior to the first fraction of treatment showed
prognostic information for the overall survival of NSCLC
patients acquired.31 The radiomics features of CBCTs
acquired early during a course of treatment may be associ-
ated with overall survival in locally advanced NSCLC.32

No studies have so far been performed to correlate lung
injury with the CBCT radiomics features of NSCLC. In this
study, the CBCT radiomics features were analyzed, and we
found that the radiomics features were significantly corre-
lated with lung injury after SBRT. More importantly, the
model that combined CBCT and planning CT radiomics
features might improve the prediction of lung toxicity after
SBRT than the model based on pretreatment CT radiomics
features alone. The CBCT imaging features of the parotid
gland could predict chronic xerostomia better than the
dose alone. Analyses of the CBCT images acquired for
treatment positioning may provide an inexpensive moni-
toring system to support toxicity-reducing adaptive radia-
tion therapy.33

Since the number of patients in our study was relatively
small, and the good outcome of SBRT (low toxicity and pro-
gression), there were limited patients with lung injury
(23.5%, n = 8) and disease progression (23.5%, n = 8). The
AUC of CBCT plus planning CT model was 0.885 and the
planning CT model was 0.832 based on the ROC curves with

prediction in lung injury models. Although it failed to obtain
significant statistical difference, the specificity of CBCTs plus
planning CT model was higher than the model with planning
CT alone (84.62% and 80.77%) when the sensitivity was con-
stant at 87.5%. There was a tendency that radiomics features
of CBCT plus planning CT might improve the prediction in
lung injury than the planning CT features alone.
There were several limitations in the study. First, the

sample size was limited. Future studies with larger numbers
of patients are necessary to validate our results. Second,
CBCT radiomics features typically depend on reconstruc-
tion and scanning parameters.34–37 The different slice thick-
nesses used in CT and CBCT reconstruction could
influence the accuracy of the values, and the potentially lim-
ited soft-tissue contrast of CBCT compared with that of CT
could lead to uncertainties.38 Therefore, only CBCT images
with a 3 mm slice thickness, which was identical to the slice
thickness of the CT images, were used to ensure consistency
throughout this study. Finally, although the image quality
of CBCT is not as good as the diagnostic CT, the CBCT
imaging quality might improve with the application of
Monte Carlo-based scatter correction and other tech-
niques26,27 The advantage of CBCT is that it detects the
changes inside the tumor in time during the treatment,
which may be helpful to adjust the patient’s adaptive treat-
ment plan. It prompts us to further improve the CBCT
image quality and proceed with subsequent studies to evalu-
ate the value of the CBCT radiomics features.
In conclusion, our study suggested that CBCT imaging

features could potentially be applied as imaging biomarkers
in addition to CT features. Earlier and different informa-
tion about a patient’s prognosis are needed to explore indi-
vidualized treatment options to prolong the survival of
stage I NSCLC patients after SBRT.
In the prediction of PFS and lung toxicity in early-stage

NSCLC patients treated with SBRT, CBCT radiomics could
be another effective method. It is possible to use the radio-
mics features of CBCT images acquired at different time
points to predict the clinical outcome and toxicity of stage
I NSCLC patients treated with SBRT as early as possible.
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