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Platelet-derived growth factor-BB (PDGF-BB) can induce the proliferation, migration, and phenotypic modulation of vascular
smooth muscle cells (VSMCs). We used patch clamp methods to study the effects of PDGF-BB on inward rectifier K" channel
2.1 (Kir2.1) channels in rat thoracic aorta VSMCs (RASMCs). PDGF-BB (25 ng/mL) increased Kir2.x currents (—11.81 +2.47
PA/pE, P <0.05 vs. CON, n = 10). Ba2+(50 pM) decreased Kir2.x currents (-2.13 + 0.23 pA/pF, P < 0.05 vs. CON, n = 10), which
were promoted by PDGF-BB (-6.98 + 1.03 pA/pF). PDGF-BB specifically activates Kir2.1 but not Kir2.2 and Kir2.3 channels in
HEK-293 cells. The PDGF-BB-induced stimulation of Kir2.1 currents was blocked by the PDGE-BB receptor 3 (PDGF-BBRJ)
inhibitor AG1295 and was not affected by the PDGF-BBR« inhibitor AG1296. The PDGF-BB-induced stimulation of Kir2.1
currents was blocked by the protein kinase A inhibitor Rp-8-CPT-cAMPs; however, the antagonist of protein kinase B
(GSK690693) had marginal effects on current activity. The PDGF-BB-induced stimulation of Kir2.1 currents was enhanced by
forskolin, an adenylyl cyclase (AC) activator, and was blocked by the AC inhibitor SQ22536. We conclude that PDGF-BB

increases Kir2.1 currents via PDGF-BBRJ through activation of cAMP-PKA signaling in RASMCs.

1. Introduction

Platelet-derived growth factor-BB (PDGEF-BB) is considered
the major stimulant for vascular smooth muscle cell
(VSMC) transition from a contractile state (also termed
differentiated) to a synthetic state (also termed dedifferen-
tiated) [1-3].VSMC phenotype switching plays a critical
role in the pathophysiology of arterial remodeling in many
vascular diseases including hypertension, atherosclerosis,
and restenosis after angioplasty [4]. However, the molecular
mechanisms underlying PDGF-BB-induced VSMC pheno-
type switching are not entirely clear.

PDGEF-BB binds to PDGF receptor 8 and subsequently
activates extracelluar signal-regulated kinase pathways to
induce proliferation in human VSMCs [2]. Endothlin-1
inhibits Kir currents in rabbit coronary arterial smooth muscle
cells (SMCs) through activation of protein kinase C [5]. Pre-

vious studies have demonstrated activation of cyclic adeno-
sine monophosphate (cAMP)/protein kinase A- (PKA-)
and phosphatidylinositol-3-kinase (PI3K)/protein kinase B-
(PKB- or Akt-) related PDGF-BB-induced VSMC migration
and proliferation [5-9].

Inward rectifier K" channel 2.1 (Kir2.1), encoded by the
KCNJ2 gene, is a member of the classic inwardly rectifying
potassium channel family (Kir2x). The channels of this
family are constitutively active and exhibit strong inward
rectification [10]. Kir2.1 plays biophysical roles in coronary,
cerebral, and basilar arterial VSMCs with adenosine increasing
Kir2.1 currents via the A3 receptor through activation of PKA
in rabbit coronary arterial VSMCs [11-13]. In a previous
study, we demonstrated that knockdown of Kir2.1 gene
expression inhibits PDGF-BB-induced proliferation, migra-
tion, the rat VSMC phenotype, and postballoon injury
intimal hyperplasia [14]. However, the detailed molecular
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mechanisms, particularly the electrophysiological regulation,
have not been fully explored.

To address these questions, we studied the regulatory
mechanisms of Kir2.1 by PDGF-BB in rat thoracic aorta
VSMCs (RASMC) using the whole-cell patch clamp tech-
nique and Western blot analysis.

2. Materials and Methods

2.1. Animals and Ethical Considerations. Male Sprague-
Dawley rats (150-180g) were obtained from the Southeast
University Animal Center. The animals were housed in a
vivarium under controlled photocycle (12h light/12h dark)
and temperature (22-25°C) conditions with free access to
food and water. All procedures in the present study were con-
ducted in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and
approved by the Care of Experimental Animals Committee
of Southeast University (approval ID: SYXK-2015.4171).

2.2. Cell Preparation. The male Sprague-Dawley rats (150-
180g) were anesthetized with 10% chloral hydrate
(3000 mg/kg, intraperitoneally) and exhibited no signs of
peritonitis, pain, or discomfort following administration of
10% chloral hydrate. The Sprague-Dawley rats were anesthe-
tized after 2-3 minutes; rats were euthanized with 6-9%
isoflurane. If the Sprague-Dawley rats’ hearts have not been
beating, non-spontaneous breathing lasts 2-3 minutes, and
there is no blinking reflex, the rats are considered dead. Rats
were euthanized with an overdose of isoflurane, and
RASMCs were isolated from the intimal-medial layers of the
thoracic aorta as described [15]. Primary cells were cultured
in Dulbecco’s modified Eagle medium (DMEM)/F12 supple-
mented with 20% fetal bovine serum (FBS; Gibco BRL,
Gaithersburg, MD) and 100 ug/mL streptomycin-penicillin
in an incubator at 37°C with 5% CO,. After passaging,
RASMCs were cultured in DMEM/F12 with 10% FBS. Cells
in the second to third passage were used for all experiments
to prevent cell dedifferentiation.

2.3. Solutions. The bath solution (in mmol/L) was as follows:
3.5 KCI, 140 NaCl, 1.8 CaCl,, 1.5 MgSO,, 10 HEPES, and 10
glucose; the pH was adjusted to 7.4 with NaOH (1 mol/L).
The pipette-filling solution (in mmol/L) was as follows: 40
KCl, 1.5 MgSO,, 5.0 KATP, 5.0 EGTA, K-aspirate 110, and
10 HEPES; the pH was adjusted to 7.4 with NaOH (1 mol/L).
For single-channel recording, the extracellular pipette
solution (in mmol/L) was as follows: 145 KCI, 10 HEPES,
10 glucose; the pH was adjusted to 7.4 with KOH (1 mol/L).
The intracellular bath solution (in mmol/L) was as follows:
145 KCl, 1.2 MgCl,, 10 HEPES, 0.1 EGTA; the pH was
adjusted to 7.38 with KOH (1 mol/L).

2.4. Drugs. All pharmacological compounds were prepared as
aqueous or dimethyl sulfoxide stock solutions of >1,000
times the concentration used during the experiment. Recom-
binant mouse PDGEF-BB was purchased from BioLegend
(San Diego, CA, USA). AG1296, AG1295, GSK690693, and
forskolin were purchased from Sigma (St. Louis, MO,
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USA). Rp-8-CPT-cAMPs and SQ22536 were purchased from
BIOLOG Life Science Institute (La Jolla, CA, USA).

2.5. Cell Transfection of Kir2.x. Transfection was performed
as previously described [5].

2.6. Reverse Transcription-Polymerase Chain Reaction. Total
cellular RNA was isolated with a TRIzol reagent (Invitrogen,
USA) and reverse-transcribed to cDNA using the SYBR® Pri-
meScript® RT-PCR Kit (Takara, Japan) at 37°C for 15min.
The gene expression was evaluated by SYBR® Premix Ex
Taq™ (Takara, Japan). GAPDH was used as a housekeeping
gene, in order to normalize the expression target gene. The
thermal cycling conditions were as follows: 30 seconds at
95°C for predenaturation, 40 cycles for 15 seconds at 95°C for
denaturation, 1 minute at 59°C for annealing, and 10 seconds
at 72°C for elongation. At the end of each cycle, the fluorescence
emitted by the SYBR Green I was measured. After the comple-
tion of the cycling process, samples were immediately subjected
to a temperature ramp for melting curve analysis. The relative
gene expression was analyzed by the 274" method. The
primer sequences of KCNJ2, GAPDH, and the 3 Kir2 subunits
were as follows: KCNJ2, forward: 5'-TGGATGCTGGTTAT
CTITCTGC-3' and reverse: 5'-AGCCTATGGTTGTCTG
GGTCT-3'; GAPDH, forward: 5'-AGAAGGCTGGGGCT
CATTTG-3' and reverse: 5'-AGGGGCCATCCACAGTCTT
C-3'; Kir2.1, forward: 5'-CGGTGGATGCTGGTTATCTT-
3" and reverse: 5'-GAAAACAGCAATTGGGCATT-3';
Kir2.2, forward: 5'-CCAGTGCAACATTGAGTTCG-3' and
reverse:  5'-GCGATGACCCAGAAGATGAT-3';  Kir2.3,
forward: 5'-CCATCATCATTGTCCACGAG-3' and reverse:
5'-GAAGACCACAGGCTCAAAGC-3".

2.7. Electrophysiology. Patch clamping was performed as
previously described [16, 17].

2.8. Statistics. All experiments were repeated at least three
times. The results are presented as the mean + SEM. Statisti-
cal analyses were performed using one-way ANOVAs. LSD
test was used for comparison between <3 sets of data as a
post hoc test. Bonferroni test was used for comparison
between >3 sets of data. The differences between two groups
were considered statistically significant at P < 0.05. SPSS 19.0
statistical software (SPSS Inc., Chicago IL, USA) was used for
data analyses.

3. Results

3.1. Effects of PDGF-BB on Kir2.x Currents. The membrane
was clamped to 0mV for 50ms and then repolarized from
+40 to -140mV at a rate of 100mV/s repeated once every
second. For Kir recordings, the Na* current was inactivated
by holding at 0 mV, and the Ca** current was inhibited by
adding 10 mM nitrendipine to the bath [18]. To exclude the
involvement of ion channels outside the Ba>*-sensitive Kir2.x
family, PDGF-BB was applied in the presence of Ba®"
(50 uM). For Kir2.x recordings, the KATP current was
inhibited by adding 100 nM glibenclamide to the bath. The
fact that PDGF-BB could further weaken the inhibition of
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Ba** confirmed that PDGF-BB-target ion channels were
Ba**-sensitive Kir2.x [18]. Next, we investigated the effects
of PDGE-BB on Kir2.x currents in RASMCs. We found that
RASMCs employed Kir2x currents, PDGF-BB (25ng/mlL)
caused a significant increase, and 50 uM Ba®* significantly
attenuated the current magnitude (Figure 1(a)). To confirm
these data, the current-voltage relationship was measured
from the Volta%e ramps (Figure 1(b)). The peak Kir2.x current
densities of Ba**, CON, PDGF-BB, and PDGF-BB+Ba’" mea-
sured at -150mV were —2.13+0.23 pA/pF, —6.58 £0.93
pA/pF (P<0.05 vs. Ba®**, n=10), —13.58+2.01 pA/pF
(P<0.05 vs. CON, n=10), and -6.98+1.03pA/pF
(P <0.05 vs. PDGF-BB, n =10), respectively (Figure 1(c)).
To gain insight into the mechanism of PDGF-BB action on
the Kir2.x channel, we tested the effects of PDGF-BB on the
properties of a single Kir2.x channel expressed in RASMCs.
A single-channel current was recorded with a pipette voltage
of 70 mV using the excised inside-out configuration and then
was identified by its unitary conductance (13-14.2 pS) and
pharmacological sensitivity. The results showed that 50 uM
Ba** attenuated the average open probability (NPo) of Kir2.x,
and PDGF-BB (25 ng/mL) significantly increased the NPo of
Kir2.x. The NPo of the Kir2.x channel of Ba®>*, CON,
PDGE-BB, and PDGF-BB+Ba*" measured at 4.58 +0.33%,
43.29+6.42% (P<0.01 vs. Ba®*, n=5), 78.82+8.05%
(P<0.01 vs. CON, n=5), and 41.47 +6.13% (P <0.01 vs.
PDGE-BB, n=5), respectively (Figure 1(d)). Common
antagonists of Kir2.x including Ba®" were applied to compare
the effects of PDGF-BB on NPo of Kir2.x (Figure 1(e)).
Furthermore, the time course of the PDGF-BB effect at a
holding voltage of 70 mV was analyzed (Figure 1(f)).

3.2. PDGF-BB Activates Kir2.1 but Not Kir2.2 or Kir2.3
Channels in HEK293 Cells. First, we have verified that the
transfections were successful by RT-PCR (Figures 2(a)-2(c)).
To clarify the effects of PDGF-BB on rat Kir2.x, Kir2.1,
Kir2.2, and Kir2.3, which constitute rat RASMC inward recti-
fier K* channels (Ig;,), they were individually expressed in
HEK-293 cells. PDGF-BB remarkably increased rat Kir2.1
channels (46.43 + 6.23% at -150 mV, n = 10) but not the cur-
rents of Kir2.2 (3.66 +1.54% at -150mV, n=10) or Kir2.3
(2.78 £1.03% at -150 mV, n = 10) (Figures 2(d)-2(g)). These
results suggest that PDGF-BB only had significant agonist
effects on Kir2.1 channels.

3.3. Effects of PDGF-BBa and PDGF-BBf Antagonists on
PDGF-BB-Mediated Activation of Kir2.1 Currents. We tested
the relative contributions of the PDGF-BB« and PDGF-BBf
receptors (PDGF-BBRa and PDGF-BBRS) on PDGF-BB-
mediated activation of Kir2.1 currents in RASMCs using the
PDGEF-BBRa effective inhibitor AG1296 (2uM) and the
PDGF-BBRp-effective inhibitor AG1295 (2uM). PDGF-
BBRa blockade (PDGF-BBR« (-)) had no effect on PDGF-
BB-mediated Kir2.1 current activation, and the blockade of
PDGEF-BBRf (PDGEF-BBRf (-)) significantly reduced the
effects on PDGF-BB-mediated Kir2.1 current activity
(Figure 3(a)). To confirm these data, the current-voltage rela-
tionship was measured from the voltage ramps (Figure 3(b)).
The peak Kir2.1 current densities of PDGF-BB, PDGF-BBR«

(-), and PDGF-BBRJ3 (-) measured at -150 mV were —10.3 +
1.66 pA/pF, —8.81 + 1.83 pA/pF (P > 0.05 vs. PDGF-BB, n =
10), and —2.53 £ 0.52 pA/pF (P < 0.05 vs. PDGF-BB; n = 10),
respectively (Figure 3(c)).

3.4. PKA and Akt Mediate the Inhibitory Effects of PDGF-
BB on Kir2.1 Channels. To test whether the activation of
Kir2.1 currents by PDGF-BB was mediated by the
cAMP/PKA and PI3K/Akt pathway, we determined the
effects of specific PKA and Akt inhibitors (Rp-8-CPT-cAMPs
and GSK690693, respectively) on the activation of Kir2.1
currents induced by PDGF-BB (25ng/mL). The Rp-8-CPT-
cAMPs (10 uM) reduced the PDGF-BB-induced increase in
the Kir2.1 currents to the control level in RASMCs
(Figure 4(a)). GSK690693 (10 nM) had no significant effects
on the PDGF-BB-induced activation of Kir2.1 currents in
RASMC:s (Figure 4(a)). To confirm these data, the current-
voltage relationship was measured from the voltage ramps
(Figure 4(b)). The peak Kir2.1 current densities of PDGF-BB,
PDGF-BB+Rp-8-CPT-cAMPs, and PDGF-BB+GSK690693
measured at -150 mV were —8.05 + 1.52 pA/pF, —2.42 + 0.42
pA/pF (P <0.05 vs. PDGF-BB, n=10), and —10.36 +2.06
pA/pF (P>0.05 vs. PDGF-BB, n=10), respectively
(Figure 4(c)).

3.5. Effect of Adenylyl Cyclase on PDGF-BB-Mediated
Activation of Kir2.1 Currents. As the effects of PKA on
Kir2.1 channel currents may be produced either directly or
by activation of adenylyl cyclase (AC), we added forskolin,
an effective activator of AC, and SQ22536, an effective inhib-
itor of AC, to Kir2.1 currents induced by PDGEF-BB
(25ng/mL). The results show that forskolin (10 M) signifi-
cantly enhanced the PDGF-BB-induced increase in the
Kir2.1 currents to the control level in RASMCs. The
S$Q22536 (10nM) reduced the PDGF-BB-induced increase
in the Kir2.1 currents to the control level in RASMCs
(Figure 5(a)). To confirm these data, the current-voltage rela-
tionship was measured from the voltage ramps (Figure 5(b)).
The peak Kir2.1 current densities of PDGF-BB, PDGF-BB
+forskolin, and PDGF-BB+SQ22536 measured at -150 mV
were —12.26 +2.67 pA/pF, —-24.17 +4.65pA/pF (P <0.05
vs. PDGF-BB, n=10), and -2.41 + 1.01 pA/pF (P < 0.05 vs.
PDGE-BB, n = 10), respectively (Figure 5(c)). To gain insight
into the molecular mechanism governing PDGF-BB activa-
tion of the Kir2.1 channel, the single-channel currents were
recorded with a pipette voltage of 70 mV using the excised
inside-out configuration and then were identified by their
unitary conductance (13-14.2 pS) and pharmacological sen-
sitivity. The results showed that forskolin (10 4uM) increased
and SQ22536 (10nM) decreased the NPo of Kir2.1. The
NPo of the Kir2.1 channel of PDGF-BB, PDGE-BB+forskolin,
and PDGF-BB+SQ22536 were measured at 70.23 + 7.35%,
98.16 +8.61% (P <0.05 vs. PDGF-BB, n=>5), and 8.73 +
0.23% (P<0.01 vs. PDGF-BB, n=5), respectively
(Figure 5(d)). An AC activator and AC inhibitor were
employed to compare the effects of PDGF-BB on NPo of
Kir2.1 (Figure 5(e)). In addition, a time course of the drug
effectat a holding voltage of 70 mV was analyzed (Figure 5(f)).
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FiGurek 1: Effects of PDGF-BB on Kir2.x currents. (a) Original tracings illustrating currents determined in RASMCs. Membrane potential
(E,,) was held at -80 mV, and pulse potentials were applied from -150mV to 0mV. (b) Arithmetic mean + SEM (n = 10) of current-
voltage relationship curves. (c)Arithmetic mean + SEM (n = 10) of the current amplitude at -150 mV of Kir2.x currents in Ba>*; CON. *P
<0.05 vs. Ba**; PDGF-BB **P < 0.05 vs. CON; PDGF-BB+Ba?*. ***P < 0.05 vs. PDGF-BB. (d) The “O” and “C” indicate the opened and
closed states of Kir2.x currents, respectively. (¢) Ba*" attenuated and PDGF-BB increased the NPo of Kir2.x currents (at +70 mV) by 4.58
+0.33% and 78.82 +8.05% (**P < 0.01 vs. CON, n=5) compared to CON (43.29 + 6.42%) (*P <0.01 vs. Ba®*, n=5), and PDGF-BB
+Ba*" was 41.47 +6.13% (P < 0.01 vs. PDGF-BB, n = 5). (f) Time course of PDGF-BB action of Kir2.x currents. Averaged NPo plot (55
bins) from five repeated perfusions of indicated compounds were normalized to control. CON means vascular smooth muscle cells
without any drug intervention.
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FiGurek 2: Effects of PDGF-BB on Kir2.1, Kir2.2, and Kir2.3 in transiently transfected HEK293 cells. (a—c) The transfections of the Kir2.1,
Kir2.2, and Kir2.3 vector were verified by RT-PCR. (d-f) Arithmetic mean + SEM (n=10) of current-voltage relationship curves. (g)
Arithmetic mean + SEM (n = 10) of the current amplitude at -150 mV of Kir2.x currents in PDGF-BB; Kir2.1. *P < 0.05 vs. Kir2.2, Kir2.1;
**P <0.05 vs. Kir2.3. CON means vascular smooth muscle cells without any drug intervention.

4. Discussion

Our observations revealed that PDGF-BB activated the Kir2.1
channel, the PDGF-BB-induced activation of the Kir2.1 chan-
nel was mediated by activation of the PDGFf; receptor, and
the response occurred via the activation of AC and PKA.
Regulation of the proliferation, migration, and phenotypic

modulation in VSMCs by PDGEF-BB has been studied exten-
sively [19]. Ion channel status is associated with several
occlusive vascular diseases involving VSMC phenotypic
modulation. For example, the switch toward intermediate-
conductance Ca**-activated K* channel (BK,) expression
may promote excessive neointimal VSMC proliferation, and
dysfunction of K* channels is linked to pulmonary arterial
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Ficure 5: Effects of AC on PDGF-BB-mediated activation of Kir2.1 currents. (a) Original tracings illustrating currents determined in
RASMCs. E,, was held at -80mV, and pulse potentials were applied from -150mV to 0mV. (b) Arithmetic mean + SEM (n = 10) of
current-voltage relationship curves. (c) Arithmetic mean + SEM (n = 10) of the current amplitude at -150 mV of Kir2.1 currents in PDGF-
BB; PDGF-BB+forskolin. Forskolin (10 uM). *P < 0.05 vs. PDGF-BB; PDGF-BB+5Q22536. SQ22536 (10nM). **P < 0.05 vs. PDGF-BB.
(d) The “O” and “C” indicate the opened and closed states of Kir2.1 currents, respectively. (e) The forskolin increased and SQ22536
decreased the NPo of Kir2.1 currents (at +70mV) by 98.16 + 8.61% (*P < 0.05 vs. PDGF-BB, n=5) and 8.73 +0.23% (**P <0.01 vs.
PDGF-BB, n=5) compared to PDGF-BB alone (70.23 £+ 7.35%). (f) Time course of PDGF-BB action of Kir2.1 currents. Averaged NPo
plot (5s bins) from five repeated perfusions of indicated compounds was normalized to control.

remodeling [20, 21]. Reduction in the L-type Ca®* channel a1
subunit (Cavl.2) has been observed in rat aortic VSMCs
during dedifferentiation and after balloon injury [22, 23].
Decreased K* channel activity causes depolarization of the

E,, and subsequently elevates free Ca®" concentration in the
cytoplasm via opening of Cav channels, which is required
for VSMC proliferation and remodeling [21]. The
phenotype-dependent plasticity of Kir channels may have



relevance to vascular remodeling [24]. In VSMCs, only Kir2.1
has been identified [13]. Blood vessels in Kir2.2 knockout
mice dilate normally in response to high K* stimulation but
not in vessels from Kir2.1 knockout mice [25]. Therefore,
Kir2.1 seems to be a main subunit in the formation of classic
Kir currents in these cells. Recently, we reported that PDGF-
BB promotes expression of Kir2.1 channel protein in
RASMCs. Electrophysiological studies demonstrated that
the functional upregulation of BK, is required for PDGF-
BB-induced coronary SMC phenotypic modulation and
migration [26]. In this study, we found that PDGF-BB
increases Kir2.1 channel currents in RASMCs (Figure 2(d)).
The single-channel results also revealed that PDGF-BB
enhanced the NPo of the Kir2.1 channel (Figure 1(d)).

To date, four distinct types of K" channels have been
identified in VSMCs: voltage-gated K* (Kv) channels, ATP-
sensitive potassium (K, p) channels, BK., channels, and
Kir channels [14]. Steady-state modulation of Kv channels
in rat arterial SMC by cAMP-dependent PKA and Kv7.5
channel activity can influence RASMCs via cAMP/PKA
activation [27, 28]. Allicin activated K,rp channels in rat
mesenteric arteries through PKA, and isoflurane activates
PKA in rat VSMCs, which in turn activates K, channels
[29, 30]. Baicalin promoted relaxation of mesenteric by
activation of BK, through stimulation of the cAMP/PKA
pathway [31]. Adenosine increased Kir currents via G
protein-coupled receptor A3 through the activation of PKA
in rabbit coronary arterial SMC [11]. PKA/cAMP may
enhance VSMC phenotype switching. This research indi-
cated that PDGF-BB increased Kir2.1 currents via PDGF-
BBRp through the activation of PKA in RASMCs. However,
Akt had no effects on Kir2.1 currents of PDGF-induced
RASMCs. The single-channel research showed that AC
increased NPo of Kir2.1 channel currents (Figure 5(d)).

PDGEF-BB works by activating the PDGF-BBR which
activates AC, increasing cAMP and activating PKA. If this
is the case, then applying PDGF-BB to inside-out patches
should have no effect, yet Figure 1(e) suggests an immediate
effect. The underlying mechanisms of the phenomenon
maybe that PDGF-BB works by activating the PGDF-BBf3
receptor which activates AC, increasing cAMP and activating
PKA, and activates the Kir2.1 channel in the other mecha-
nism immediately.

The abnormal proliferation, migration, and phenotypic
modulation of VSMCs are critical processes in atherosclero-
sis and restenosis [32, 33]. PDGF-BB can initiate a multitude
of biological effects through the activation of intracellular
signal transduction pathways that contribute to VSMC
proliferation, migration, and phenotypic modulation [34].
Therefore, the inhibition of PDGF-induced VSMC prolifera-
tion, migration, and phenotypic modulation may represent
an important point of therapeutic intervention in atheroscle-
rosis and restenosis.

5. Conclusion

In conclusion, our study demonstrated that the activation of
Kir2.1 channels by PDGF-BB results from the activation of
the cAMP-PKA pathway via the PDGF-BBf receptor in

BioMed Research International

RASMC:s. Therefore, Kir2.1 may be a potential candidate
for preventing or treating vascular diseases relevant to VSMC
proliferation, migration, and phenotypic modulation.
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