
Frontiers in Endocrinology | www.frontiersi

Edited by:
Michaela Tencerova,

Academy of Sciences of the Czech
Republic (ASCR), Czechia

Reviewed by:
Divya Singh,

Central Drug Research Institute (CSIR),
India

Mattabhorn Phimphilai,
Chiang Mai University, Thailand

Bin Feng Cheng,
Xinxiang Medical University, China

*Correspondence:
Yikai Li

ortho@smu.edu.cn

Specialty section:
This article was submitted to

Bone Research,
a section of the journal

Frontiers in Endocrinology

Received: 01 December 2021
Accepted: 18 January 2022

Published: 22 February 2022

Citation:
Zheng S, Zhou C, Yang H,

Li J, Feng Z, Liao L and Li Y (2022)
MelatoninAccelerates Osteoporotic
Bone Defect Repair by Promoting

Osteogenesis–Angiogenesis Coupling.
Front. Endocrinol. 13:826660.

doi: 10.3389/fendo.2022.826660

ORIGINAL RESEARCH
published: 22 February 2022

doi: 10.3389/fendo.2022.826660
Melatonin Accelerates Osteoporotic
Bone Defect Repair by Promoting
Osteogenesis–Angiogenesis Coupling
Sheng Zheng1, Chunhao Zhou2, Han Yang1, Junhua Li1, Ziyu Feng1, Liqing Liao1

and Yikai Li1*

1 School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, 2 Department of Orthopedics-
Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China

Previous studies have revealed that melatonin could play a role in anti-osteoporosis and
promoting osteogenesis. However, the effects of melatonin treatment on osteoporotic
bone defect and the mechanism underlying the effects of melatonin on angiogenesis are
still unclear. Our study was aimed to investigate the potential effects of melatonin on
angiogenesis and osteoporotic bone defect. Bone marrow mesenchymal stem cells
(BMSCs) were isolated from the femur and tibia of rats. The BMSC osteogenic ability was
assessed using alkaline phosphatase (ALP) staining, alizarin red S staining, qRT-PCR,
western blot, and immunofluorescence. BMSC-mediated angiogenic potentials were
determined using qRT-PCR, western blot, enzyme-linked immunosorbent assay,
immunofluorescence, scratch wound assay, transwell migration assay, and tube
formation assay. Ovariectomized (OVX) rats with tibia defect were used to establish an
osteoporotic bone defect model and then treated with melatonin. The effects of melatonin
treatment on osteoporotic bone defect in OVX rats were analyzed using micro-CT,
histology, sequential fluorescent labeling, and biomechanical test. Our study showed
that melatonin promoted both osteogenesis and angiogenesis in vitro. BMSCs treated
with melatonin indicated higher expression levels of osteogenesis-related markers [ALP,
osteocalcin (OCN), runt-related transcription factor 2, and osterix] and angiogenesis-
related markers [vascular endothelial growth factor (VEGF), angiopoietin-2, and
angiopoietin-4] compared to the untreated group. Significantly, melatonin was not able
to facilitate human umbilical vein endothelial cell angiogenesis directly, but it possessed
the ability to promote BMSC-mediated angiogenesis by upregulating the VEGF levels. In
addition, we further found that melatonin treatment increased bone mineralization and
formation around the tibia defect in OVX rats compared with the control group.
Immunohistochemical staining indicated higher expression levels of osteogenesis-
related marker (OCN) and angiogenesis-related markers (VEGF and CD31) in the
melatonin-treated OVX rats. Then, it showed that melatonin treatment also increased
the bone strength of tibia defect in OVX rats, with increased ultimate load and stiffness, as
performed by three-point bending test. In conclusion, our study demonstrated that
melatonin could promote BMSC-mediated angiogenesis and promote osteogenesis–
angiogenesis coupling. We further found that melatonin could accelerate osteoporotic
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bone repair by promoting osteogenesis and angiogenesis in OVX rats. These findings may
provide evidence for the potential application of melatonin in osteoporotic bone defect.
Keywords: melatonin, osteoporosis, bone defect repair, osteogenesis–angiogenesis coupling, bone marrow
mesenchymal stem cells
INTRODUCTION

Osteoporosis, as the most frequent bone disease, results in
reduced bone strength. The main characteristics include lower
bone mineral density (BMD) and bone mass, impaired bone
quality, and abnormal micro-architecture (1–3). Osteoporosis
is a common and age-related bone disease throughout the
world, affecting more than 20 million individuals (4), which
causes bone fragility and fractures (2). It has a major influence on
individuals associated with high morbidity and mortality (5).
As a global health concern, osteoporosis can affect both sexes
and all races, dramatically increasing the social and economic
burden worldwide.

Osteoporosis has been recognized as an increased risk of bone
fracture and bone defect healing. Rodent studies showed that
osteoporosis could cause a striking reduction in the callus size of
bone fracture and bone defect, BMD, and mechanical strength
(6). Previous studies showed that the healing time of bone
fractures or bone defects was significantly longer in patients
with osteoporosis than in healthy people (7–10). Maintaining
osteogenesis and angiogenesis is crucial for osteoporotic bone
regeneration. Ding et al. found that reduced local blood supply to
the tibial metaphysis may be associated with ovariectomy-
induced osteoporosis (11). In a rat osteoporotic model, new
bone trabeculae is arranged in an irregular and loose fashion,
indicating the poor bone quality of newly formed bone (12). For
patients with osteoporotic bone defect, osteoclast activity is
enhanced and bone resorption proceeds at a faster rate than
that of bone formation. In addition, the ability of new bone
formation is decreased, and bone defect healing is significantly
delayed compared with normal bone defect (13). Thus, the
treatment is more difficult than that of normal bone defect. In
the face of such a severe health problem, how to find more
therapeutic strategies and ideal drugs has become an urgent
problem to be solved.

Melatonin, synthesized from serotonin in the pineal gland, is a
signal molecule that modulates the biological circadian rhythms
in humans (14). Except for the pineal gland, melatonin can also be
synthesized locally in the bone marrow. Increasing evidence
demonstrates that melatonin may play a critical role in bone
metabolism. Melatonin, the synthesis of which decreases with
aging, is considered to be involved in age-related bone loss and
osteoporosis (15, 16). In bone, two types of membrane-bound
melatonin receptors, including MT1 and MT2, have been
identified and can be expressed in both osteoblasts and
osteoclasts (17). The level of melatonin in the bone marrow was
twice that of plasma at night (18), suggesting that it may be related
to bone metabolism. Multiple studies have revealed that
melatonin could promote osteoblast proliferation and
differentiation, inhibit osteoclast activity, maintain the steady-
n.org 2
state of bone metabolism, and thus play a role in anti-osteoporosis
(19–22). Zhang et al. demonstrated that melatonin could restore
the osteoporosis-impaired osteogenic potential of bone marrow
mesenchymal stem cells (BMSCs) and alleviate bone loss through
the HGF/PTEN/Wnt/beta-catenin axis (23). Dong et al. showed
that melatonin treatment could upregulate the expressions of
neuropeptide Y and its receptor Y1 and promote mesenchymal
stem cell proliferation and migration (24). Thus, it indicates that
melatonin may be a potential biomolecule for osteoporosis and its
related bone defect.

Moderate osteogenesis and angiogenesis is involved in both
bone repair and fracture healing (25). Currently, accumulating
evidence has indicated the associations between melatonin and
osteogenesis. However, few studies have been conducted to
research the relationship between melatonin and angiogenesis.
Ramıŕez-Fernández et al. observed that only the melatonin group
showed a significantly increased number of blood vessels
compared to the control group in a bone defect rabbit model
(26). However, the mechanism underlying the effects of
melatonin on angiogenesis was not clarified. Thus, how
melatonin affects angiogenesis and what its effects are on
osteoporotic bone defect are still unclear. The purpose of this
study was to evaluate the potential effects of melatonin on
angiogenesis and osteoporotic bone defect, which may provide
evidence for the potential application of melatonin in
osteoporosis and osteoporotic bone defect.
MATERIALS AND METHODS

Isolation and Culture of Rat BMSCs
BMSC isolation was performed as previously described (27, 28).
BMSCs were harvested from the bone marrow of femurs and
tibias in 2-week-old Sprague–Dawley (SD) rats. The rats were
euthanized and sterilized in 75% ethanol for 15 min. BMSCs
were flushed out by an injection of alpha modified Eagle’s
minimum essential medium (a-MEM; HyClone, USA) using a
5-ml syringe fitted with a 25-gauge needle under sterile
conditions. After centrifugation, the BMSCs were cultured in
a-MEM, which was supplemented with 10% fetal bovine serum
(Gibco, USA) and 1% penicillin/streptomycin (Gibco, USA). The
BMSCs between passages 3 and 5 were used in the following
experiments. All of the above-mentioned cells were cultured at
37°C in a humidified atmosphere containing 5% CO2.

Cell Proliferation Assay
BMSC proliferation was detected using Cell Counting kit-8
(CCK-8; Dojindo, Kumamoto, Japan) following the
manufacturer’s instructions. Specifically, the BMSCs were
seeded with a density of 2,000 cells per well in a 96-well plate
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and cultured in complete medium containing melatonin with
various gradient concentrations (10 nM, 100 nM, 1 mM, and 10
mM) for various durations (1, 3, 5, and 7 days). Melatonin (purity
>99%, cat. no. S20287) was purchased from Yuanye Bio-
Technology Co., Ltd. (Shanghai, China). The untreated wells
served as the control group. Then, each well was subjected to a
10-ml CCK-8 solution, and the cells were incubated at 37°C for
1 h. Then, the optical density was measured at 450 nm using a
microplate reader (Thermo, USA).

Osteoblastic Determination and
Mineralization Assessment
BMSCs were seeded in a 24-well plate with a density of 2 × 104

cells per well. The medium was replaced with an osteogenic
medium (complete a-MEM containing 10 nM dexamethasone,
50 mM ascorbic acid, and 10 mM b-glycerophosphate) after
reaching over 80% confluence. For treatment, melatonin with
various gradient concentrations (10 nM, 100 nM, and 1 mM) was
added into the medium. The untreated wells served as the control
group. Then, protein was extracted, and the supernatant liquid
was harvested after 7 days of osteogenic induction for western
blotting analysis and enzyme-linked immunosorbent assay
(ELISA) test of vascular endothelial growth factor (VEGF),
respectively. Alkaline phosphatase (ALP) activity was
determined at day 7 of differentiation using ALP Staining Kit
(cat. no. P0321S, Beyotime Biotechnology, China). The
mineralization of the calcium nodule was detected on the 14th
day using alizarin red S (ARS) solution (cat. no. G1452, Solarbio
Science & Technology, China). The absorbance at 405 nm for
ALP and 560 nm for ARS staining was detected using a
microplate reader (Thermo, USA).

Quantitative Real-Time PCR
Prior to PCR, total RNA was extracted using RNA Purification
Kit (EZBioscience, USA). The RNA was reverse-transcribed by
500 ng of total RNA from each sample using Reverse
Transcription Kit (EZBioscience, USA). Next, the cDNA was
amplified with SYBR Green qPCR Master Mix (EZBioscience,
USA). Data were analyzed, and the relative expression levels were
calculated by the 2-DDCT method. Housekeeping gene
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used for normalization. All reactions were carried out with
three biological replicates, and each analysis consisted of three
Frontiers in Endocrinology | www.frontiersin.org 3
technical replicates. The primer sequences were designed by
Oligo 7.0 software and are shown in Table 1.

Western Blotting
Total protein was extracted by RIPA buffer (Beyotime
Biotechnology, China), containing protease and phosphatase
inhibitors (Sigma-Aldrich, USA), for 30 min at 4°C. The cell
lysates were cleared by centrifugation, and the protein
concentration was determined using the bicinchoninic acid
quantification kit (Beyotime Biotechnology, China).
Furthermore, 30 mg protein was electrophoresed with 10%
SDS-PAGE electrophoresis (Beyotime Biotechnology, China)
and subsequently transferred to a polyvinylidene difluoride
membrane (Millipore, USA). The membranes were blocked
with 5% bovine serum albumin (BSA) (Solarbio Science &
Technology, China) for 1 h at room temperature and
incubated overnight at 4°C with primary antibodies against
ALP (1:1,000; DF6225, Affinity Biosciences, Cincinnati, OH,
USA), osteocalcin (OCN) (1:1,000; DF12303, Affinity
Biosciences, Cincinnati, OH, USA), runt-related transcription
factor 2 (RUNX2) (1:2,000; AF5186, Affinity Biosciences,
Cincinnati, OH, USA), VEGF (1:1,000; AF5131, Affinity
Biosciences, Cincinnati, OH, USA), GAPDH (1:5,000; T0004,
Affinity Biosciences, Cincinnati, OH, USA), and b-actin (1:5,000;
T0022, Affinity Biosciences, Cincinnati, OH, USA). The
membranes were then incubated with secondary antibody
(1:5,000; S0001, Affinity Biosciences, Cincinnati, USA).
Finally, the membranes were visualized with enhanced
chemiluminescence reagent (Beyotime Biotechnology, China).
The band intensity was quantified using Image Lab (Bio-Rad,
Hercules, CA, USA).

VEGF Analysis by ELISA
Commercial ELISA kit for VEGF (Cusabio, Wuhan, China) was
used to determine the concentrations of VEGF in the
supernatant liquid from different groups following the
manufacturer’s protocols.

Immunofluorescence
BMSCs were fixed with 4% PFA and permeabilized with 0.1%
Triton X-100 in phosphate-buffered saline (PBS) containing 5%
BSA. After blocking with 5% BSA for 1 h, the cells were stained
overnight at 4°C with primary antibodies. Subsequently, the cells
TABLE 1 | Real-time PCR primer sequences used in the study.

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

ALP CCGCAGGATGTGAACTACT GGTACTGACGGAAGAAGGG
OCN CAGACAAGTCCCACACAGCA CCAGCAGAGTGAGCAGAGAGA
RUNX2 ACTTCCTGTGCTCGGTGCT GACGGTTATGGTCAAGGTGAA
OSX GGAAAAGGAGGCACAAAGAA CAGGGGAGAGGAGTCCATT
VEGF CACGACAGAAGGGGAGCAGAAAG GGCACACAGGACGGCTTGAAG
Ang-2 GAAGAAGGAGATGGTGGAGAT CGTCTGGTTGAGCAAACTG
Ang-4 GCTCCTCAGGGCACCAAGTTC CACAGGCGTCAAACCACCAC
GAPDH ATGGCTACAGCAACAGGGT TTATGGGGTCTGGGATGG
February 20
ALP, alkaline phosphatase; OCN, osteocalcin; RUNX2, runt-related transcription factor 2; OSX, osterix; VEGF, vascular endothelial growth factor; Ang-2, angiopoietin-2; Ang-4,
angiopoietin-4; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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were incubated with a fluorescein isothiocyanate-conjugated
secondary antibody (1:1,000; ab6717, Abcam, UK) for 1 h and
then stained with 4′,6-diamidino-2-phenylindole. The
fluorescence signal was captured using a fluorescence
microscope (DMi8, Leica, Germany).

Angiogenesis-Related Assays in vitro
To further assess the angiogenic capability of melatonin, the
BMSCs were treated with or without 100 nM melatonin, and the
conditioned mediums were harvested after 7 days of osteogenic
induction, which were used for the following assays.
Subsequently, human umbilical vein endothelial cells
(HUVECs) (Procell Life Science &Technology Company,
Wuhan, China) were cultured and treated under different
conditions (1): fresh medium (2), fresh medium with 100 nM
melatonin (3), conditioned medium from BMSCs without
melatonin, and (4) conditioned medium from BMSCs with 100
nM melatonin. Then, scratch wound assay, transwell migration
assay, and tube formation assay were further detected as will be
detailed in the following discussion.

For the scratch wound assay, HUVECs were seeded at a density
of 2 × 105/well in a 6-well plate. The cells were scratched after
confluence under an inverted microscope (Nikon; Tokyo, Japan).
Then, the cells were cultured in the aforementioned mediums. The
wound images were obtained immediately and at 12 h later. The
width of the wounded areas (%) was calculated as (A0 – An)/A0 ×
100, where A0 and An represent the initial wound area and the
residual wound area at the metering point, respectively.

For the transwell migration assay, HUVECs were suspended
and loaded into the top chamber of a transwell plate (Corning,
NY, USA). The medium from the treated BMSCs was then added
to the chamber. After 12 h, the unmigrated HUVECs in the upper
chambers were removed by wiping the top of themembranes. The
migrated cells were fixed in 4% paraformaldehyde, washed with
PBS solution, and then stained with 0.5% crystal violet for 10 min.
The cells were imaged and counted under the random fields of the
microscope (Nikon; Tokyo, Japan).

For the tube formation assay, HUVECs were seeded into a
Matrigel-coated 96-well plate at a density of 5 × 103/well, Then,
the cells were incubated in the aforementioned medium. After
incubation for 8 h, HUVEC tube formation was observed under
an inverted microscope (Nikon; Tokyo, Japan). The number of
tubes was calculated by Image-Pro Plus software.

Animal Experiments in Ovariectomized
Rats
Ethics Statement
All experiments were approved by the Animal Care and Ethics
Committee of the Southern Medical University (no.
SMUL2021003), and the procedures were conducted in
accordance with the policies of the Ethics Committee for
Animal Research.

Animal Surgery and Treatment
A total of 84 female specific-pathogen-free SD rats (weight 250 ±
20 g; 12 weeks old; purchased from Zhuhai BesTest Bio-Tech
Co., Ltd., Guangdong) were used in this experiment. All the rats
Frontiers in Endocrinology | www.frontiersin.org 4
were housed at a standard room temperature of 22 ± 2°C and
humidity of 55–70% under a 12-h light/dark cycle with free
access to food and water. After adaptation, 78 rats were
randomly selected for bilateral ovariectomized (OVX) surgery,
and 6 rats received sham surgery as previously described (29).
After 3 months, 6 OVX and 6 sham surgery rats were selected for
micro-computed tomography (micro-CT) and H&E staining to
confirm the OVX rat model of osteoporosis. Then, 72 OVX rats
were randomly selected and anesthetized for the longitudinal
approach, which was performed on the medial surface of the
proximal end with exposure of the proximal anteromedial
metaphysis of the right tibia. Specifically, a standardized drill
hole defect (3-mm diameter and 4-mm depth) was used to create
a monocortical defect. After surgery, all the rats were randomly
divided into three groups: low-dose melatonin treatment group
(LMEL group, n = 24), high-dose melatonin treatment group
(HMEL group, n = 24), and control group (CON group, n = 24).
The LMEL and HMEL group rats were intraperitoneally injected
with 10 and 50 mg/kg/day melatonin daily for 4 weeks,
respectively. The CON group was injected with normal saline
under the same conditions. The therapeutic dose of melatonin
mentioned above was determined based on previous experiments
in which melatonin showed protective effects in an OVX rat
model (30, 31). The right tibiae in rats were harvested and
assigned to micro-CT analysis and histological studies, which
were randomly selected from each group (n = 6/group) at 2
weeks after tibia surgery. All the remaining rats were sacrificed,
and the right tibiae were harvested at 4 weeks after treatment. Six
tibia specimens were randomly selected from each group for
micro-CT analysis and histological studies. The remaining tibia
specimens were randomly assigned to fluorescent labeling
analysis (n = 6 for each) and biomechanical test (n = 6 for each).

Micro-CT
Micro-CT analysis (Model mCT80, Scanco Medical Inc.,
Brüttisellen, Switzerland) was first used to confirm the success
of the osteoporosis model. We selected the first region of interest
(ROI) in the trabecular region of the tibia (1,500 mm in length
and approximately 300 mm below the proximal epiphyseal plate)
and reconstructed it by a computer analysis program. The
histomorphometric parameters were considered as BMD, bone
volume fraction (BV/TV), and trabecular number (Tb.N).

Bone repair was monitored by micro-CT at 2 and 4 weeks
after tibia surgery. The central 2.5-mm-diameter region of the 3-
mm-diameter defect was defined by drawing a circular contour
as the second ROI to evaluate bone regeneration within the
defect, which could avoid containing the native bone margins
and help obtain a consistent volume of interest. After 3D
reconstruction, BMD, BV/TV, Tb.N, and trabecular separation
(Tb.Sp) in the ROI region were analyzed. All digitalized data and
3D images were generated by the built-in software of the
micro-CT.

Histology and Immunohistochemical Staining
For histological and immunohistochemical (IHC) analyses, the
samples were decalcified in 10% EDTA for 4 weeks after micro-
CT imaging. Then, 4-mm-thick sections were then subjected to
February 2022 | Volume 13 | Article 826660
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H&E staining and Masson’s trichrome staining. For IHC
staining, 6-mm-thick sections were incubated with primary
antibodies against OCN (1:100; DF12303, Affinity Biosciences,
Cincinnati, OH, USA), VEGF (1:200; AF5131, Affinity
Biosciences, Cincinnati, OH, USA), and CD31(1:200; AF6191,
Affini ty B iosc i ences , C inc inna t i , OH, USA) . The
immunoreactivity of the analysis was determined using
horseradish peroxidase detection system.

Sequential Fluorescent Labeling
All of the rats were intraperitoneally injected with 10 mg/kg
calcein (cat. no. C0875, Sigma) at 10 and 3 days before the end of
the experiment (32). At the end of the observation time (4 weeks
after the treatment), the tibia samples were obtained for hard-
tissue slicing and then imaged through the laser confocal
microscopy (LSM 880, Zeiss, Germany). The bone mineral
apposition rate (MAR, mm/d) was measured and calculated by
automatic image analysis system.

Biomechanical Test
A three-point bending test was performed on the tibia specimens
to determine the biomechanical properties by a material testing
machine (ELF-3510AT, Bose, Inc., USA) as previously described
(33). The bones were positioned horizontally on two supports.
As the location of the bone repair area, the center of the
metaphysis was positioned downward. The load and the
displacement of the loading device were collected during each
experiment until fracture. Data was recorded to the material
testing instrument from the load–deformation curve. The
maximum force at failure values (N) were recorded from the
load data, and the stiffness (N/mm) was calculated as the slope of
the initial linear uploading portion of the curves.

Statistical Analysis
SPSS software version 25.0 was used for all statistical analyses.
Data were analyzed by two-tailed Student’s t-test or analysis of
variance (ANOVA), with repeated measures where applicable.
Differences were determined to be statistically significant when
P-value <0.05, with the data reported as mean ± SEM.
RESULTS

Melatonin Promoted the Osteogenesis of
BMSCs In Vitro
First, a CCK-8 assay was conducted to observe whether melatonin
can affect the proliferation of BMSCs. As shown in Figure 1A,
melatonin promoted cell proliferation, and its effect was not in a
dose-dependent manner. The most effective concentration was
100 nM, followed by 1 mM, 10 nM, and 10 mM. Then, ALP
staining and ARS staining were performed to assess the pro-
osteogenic effect of melatonin in vitro. BMSCs treated with
melatonin indicated a higher level of ALP activities compared to
the control group (Figures 1B, C). The most effective
concentration was also 100 nM, followed by 1 mM and 10 nM,
which was consistent with the CCK-8 assay. In addition, ARS
staining validated the result. After 14 days of osteogenic induction,
Frontiers in Endocrinology | www.frontiersin.org 5
ARS staining revealed an increase in the stained area and
extracellular deposition of calcium in the melatonin treatment
groups compared with the control group (Figures 1D, E).

To further investigate how melatonin promotes the
osteogenesis of BMSCs, we measured the mRNA and protein
expressions of osteogenesis-related genes in cultured BMSCs at 3
and 7 days after various gradient concentrations of melatonin
treatment. It showed that the mRNA expression levels of
osteogenesis-related markers, including ALP, OCN, RUNX2,
and osterix were all significantly increased in the melatonin
treatment groups compared with the control group (Figure 1F).
The most effective concentration is 100 nM. Consistently, the
protein expression levels of ALP, OCN, and RUNX2 were all
significantly increased in the melatonin treatment groups
compared with the control group (Figures 1G, H) .
Immunofluorescence staining also indicated higher expression
levels of ALP and OCN after melatonin treatment (Figures 1I, J).
Thus, all these data indicated that melatonin promoted the
osteogenesis of BMSCs in vitro.

Melatonin Promoted Angiogenesis In Vitro
Then, the mRNA expressions of angiogenesis-related genes in
cultured BMSCs at 3 days were detected after various
concentrations of melatonin treatment. The mRNA expression
levels of angiogenesis-related markers, including VEGF,
angiopoietin-2, and angiopoietin-2, were all significantly
upregulated compared with the control group (Figure 2A).
After 7 days of melatonin treatment, the protein expression
level of VEGF was significantly increased compared with the
control group (Figure 2B). Consistently, ELISA and
immunofluorescence staining for VEGF both showed
significantly higher levels of VEGF in the melatonin-treated
groups (Figures 2C, D) , Notably, the most effective
concentration for all of these assays is also 100 nM. It suggested
that the most effective concentration of melatonin for promoting
osteogenesis and angiogenesis was consistent. These findings
imply that melatonin can also promote angiogenesis in vitro.

Melatonin Promoted Osteogenesis–
Angiogenesis Coupling In Vitro
To further assess the angiogenic capability of melatonin, BMSCs
were treated with or without 100 nM melatonin, and the
conditioned mediums were harvested after 7 days of osteogenic
induction. The fresh mediums and the conditioned mediums were
used for the following assays, respectively. Scratch wound assay and
transwell migration assay were used to explore whether melatonin
could affect cell migration. We found that no significant difference
in cell migration was observed between the melatonin-treated
group and the control group when HUVECs were cultured in
fresh medium (P > 0.05). However, the migration of the melatonin-
treated group was incredibly increased compared to the untreated
group when HUVECs were cultured in conditioned medium
(Figures 3A–D). Consistently, there was no significant difference
in the ability to induce capillary tube formation between the
melatonin-treated group and the untreated group when HUVECs
were cultured in fresh medium (P > 0.05). The ability of the
melatonin-treated group to induce capillary tube formation was
February 2022 | Volume 13 | Article 826660
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significantly enhanced compared to the untreated group when
HUVECs were cultured in conditioned medium (Figures 3E, F).
We also found that the most effective concentration for the above-
mentioned assays is 100 nM, which is consistent with our previous
results. The results indicated that melatonin treatment was not able
to facilitate HUVEC angiogenesis. However, it implied that
melatonin possessed the ability to promote BMSC-mediated
angiogenesis. This illustrated that the role of melatonin in
promoting angiogenesis is coupled with that in promoting
osteogenesis. Collectively, it demonstrated that melatonin
promoted osteogenesis–angiogenesis coupling in vitro.

Confirmation of Osteoporosis Model in
OVX Rats
After 3 months of OVX surgery, the efficacy of OVXwas confirmed
by micro-CT and H&E staining of tibia bones. 2D images and 3D
vertically sectioned images of the tibia bone were performed in the
Sham group and the OVX group (Figures 4A, B). Both 2D and 3D
images showed a significant trabecular bone volume, thickness, and
Frontiers in Endocrinology | www.frontiersin.org 6
density decrease, with a striking trabecular separation increase,
compared to the Sham group. To observe this change more clearly,
the 2D scanned images were constructed into 3D microstructures
for analyses (Figure 4C). It showed significantly decreased BMD,
BV/TV, and Tb.N in the OVX group compared with the Sham
group (Figure 4D). Furthermore, H&E staining exhibited that the
tibia bone in the OVX group was severely damaged, with increased
bone trabecular spacing and broken tibia trabeculae, compared
with the Sham group (Figure 4E). All of the above-mentioned data
demonstrated that the OVX rat model of osteoporosis was
successfully established.

Melatonin Enhanced Bone Repairing
Ability by Promoting the Osteogenesis of
Tibia Defect in OVX Rats
After confirmation of osteoporosis, a tibia defect model was
established in rats and then treated with melatonin for 4 weeks.
At week 2, the CON group remained primarily empty in the 3D
reconstruction images. However, a small amount of mineralized
A B

D E

F G

I

H

J

C

FIGURE 1 | Melatonin promoted the osteogenesis of BMSCs in vitro. (A) The effect of melatonin on BMSC proliferation measured by CCK-8 assays. (B, C) Images
and quantification of ALP activity after 7 days of osteogenic induction (scale bars, 200 mm). (D, E) Calcium mineralization was assessed via ARS staining and
quantification (scale bars, 200 mm). (F) mRNA expression levels of osteogenesis-related markers in BMSCs following treatment with/without melatonin. (G, H) Protein
expression levels of osteogenesis-related markers (OCN, RUNX2, and ALP). (I, J) Immunofluorescent images of BMSCs stained for ALP and OCN (scale bars, 100
mm). All the experiments were repeated at least 3 times independently. CCK-8, cell counting kit-8; BMSCs, bone marrow mesenchymal stem cells; ARS, alizarin red
S; ALP, alkaline phosphatase; OCN, osteocalcin; RUNX2, runt-related transcription factor 2. The data are presented as means ± SEM. *p < 0.05, **p < 0.01 vs.
control group, #p < 0.05, ##p < 0.01 vs. 100 nM melatonin group.
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tissue was predominantly located at the defect periphery in the
LMEL and HMEL groups (Figure 5A). At week 4, increased
bone volume can be observed in the LMEL and HMEL groups
compared with the CON group (Figure 5B). Histological
representation of bone formation further confirmed the results
of micro-CT (Figures 5C, D). In addition, BMD, BV/TV, Tb.N,
Frontiers in Endocrinology | www.frontiersin.org 7
and Tb.Sp in the ROI were further analyzed. The CON group
showed the lowest values in BMD, BV/TV, and Tb.N, with the
highest value in Tb.Sp among all groups at both time points
(Figure 5E). It indicated that melatonin treatment promoted the
osteogenesis of tibia defect in OVX rats. Meanwhile, Masson’s
trichrome staining showed that melatonin treatment increased
A

B

D

C

FIGURE 2 | Melatonin promoted angiogenesis in vitro. (A) mRNA expression levels of osteogenesis-related markers in BMSCs following treatment with/without
melatonin. (B) Protein expression levels of osteogenesis-related marker VEGF. (C) VEGF content secreted in the supernatant liquid assessed by ELISA kits.
(D) Immunofluorescent images of BMSCs stained for VEGF (scale bars, 100 mm). All the experiments were repeated at least 3 times independently. BMSCs, bone
marrow mesenchymal stem cells; VEGF, vascular endothelial growth factor. The data are presented as means ± SEM. *p < 0.05, **p < 0.01 vs. control group,
#p < 0.05, ##p < 0.01 vs. 100 nM melatonin group.
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the bone mineralization and formation around the tibia defect
compared with the CON group (Figures 5F, G). Remarkably, the
HMEL group showed a more striking effect than the LMEL
group at both time points. This suggested that melatonin therapy
may show a dose-dependent manner in vivo. In general, these
results revealed that melatonin enhanced the bone repairing
ability by promoting the osteogenesis of tibia defect in OVX rats.

Melatonin Accelerated Bone Repair by
Promoting the Osteogenesis and
Angiogenesis of Tibia Defect in OVX Rats
Immunohistochemical staining of osteogenesis-related marker
(OCN) and angiogenesis-related markers (VEGF and CD31)
was further performed. Compared with the CON group, OCN
immunostaining was denser and more widely distributed in
sections in the melatonin-treated groups (Figure 6A), which
was consistent with the results of VEGF and CD31
(Figures 6B, C). The HMEL group showed a more striking
effect than the LMEL group at both time points. Sequential
Frontiers in Endocrinology | www.frontiersin.org 8
fluorescent labeling showed that the distance strip in the
melatonin-treated groups was wider than that in the CON
group (Figure 6D). The bone mineral deposition rate was
analyzed to investigate the bone formation activity. It showed
that MAR was significantly improved in the melatonin-treated
groups, and this effect was more significant in the HMEL group
than that in the LMEL group (Figure 6E). The three-point
bending test revealed that the melatonin treatment increased
the ultimate load and stiffness compared with the CON group
(Figures 6F, G). All these data implied that melatonin could
accelerate bone repair and increase bone strength by promoting
the osteogenesis and angiogenesis of tibia defect in OVX rats.
DISCUSSION

The repair of bone defects requires recapitulation of complex
signaling cascades, including a series of spatiotemporal
angiogenesis and osteogenesis (34, 35). However, for
A B

D

E F

C

FIGURE 3 | Melatonin promoted osteogenesis-angiogenesis coupling in vitro. (A, B) Scratch wound assay of HUVECs incubated with the indicated mediums (scale
bars, 100 mm). (C, D) Transwell migration assay of HUVECs incubated with the indicated mediums (scale bars, 100 mm). (E, F) Tube formation assay of HUVECs
incubated with the indicated mediums (scale bars, 100 mm). All the experiments were repeated at least 3 times independently. The data are presented as means ±
SEM. **p < 0.01 vs. control group, ##p < 0.01 vs. CM-vehicle group. HUVECs, human umbilical vein endothelial cells; FM, fresh medium; CM, conditioned medium.
ns, no significance.
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osteoporosis, the bone resorption rate is greater than that of new
bone formation, with a decreased ability for new bone formation.
The clinical therapy of osteoporotic bone defect is more difficult
than that of normal bone defect (36). However, conventional
treatment option has limited efficacy and is not satisfactory.
Frontiers in Endocrinology | www.frontiersin.org 9
Therefore, novel therapeutic drug strategies to tackle
osteoporosis and its related complications are warranted,
which should be effective, safe, and available. To the best of
our knowledge, our study is the first to demonstrate that
melatonin could promote osteogenesis–angiogenesis coupling
A B

D

E

C

FIGURE 4 | Confirmation of osteoporosis model in ovariectomized rats. (A) 2D images of the tibia bone in two groups (scale bars, 1 mm). (B) Tibia bone visualized
and vertical-sectioned images (scale bars, 1 mm). (C) 3D constructed images of the tibia proximal metaphysis (top, trabecular bone with cortical bone; internal,
trabecular portion) (scale bars, 1 mm). (D) Quantitative presentation of microarchitectural parameters including BMD, BV/TV, and Tb.N. (E) H&E staining images of tibia
bone. BMD, bone mineral density; BV/TV, trabecular bone volume; Tb.N, trabecular number. The data are presented as means ± SEM. **p < 0.01 vs. Sham group.
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in vitro. Meanwhile, we further confirmed that melatonin
treatment could accelerate bone repair and increase bone
strength by promoting the osteogenesis and angiogenesis of
tibia defect in OVX rats.

Bone regeneration is inseparable from the supply of nutrients,
and angiogenesis in bone is crucial for bone defect repair (37).
Vascularization is the premise of bone defect repair (38), which is
a key link in the process of fracture healing and bone defect
repair (39). The conventional view is that the relationship
between osteogenesis and angiogenesis is one way, mainly
manifested as angiogenesis providing essential nutrients for
bone regeneration and repair and eliminating metabolic wastes
(40). However, recent studies have shown that bone regeneration
also plays a vital role in the regeneration of blood vessels within
the bone (41, 42). Thus, it is critical to focus on the regeneration
of blood vessels while investigating bone regeneration.

Increasing studies suggested that melatonin plays beneficial
roles in bone metabolism, including bone anabolism as well as
anti-bone resorption (43–45). Currently, various studies have
Frontiers in Endocrinology | www.frontiersin.org 10
been focused on the association between melatonin and
osteogenesis. However, few studies are about the effects of
melatonin on angiogenesis. In our study, we found that
melatonin can promote osteogenesis and angiogenesis
simultaneously. An in vitro study showed that melatonin
promoted osteogenesis at the same optimal concentration as it
promoted angiogenesis. The most effective concentration of both
was 100 nM. However, it is worth noting that its effect was not in
a dose-dependent manner. It indicates that it is important to find
the optimal concentration, rather than simply increasing it, for
melatonin to maximize its role in osteogenesis and angiogenesis.
We further found that melatonin possessed the ability to
promote BMSC-mediated angiogenesis and osteogenesis–
angiogenesis coupling in vitro. When HUVECs were cultured
in fresh medium, we found that no significant difference in cell
migration and tube formation was observed between the
melatonin-treated group and the control group. However,
when HUVECs were cultured in conditioned medium, the
ability of migration and induction of capillary tube formation
A B

D

E

F G

C

FIGURE 5 | Melatonin enhanced the bone repairing ability by promoting osteogenesis of tibia defect in ovariectomized rats. (A, B) 3D images of mineralized bone
formation in tibia defect (scale bars, 1 mm). (C, D) Histological assessment of the defect area by H&E staining (scale bars, 200 mm). (E) Quantitative presentation of
microarchitectural parameters, including BMD, BV/TV, Tb.N, and Tb.Sp. (F, G) Histological assessment of the defect area by Masson’s trichrome staining (scale
bars, 200 mm). BMD, bone mineral density, BV/TV, trabecular bone volume, Tb.N, trabecular number; Tb.Sp, trabecular separation; HMEL, high-dose melatonin
treatment group. The data are presented as means ± SEM. **p < 0.01 vs. control group, #p < 0.05, ##p < 0.01 vs. HMEL group.
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of the melatonin-treated group was significantly enhanced
compared to the untreated group. The communication
between vascular endothelial cells and BMSCs was significantly
critical in bone remodeling. The process can be amplified by
multiple elements, which participated in the recruitment,
differentiation, and proliferation of vascular endothelial cells
and BMSCs (46). This association has been illustrated to be
due to an osteoblastic and angiogenic factor (VEGF), which was
consistent with our findings (47). Combined with the results of
the VEGF-related assays in this study, it suggested that
melatonin could promote BMSC-mediated angiogenesis by
upregulating the VEGF levels.

Previous studies, including animal experiments and clinical
findings, have shown that melatonin has a notably anti-
osteoporosis effect and high safety profile (48–52). Amstrup et
al. demonstrated that melatonin could improve BMD at the
femoral neck in postmenopausal women with osteopenia (53). A
randomized controlled trial suggested that melatonin treatment
is safe in postmenopausal women with osteopenia, and small
doses of melatonin can improve sleep quality (54). However, the
studies on melatonin mostly focused on the effects of melatonin
therapy on osteoporosis. Relative mechanisms are mainly
focused on the fact that melatonin can promote osteogenesis in
osteoblasts (55–57) and inhibit osteolysis in osteoclasts (58–60).
Frontiers in Endocrinology | www.frontiersin.org 11
There is little evidence about exploring the relationship between
melatonin and angiogenesis. Ramıŕez-Fernández et al. showed
that melatonin could promote angiogenesis in a bone defect
rabbit model and may have potential beneficial effects on bone
defect repair (26). Hu et al. demonstrated that melatonin could
protect cortical bone-derived stem cells against g-ray radiation
and assist in the healing of postradiation bone defects (61).
Yildirimturk et al. found that melatonin showed beneficial effects
on the healing of bone defects in streptozotocin-induced diabetic
rats (62). However, these studies lacked further clarify how
melatonin affects angiogenesis and explore its effects on
osteoporotic bone defect. Our study is the first to
demonstrated that melatonin could promote BMSCs-mediated
angiogenesis by upregulating VEGF levels and promote
osteogenesis-angiogenesis coupling in vitro. In addition, our
study is novel in showing that melatonin could accelerate bone
repair by promoting osteogenesis and angiogenesis of tibia defect
in OVX rats. Therefore, our study is the first to indicate that
melatonin treatment was able to accelerate bone repair in rats
with osteoporotic bone defect, which was potentially effective to
bone regeneration. However, the limitation of our study is that
the exact pathway underlying melatonin promoting
osteogenesis-angiogenesis coupling has not been clarified,
which is our ongoing research.
A

B
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C

FIGURE 6 | Melatonin accelerated bone repair by promoting the osteogenesis and angiogenesis of tibia defect in ovariectomized rats. (A) Images of
immunohistochemical staining of osteocalcin in the tibia defect (scale bars, 200 mm). (B) Images of immunohistochemical staining of vascular endothelial growth
factor in the tibia defect (scale bars, 200 mm). (C) Images of immunohistochemical staining of CD31 in the tibia defect (scale bars, 200 mm). (D) New bone formation
was detected by sequential fluorescent labeling of calcein (scale bars, 10 mm). (E) Quantitative analysis of mineral apposition rate. (F) Maximum force determined
experimentally by three-point bending test. (G) Stiffness determined experimentally by three-point bending test. The data are presented as means ± SEM. *p < 0.05,
**p < 0.01 vs. control group, #p < 0.05 vs. high-dose melatonin treatment group.
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CONCLUSION

In conclusion, our results demonstrated that melatonin could
accelerate osteoporotic bone repair by promoting osteogenesis-
angiogenesis coupling. Further investigation is undertaken about
the underlying mechanism about how the osteogenesis-
angiogenesis coupling process is promoted by melatonin. These
findings can advance our thinking about that the application of
melatonin may provide new insight and strategy for bone
regeneration, and hence it could be a promising therapeutic
remedy against osteoporosis and osteoporotic bone defect.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The animal study was reviewed and approved by the Animal
Care and Ethics Committee of the Southern Medical University.
Frontiers in Endocrinology | www.frontiersin.org 12
AUTHOR CONTRIBUTIONS

YL conceived and designed the experiments. SZ, CZ, and HY
carried out the experiments. JL, ZF, and LL analyzed the data. All
authors were involved in writing the paper and had final
approval of the submitted and published versions.
FUNDING

This study was sponsored by the National Natural Science
Foundation of China (no. 81674095), the National
Administration of Traditional Chinese Medicine TCM
Inheritance and Innovation “Hundred-Thousand-Ten
Thousand” Talents Project (QiHuang Scholar)–National TCM
Leading Personnel Support Program (NATCM Personnel and
Education Department, no. F119090038), the Innovation Team
and Talents Cultivation Program of National Administration of
Traditional Chinese Medicine (no. ZYYCXTD-C-202003), and
the Sanming Project of Medicine in Shenzhen (no.
SZZYSM202108013). The funders had no role in the study
design, data collection, and analysis, or preparation of
the manuscript.
REFERENCES
1. Panday K, Gona A, Humphrey MB. Medication-Induced Osteoporosis:

Screening and Treatment Strategies. Ther Adv Musculoskelet Dis (2014) 6
(5):185–202. doi: 10.1177/1759720X14546350

2. Ghosh M, Majumdar SR. Antihypertensive Medications, Bone Mineral
Density, and Fractures: A Review of Old Cardiac Drugs That Provides New
Insights Into Osteoporosis. Endocrine (2014) 46(3):397–405. doi: 10.1007/
s12020-014-0167-4

3. Rosen CJ. The Epidemiology and Pathogenesis of Osteoporosis. (2020).
Available at: www.endotext.org.
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