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ABSTRACT Between 2018 and 2019, Salmonella enterica serotype Reading caused a large,
multistate outbreak linked to contact with raw turkey products in the United States. Here,
we provide five Salmonella Reading reference genomes collected from US patients between
2016 and 2018.

S almonella enterica serotype Reading is uncommonly associated with human illness, but
caused a multistate outbreak linked to contact with raw turkey products from 2018 to

2019 in the US (1). Previous phylogenetic analyses identified three Hadar clades. Clade 1
contained the “emergent” 2018 to 2019 outbreak-associated subclade, which was genetically
distinct from a “contemporary” subclade of previously circulating Reading strains, partially due
to the acquisition of mobile genetic elements (MGE) (2). Clade 2 primarily contained human
isolates, and its pangenome was considerably smaller than those of the other clades, but fur-
ther analysis to understand these differences was not performed (2). Closed sequences of
Reading are required for pangenome exploration and to further understand the novel
“emergent” subclade, but only 11 are currently available (3, 4), and none are from US patients.
Here, we generated five complete clinical Reading sequences from Clades 1 and 2 to serve
as references.

Five Reading isolates from human illnesses were chosen for long-read sequencing to repre-
sent human-associated Reading diversity before and during the outbreak: two “contemporary”
Clade 1 isolates (2018), one “emergent” Clade 1 isolate (2017), and two Clade 2 isolates col-
lected before the outbreak (2016 to 2017). Isolates originated from clinical diagnostic or
public health laboratories (PHL) as part of the CDC’s national passive Salmonella surveillance
(https://www.cdc.gov/nationalsurveillance/salmonella-surveillance.html); thus, isolation meth-
ods vary by site (5). Serotype was confirmed in silico using SeqSero2 v0.1 (6). Genomic DNA
was extracted (Wizard Genomic DNA purification kit, modified manufacturer’s protocol,
Promega, WI, USA) from cultures incubated on tryptic soy agar-sheep blood overnight
(37°C). Libraries were prepared (Rapid Barcoding kit SQK-RBK004; manufacturer’s proto-
col, Oxford Nanopore Technologies [ONT], Oxford, United Kingdom) and sequenced for
72 h on a GridION sequencing platform (R9.4.1 flowcells; ONT). Reads were base-called
using Guppy v4.2.2 and filtered for quality using MinKNOW (ONT). Hybrid assemblies were
generated, polished, circularized, and rotated using Unicycler v0.4.8 (conservative option)
(7); the corresponding Illumina short reads (previously generated at PHL through PulseNet,
https://www.cdc.gov/pulsenet/) were accessed through NCBI’s Short Read Archive (https://
www.ncbi.nlm.nih.gov/sra). Assemblies were quality controlled using QUAST v5.0.2 (8) and
blastn v2.9.0 (9). Resistance determinants and plasmid replicons were detected using an inter-
nal workflow that employs the ResFinder database (downloaded 30JUL2020; 90% identity,
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50% coverage) and the PointFinder scheme for Salmonella spp. (downloaded 30 August
2019), and an in-house database adapted from PlasmidFinder (90% identity, 60% coverage;
https://cge.food.dtu.dk/services/PlasmidFinder/), all implemented in staramr v.0.4.0 (https://
github.com/phac-nml/staramr). Plasmid taxonomic units (PTUs) were identified using
COPLA (10). Sequence types (ST) were determined using staramr (multilocus sequence
typing [MLST] software [https://github.com/tseemann/mlst] and the PubMLST database
[11]). The default parameters were used for all software unless otherwise specified.

Consistent with the previous analysis (2), Clade 1 genomes were larger than Clade 2
genomes by at least ;110 kb, due to the presence of plasmids and MGE (Table 1). Of note,
PNUSAS014950 contained a ;10-kb resistance plasmid (replicons ColpHAD28 and Col440II,
PTU not assigned; Table 1) that was previously found to be significantly more common in
the “emergent” 2018 to 2019 outbreak-associated subclade (2). This plasmid was first seen
in Reading in 2014 and may be of particular interest for further investigation (2).

Data availability. The sequences discussed here have been deposited in GenBank
and SRA under the accession and BioSample numbers listed in Table 1.
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