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Abstract
MicroRNAs (miRNAs) are small RNAs that regulate the expression of target mRNAs by

specific binding on the mRNA 3'UTR and promoting mRNA degradation in the majority of

cases. It is often of interest to know the specific targets of a miRNA in order to study them in

a particular disease context. In that sense, some databases have been designed to predict

potential miRNA-mRNA interactions based on hybridization sequences. However, one of

the main limitations is that these databases have too many false positives and do not take

into account disease-specific interactions. We have developed an R package (miRComb)

able to combine miRNA and mRNA expression data with hybridization information, in order

to find potential miRNA-mRNA targets that are more reliable to occur in a specific physiolog-

ical or disease context. This article summarizes the pipeline and the main outputs of this

package by using as example TCGA data from five gastrointestinal cancers (colon cancer,

rectal cancer, liver cancer, stomach cancer and esophageal cancer). The obtained results

can be used to develop a huge number of testable hypotheses by other authors. Globally,

we show that the miRComb package is a useful tool to deal with miRNA and mRNA expres-

sion data, that helps to filter the high amount of miRNA-mRNA interactions obtained from

the pre-existing miRNA target prediction databases and it presents the results in a standard-

ised way (pdf report). Moreover, an integrative analysis of the miRComb miRNA-mRNA

interactions from the five digestive cancers is presented. Therefore, miRComb is a very use-

ful tool to start understanding miRNA gene regulation in a specific context. The package

can be downloaded in http://mircomb.sourceforge.net.
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Introduction
MicroRNAs (miRNAs) are non-coding, single-stranded RNAs of 18–25 nucleotides and con-
stitute a novel class of gene regulators that are found in both plants and animals. They nega-
tively regulate their targets (messenger RNAs -mRNAs-) in one of two ways depending on the
degree of complementarity between the miRNA and the target. One way of action (that
accounts for around 80% of the cases) is promoting mRNA degradation [1], the other one is
inhibiting mRNA translation.

Previous authors have used paired miRNA and mRNA data for predicting miRNA targets
in specific diseases. They base their analysis on correlating miRNA and mRNA expression,
and intersecting it with known databases [2,3]. However, although these studies are useful,
there is no software available to reproduce the results. R [4] is a software environment for sta-
tistical computing and graphics. It has been broadly used in the scientific community due to
the fact that works with any platform, is free, allows building your own packages and func-
tions and share it with other scientists, it is well documented and kept updated. Bioconductor
[5] is an R package repository focused on packages aimed to analyse biological data. There are
some R/Bioconductor packages that are able to make miRNA-mRNA correlations, intersect
with known databases and analyse networks, among other functionalities, such as RmiR,
CORNA,miRNApath,microRNA,MultiMiR [6,7]. However, none of these methods allows
performing an entire complete analysis in a straightforward way. Our aim was to design an R
package, called miRComb, able to combine miRNA and mRNA expression data (from any
format) with hybridization information, in order to find potential miRNA-mRNA targets that
are likely to occur in a specific physiological or disease context. This generates a list of results
that can be the basis for developing multiple hypotheses to be experimentally tested in a wet
lab. Another added value is to present the results of the analysis in a standarized way with a
pdf report.

We have used as examples publicly available data from The Cancer Genome Atlas (TCGA)
[8] for different digestive cancers. The results highlight potential miRNA-mRNA interactomes
of five digestive cancers and offer an unbiased view of miRComb functions. As far as we know,
there is still no global analysis of this kind in gastrointestinal cancers.

Materials and Methods
We have used TCGA data from 1645 samples among 5 different digestive cancers (colon can-
cer, rectal cancer, liver cancer, stomach cancer and esophageal cancer) that had simultaneously
miRNA-seq and RNA-seq data. All data have been processed with the same procedure.

As the starting point of our package we used three broadly accepted assumptions:

• MiRNA negatively regulate expression of their mRNA targets.

• MiRNA/mRNA interactions, as they are based on RNA hybridization, can be predicted with
bionformatic approaches.

• MiRNAs and mRNAs that play a role in a specific disease are deregulated in that disease.

Fig 1 shows the outline of the procedure used. Raw data is processed with the aim of finding
relevant miRNA-mRNA interactions in a specific biological context in order to be able to inter-
pret them. The package is written in R and includes some code of C++ in order to speed up
some computations. LaTeX [9] and Sweave [10] packages are used to generate the final pdf
report. MiRComb is available at http://mircomb.sourceforge.net/.

MiRNA and mRNA expression data can come from different sources (microarrays, NGS,
qRT-PCR. . .). The package assumes that miRNA and mRNA data are properly normalized. In
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the case of qRT-PCR data we suggest using -dCt units (or Ct units), for microarrays we suggest
using log2 (normalized) intensity, and for NGS we suggest using log2 (normalized) counts.

Data sources
Data was downloaded from TCGA data portal (https://tcga-data.nci.nih.gov/tcga/
dataAccessMatrix.htm). We selected the following cancers to study: Colon adenocarcinoma
(COAD); Esophageal carcinoma (ESCA); Liver hepatocellular carcinoma (LIHC); Rectum ade-
nocarcinoma (READ); Stomach adenocarcinoma (STAD).

Fig 1. Flow diagram showing the main steps of an analysis using themiRComb package.

doi:10.1371/journal.pone.0151127.g001
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We selected only those samples that had paired miRNA and mRNA information and came
from centers (properly identified with their corresponding Tissue Source Sites–TSS- codes)
that collected more than one sample. Primary solid Tumor and Solid tissue Normal were used.
MiRNAs with no id (on mirbase17) or median expression < 10 raw counts were removed.
MRNAs with no gene id or median expression < 10 raw counts were removed. Voom transfor-
mation [11] and quantile normalization were applied, and then batch correction with ComBat
[12] according to TSS centers was applied.

Differential expression analysis
Differential expression between cases and controls was computed with limma-trend procedure.
The package also implements T-test, Wilcoxon Test, LIMMA, LIMMA-trend [11], and Rank-
Prod [13] for testing differences between both groups. However, other methods for differential
expression can be used and the results can be also imported tomiRComb (the features needed
are miRNA or mRNA, logratio, mean expression, p value and adjusted p value). Multiple test-
ing procedures can be: Benjamini & Hochberg (BH), Bonferroni or others (although RankProd
assumes only BH (which controls False Discovery Rate (FDR)).

For parametric approaches, the hypothesis is if the mean expression of the Control group
samples (H) is different from the mean expression of the Cancer-related group samples. In the
case of non-parametric approaches–Wilcoxon test and RankProd-, the median (instead of the
mean) is tested.

H0 : mCancer ¼ mHealthy

H1 : mCancer 6¼ mHealthy

(

Correlation analysis
We computed Pearson correlation coefficients for all miRNA-mRNA couples available in each
cancer. The package also supports Spearman and Kendall correlation (Kendall only for small
datasets). Pearson correlation is suitable if both miRNA and mRNA data come from the same
platform analysis (both microarrays or log2-normalised count data, for example), and a lineal
relation between miRNA and mRNA can be assumed. If both analysis platforms are different or
the hypotheses of a lineal relation cannot be assumed, then Spearman (or Kendall) correlation
are desirable. If there is a negative relation between miRNA (X1, . . .,Xn) and mRNA (Y1, . . .,Yn)
the correlation coefficient would be negative, so:

H0 : rl � 0

H1 : rl < 0

(

Where 2 {Pearson, Kendall, Spearman}. Then, multiple testing correction (Bonferroni and BH
are available, among other options) is applied in order to control the false positives that could arise.

Intersection with miRNA target prediction databases
Next step was to match the significant correlations with target information. The choice of a
database is a tricky issue. Several databases are aimed to computationally predict miRNA tar-
gets [14]. They mainly take into account at least one of these parameters: seed complementar-
ity, miRNA-mRNA complex stability (thermodynamics) and inter-species site conservation.
Several databases start integrating miRNA-mRNA correlation as a predictive value, but it has
been done in few datasets (GenMiR++) [15].
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We selected MicroCosm [16,17] and TargetScan [18]. MicroCosm comprises 690 different
miRNA and 22107 different targets, with a total of 563179 interactions described. MicroCosm
computes the targets with miRanda algorithm, needing perfect complementarity at the 5'; then
excludes non-stable conformations by using the Vienna RNA folding approach [19] and requires
site conservation accross several species. On the other hand, TargetScan [18] is probably one of
the most updated ones. It contains information for 1537 different miRNAs and 15031 targets,
with a total of 520354 interactions described. It is based on seed complementarity and differenti-
ates among conserved and non-conserved sites. In order to make it more comparable to micro-
Cosm, and more reasonable, we selected only conserved sites. The package allows to use one or
both databases (and also use custom databases, if desired), and fix a minimum number of
appearances on the database. The final conditions that define a miRNA-mRNA interaction are:

H0 : rl � 0 or !is:target

H1 : rl < 0 and is:target

(

Functional analysis
Although the main aim of the package is to generate a list of potential miRNA-mRNA pairs,
miRComb also implements some functions that may help to data interpretation. Among other
functions specified in the following sections, tables and barplots with the number of targets or
number of miRNAs can be obtained. The package plots a network with the desired miRNA-
mRNA interactions (nodes representing miRNAs and mRNAs, and arrows marking the inter-
actions). Colours are carefully selected to help interpretation: miRNAs are represented as
squares, mRNAs as circles. Furthermore, the colour of the node reflects the FoldChange direc-
tion of the node (red: upregulated, green: downregulated). A score is computed with the aim to
reflect the impact of the miRNA on the cancer (higher score means that both miRNA and
mRNA are highly deregulated in that disease).

score ¼ �2ðlogratiomiRNA � logratiomRNAÞ
Arrows are also informative: the colour represents the score of the interaction (red means

opposite and strong opposed FC between the miRNA and the mRNA, while green would rep-
resent strong concordant FC between the miRNA and the mRNA), and the width represents
the number of databases where the target has been found (more databases: wider arrow). The
network can also be easily exported to cytoscape in “sif” format [20], as well node and edge
attributes.

GOstats package [21] was used to compute if any function is associated with the targets of a
specific miRNA or a set of miRNAs. This helps to predict the function of a miRNA or a set of
miRNAs if the number of targets is big enough. RamiGO R package [22] can also be used to
plot the significant GO terms and their relations.

Circlize package [23] is used to make a circos plot of the selected miRNA-mRNA pairs.
Starting from the border of the plot, the position of the mRNAs is represented on a first track,
then a second track represents miRNAs position, and finally a last track (with links) shows
miRNA-mRNA pairs. This would help to identify if some miRNA targets are more specifically
located in one chromosome or region.

Report generation
One of the aims of the project is to present a standarized way to present the results. At the end
of the analysis is possible to generate a pdf report which includes all the mentioned sections.
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Results and Discussion

MiRComb analysis of miRNA-mRNA interactions of 5 different digestive
cancers
Five miRComb reports for COAD, READ, ESCA, STAD and LIHC were generated and the
corresponding pdf files can be found in S1–S5 Files, respectively. As an example, Fig 2 shows
the main figures from the LIHC report.

Summary of datasets composition. Table 1 shows the number of samples available for
each cancer and the total number of significant correlations. COAD, LIHC and STAD cancer
had more than 400 samples available for analysis, while ESCA cancer and READ cancer data
sets had 191 and 160 samples, respectively. Moreover, the ratio between cases and controls is
also a term to take into account. While ESCA, LIHC and STAD disposed of a “reasonable”
amount of controls (approximately 1:13 for ESCA, 1:7 for LIHC and 1:10 for STAD), in COAD
and LIHC we disposed of only 8 and 3 controls respectively (a ratio of aproximately 1:50). The
number of available samples influences the number of correlations with FDR< 0.05 found: the
more samples we have, the higher is the power for detecting correlations different from 0. The
number of significant correlations found are higher than 15% (even after FDR correction) in
the data sets with more than 400 samples (STAD, LIHC, COAD), while this percentage does
not reach 10% in the cases of READ and ESCA (less than 200 samples available). In short, it
seems that a dataset with a bigger sample size and a balanced design should provide a greater
number of correlations that one that is smaller and not balanced.

Although 20.531 mRNAs and 1025 miRNAs were sequenced, only around 32–34% of the
miRNAs were considered expressed (median counts> 10 across all samples) in each cancer
data set. In contrast, 70–90% of the mRNAs were detected with a median> 10 counts. In gen-
eral, PCA analysis (pages 1 and 2 of the reports made by mkReport function, for example S1–
S5 Files) of samples revealed a really slight control clusterization (except for miRNA dataset in
COAD, READ and in both data sets in LIHC). Overall, this leads to the idea that the main
drawback of the data set is the lack of a reasonable number controls, reinforcing the thoughts
that differential expression between both groups can be computed and used as informative
item, but not as a filtering step (that could lead to failures in the sense of false negatives).

Volcano plots (pages 3 and 4 of the reports or Fig 2B) highlight in red the selected miRNAs
and mRNAs. Heatmaps are also plotted (pages 3 and 4 of the reports). Heatmap of LIHC as an
example is also shown in Fig 2C.

Analysis of miRNA-mRNA interactions. Page 5 of the pdf reports shows the summary of
the computed correlations. The next step is to intersect the significant correlations with pre-
dicted miRNA-mRNA potential interactions fromMicrocosm or TargetScan prediction data-
bases (pages 6 and 7 of the reports). For the case of LIHC (Fig 2F), we observed that the
predicted number of miRNA-mRNA interactions was reduced from 258233 to 57675, there-
fore, we could estimate that around 80% of the initial miRNA-mRNA predicted interactions
from databases were false positives for this disease because they did not show a negative corre-
lation between the specific miRNA and the specific mRNA expression in vivo in the tissue.

Furthermore, Fig 3 shows that we can also depict the proportion of false positive predicted
targets of each miRNA from databases in a given situation. Concerning LIHC, the number of
false postives ranges from 22% to 99%. In the case of miR-122, miR-122� or miR-378c these
percentages are quite low compared to the others (22%, 27% and 24% respectively), therefore
these miRNAs show a high ratio of predicted targets confirmed by miRComb. Interestingly,
miR-122 is the most frequent miRNA in the adult liver, and plays a central role in liver biology
and hepatocarcinoma disease [24].
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Fig 2. Main findings of the LIHC report. A) Principal Components Analysis (PCA) (based on correlation matrix) of miRNA samples. B) Volcano plot
showing the miRNAs according to its logratio between cancer and control. C) Heatmap of the top 50 most deregulated miRNAs according to its FDR. D)
Density plot of the Pearson Correlation Coefficients of all possible miRNA-mRNA interactions. Lines show different cutoff: p-value < 0.05, p-value < 0.01,
FDR < 0.05 and FDR < 0.01. E) Correlation of miR-139-5p and CCNB1 as an example. F) Venn diagram showing the total number of sigifnicant correlations
(FDR < 0.05), the total number of predicted interactions in at least one database (TargetScan or microcosm), and the intersection of both. G) Network of
selected interactions. Each miRNA-mRNA interaction is negatively correlated (FDR < 10–33) and predicted at least in one database (Targetscan or
MicroCosm). Circles represent miRNAs and squares mRNAs; red fill means upregulated miRNA/mRNA, while green fill means downregulated miRNA/
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Page 6 of the pdf report shows the top 15 miRNA-mRNA interactions (sorted by adjusted
p-value, taking into account that they must have been predicted in at least one database) in
each cancer. Page 9 of the pdf report shows the network of all the miRNA-mRNA interactions.
All the interactions are plotted by default and this could result in a very dense figure difficult to
interpret, as it is the case in our examples. For the case of all the interactions of LIHC (S5 File
page 9) we can see two main patterns: on the left we can find mostly downregulated miRNAs
in LIHC (plotted as green circles) together with their correspondant mRNA targets (plotted as
red squares). On the right the roles are inverted, and the predominant miRNA-mRNA interac-
tions shown consist on upregulated miRNAs with downregulated mRNAs. This general pat-
tern is reproduced in all the studied cancers (S1–S5 Files). To solve this problem, we suggest to
adapt in every case the number of interactions to be plotted depending on the goal of the figure.
In Fig 2G we have plotted a reduced amount of interactions and we can see some of the details.
For example, two targets (DNMT3A and MYBL2) of hsa-miR-29c (bottom right) are predicted
by two databases, while the target FAM136A is predicted by only one database (the arrow is
thiner). Moreover, regarding the targets of hsa-let7c, the AURKB is more deregulated in LIHC
than the NME6, and the interactions of hsa-miR-122 or hsa-miR-122� (top left) have lower
scores (lower intensity of arrow colour) than the interactions of hsa-miR-139-3p and hsa-miR-
139-5p (higher intensity of arrow colour; top right).

In LIHC more than 75% of the expressed mRNAs are being targeted by at least one miRNA
(Fig 2H and 2I and page 10 of the pdf report), in COAD and STAD that number is between
70% and 60%, while in READ and ESCA is less than 50%. However, we have to take into
account that these percentages are partially affected by the total number of miRNA-mRNA
predicted interactions: the higher number of interactions, the higher number of miRNAs per
mRNA (and viceversa). For example, more than 25% of the miRNAs in LIHC are predicted to
be targeted by more than five miRNAs. This percentage is lower in the other cancers, but it is
still 8% in READ. It is worth to mention that this is a first approach that will require interac-
tions to be experimentally confirmed in a wet lab. This unusual number of miRNAs targeting
the same mRNA could be attributed to the fact that miRComb does not take into account com-
petitivity between different miRNAs hybridizing to the same target.

Page 11 of the pdf report shows the first 20 miRNAs sorted by number of targets. As an
example, miR-106a has 766 interactions predicted in COAD, miR-27a has 450 interactions in
ESCA, miR-27b has 792 interactions in LIHC, miR-106a has 582 interactions in READ, and

mRNA; lines indicate the miRNA-mRNA pairs; red line means positive score and green line means negative score; arrow width is proportional to the number
of appearances on the databases (TargetScan or MicroCosm). H) Pie chart showing the number of mRNAs regulated by 0, 1, 2, 3, 4, 5, and >5 miRNAs. I)
Barplot showing the number of targets per miRNA and the percentage of mRNAs that are cumulatively regulated by the miRNAs. J) Circos plot of the top 45
miRNA-mRNA interactions sorted by FDR, a line means a miRNA-mRNA pair. Blue lines are the position of the miRNAs and orange lines are the position of
the mRNAs.

doi:10.1371/journal.pone.0151127.g002

Table 1. Summary of the main miRComb computations of the five digestive cancer data sets analysed.

COAD ESCA LIHC READ STAD

Number of samples (cases, controls) 444 (436, 8) 191 (178, 13) 407 (357, 50) 160 (157, 3) 443 (406, 37)

Number of expressed miRNAs 325 338 343 325 330

Number of expressed mRNAs 14860 18807 14428 14973 18565

Total correlations computed 4829500 6356766 4948804 4866225 6126450

Significant correlations (%respect
total correlations computed)

823121 (17.04%) 568914 (8.95%) 1156839 (24.38%) 423296 (8.70%) 1390596 (22.70%)

Significant correlations + targets 47134 30061 57675 24941 71464

doi:10.1371/journal.pone.0151127.t001
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miR-29a has 798 interactions in STAD. Although miRNAs are expected to regulate up to hun-
dreds of genes, these interactions should be experimentally validated in order to discard false
positives or indirect relations, as mentioned above. Colours in these pages show the direction
of miRNA deregulation (red: up-regulated; green: down-regulated). While in COAD, READ
and ESCA the top miRNAs are in general upregulated, in LIHC and STAD they are mostly
downregulated. MRNAs can also be sorted according the number of miRNAs that are targeting
them (page 12 of the report) and are also coloured according to the direction of deregulation.
Overall, mRNAs do not have more than 50 miRNAs regulating them. Exceptionally, in STAD
there are some mRNAs with more than 60 miRNAs (eg. 74 for FOXP2). However, it is worth
to take into account that the vast majority of mRNAs that are regulated by at least 1 miRNA,
are simultaneously regulated by up to 4 miRNAs.

In general terms, the main direction of the top mRNAs (sorted by number of miRNA target-
ing them, report page 12) is the inverse of the main direction of the top miRNAs (sorted by
number of targets, report page 11).

Fig 3. Percentage of false positive miRNA-mRNA predicted interactions in LIHC. Plot showing the ratios of negatively correlated predicted targets
respect to all predicted targets according to the databases for each miRNA. The intensity of the grey color dot is related to the percentage of false postive
miRNA-mRNA predicted interactions. In brackets, the exact percentages of false positivesfrom selected miRNAs (miR-122; miR-122*; miR-378c).

doi:10.1371/journal.pone.0151127.g003
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Functional enrichment analysis of miRNAs according to their targets. In pages 13–15
of the report, we can find the Gene Ontology (GO) and KEGG functional analysis of the
results. As an example, we tested if the mRNAs that are regulated by miRNAs are enriched in
any of the GO and KEGG categories. Results of this section are quite similar between all
digestive cancer data sets because they include all mRNAs that are targeted by at least one
miRNA and it includes more than 50% of the expressed mRNAs on average. Depending on
the goal of the study different filters could be applied (differential expressed miRNAs and/or
mRNAs, targets from one specific miRNA. . .) and, then, results would be different. In this
case, BP (Biological Process) overrepresented terms include cellular process and other regu-
lating and signalling processes. CC (Cellular Component) overrepresented terms are mostly
related to intracellular-cytoplasm compartments. MF (Molecular Function) overrepresented
terms are centered in protein binding and other binding (enzyme, anion binding) actions.
KEGG pathways are more concise and all of them include the term “Pathways in cancer”.
COAD also included prostate cancer and chronic myeloid leukemia and glioma, ESCA also
small cell lung cancer, LIHC included prostate cancer, colorectal cancer, pancreatic cancer,
chronic myeloid leukemia and renal cell carcinoma; READ included renal cell carcinoma,
STAD also included small cell lung cancer and prostate cancer. This suggests that, as known,
many cancers share similar patterns. Other pathways that are shared across the different stud-
ied data sets are: Focal adhesion, Fc-gamma R-mediated phagocytosis (COAD, ESCA,
STAD), or TGF-beta signalling pathway (COAD, READ).

More targeted results can be obtained by testing for enrichment the targets of a specific
miRNA. For example, the targets of miR-148a in liver cancer are enriched in antigen process-
ing and presentation KEGG Pathway (FDR = 0.006) (S1 Fig). In a practical sense, this means
that this pathway is involved in liver cancer through a deregulation of miR-148a, and that this
pathway could be, at least partially, modulated by modifying miR-148a expression. Other path-
ways involved in liver cancer that could be modulated by altering miRNA expression are RNA
transport (FDR = 0.030), Cell cycle (FDR = 0.031) and Ubiquitin mediated proteolysis
(FDR = 0.031) for the miR-424, or Lysine degradation (FDR = 0.006) for miR-29c.

Integrative analysis of the miRComb miRNA-mRNA interactions from
the 5 digestive cancers

Shared and specific miRNA-mRNA interactions. Fig 4 shows the number of shared miR-
Comb miRNA-mRNA pairs among the 5 studied digestive cancer data sets. 1570 miRNA-
mRNA interactions are shared for all 5 sets, but a more relevant number is shared in at least 2
or more of them, being only less than 40% of miRNA-mRNA pairs specific of each cancer data
set. STAD is the one with more miRNA-mRNA interactions found.

In S2 Fig a network represents the 1570 common miRNA-mRNA interactions among the
five studied mentioned data sets. We can see two networks: the big network on the left contains
mostly downregulted miRNAs with their upregulated mRNA targets (780 miRNAs + mRNAs,
and 1305 miRNA-mRNA pairs), while the smaller network on the right contains mostly upre-
gulated miRNAs and their downregulated mRNA targets (173 miRNAs + mRNAs, and 187
miRNA-mRNA pairs). We have spotted the mRNAs that have KEGG terms related to cancer,
such as Cell Cycle (red), Pathways in Cancer (yellow) and MAPK Signaling Patway (blue).
Combinations of these terms are also displayed in different colours. The network on the right
contains some mRNAs related to Cell Cycle, while the big on the left is mostly related to
MAPK Signalling Pathway, Pathways in Cancer, or both terms (green).

The common interactions can be related to pathways that are shared by all the studied
digestive cancers. However, it is also interesting to study the interactions that can be specific of
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each one. In S1 Table, all the specific miRComb miRNA-mRNA interactions for each cancer
data set are shown (a specific interaction is the one that has been found significantly negatively
correlated in one data set but not in the others). Tables 2–6 show the top 10 miRNAs with
more miRComb miRNA-mRNA specific interactions for each cancer.

Fig 4. Venn diagram for miRCombmiRNA-mRNA interactions between 5 digestive cancers. Venn
diagram showing miRCombmiRNA-mRNA interactions (FDR < 0.05 and predicted in at least one database)
that are present in at least one cancer. 1570 miRNA-mRNA interactions appear in the 5 studied digestive
cancers.

doi:10.1371/journal.pone.0151127.g004

Table 2. Top 10 miRNAs sorted by number of specific targets in COAD. Target mRNAs are sorted according to its negative correlation value (top 20 are
dislplayed).

miRNA n.targets mRNAs

miR-30c 264 MRAS, ZEB2, FCER1G, CFL2, SMNDC1, KIAA1949, CLIP4, SIGLEC5, C10orf119, CHORDC1, DZIP1L, LRCH2, SAP30,
INTS2, ATF1, RPRD1A, PLXNC1, HCFC2, EIF5A2, TMEFF1

miR-16 213 TRANK1, KHNYN, PHLPP2, KIAA1370, C5orf41, ACOX1, CCDC88C, LCOR, CCNJL, SYNRG, CHD2, ZBTB34, SESN2,
PDCD6IP, GCC2, MLL2, WNT5B, KIAA0317, NBR1, TNIP1

miR-17 178 TAOK3, GBF1, ZFYVE26, PPARD, TEP1, CYP26B1, KDM6B, BTBD7, CD68, NRBP1, NCOR1, KIAA1671, GOLGA2,
ARHGAP21, MINK1, ALOX15B, KIAA1522, PSEN1, ARHGEF18, SEMA7A

miR-454 174 KIAA1211, HADHB, CSF1, FAM107B, PANK3, BTG1, ADAM28, FAM78A, MIER3, MXD1, BTD, RNASEL, MOBKL2B,
GZMK, B2M, HADHA, TP53INP1, TCF7L2, DCTN2, TAGAP

miR-106a 173 SLC36A1, LASP1, TANC2, FGFR2, ANKFY1, BAHD1, KDM6B, SLC22A23, STAT3, CRK, C15orf17, TADA2B, ABHD5,
MAP3K9, IQSEC1, ARHGEF11, NDEL1, CNNM2, KIAA1522, RCOR1

miR-301a 170 FAM107B, KIAA1211, ZDHHC7, MAML3, MXD1, MTF1, BTG1, RAB5B, PANK3, KLF3, LMTK2, MOBKL2B, NDEL1, ABHD5,
C8orf4, FAM78A, LAMA3, KLHL20, HOXD1, TSPAN3

miR-181c 159 MAP3K6, ERI1, UGT8, KPNB1, SAP30, MORC4, SLC25A37, RNF125, PAX9, E2F7, ZIC2, WASF1, TUBB, PKNOX1, XKR9,
MAP2K1, KITLG, XPO7, SLC25A4, C18orf55

miR-539 157 ZNF609, WNK1, YLPM1, HIVEP2, PHF3, MED1, DDX24, SPEN, INO80D, LRP6, SP1, SH3PXD2A, C10orf118, AHR, IWS1,
SETD5, HNRNPK, RNMT, KIAA1244, LCOR

miR-181a 146 TM4SF19, POM121C, WDR45L, ACAN, SPP1, PROCR, ZNF207, PITPNB, EME1, STC1, RAN, MELK, EEF1E1, MRPS23,
SCD, SAP30, TUBB, RNF8, CDCA4, SLC35B1

miR-106b 140 SMAD7, FAM102A, TEP1, NCOR1, SESN2, KIAA1522, PANK3, PPARD, GBF1, CRK, SLC22A23, WDR37, TRIM36,
CYP26B1, ANKFY1, MYO1F, TMEM156, KIAA1671, MBNL3, MAP3K12

doi:10.1371/journal.pone.0151127.t002
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Fig 5 also shows the number of specific interactions depending on the miRNAs involved in
LIHC. MiRNAs on the line corresponding to ratio 1:1 are those that are only expressed in liver.
The others are expressed in at least another cancer, but they have some specific interactions in
LIHC, the closer to the ratio 1:1 line are, the higher specificity is.

Table 3. Top 10 miRNAs sorted by number of specific targets in ESCA. Target mRNAs are sorted according to its negative correlation value (top 20 are
dislplayed).

miRNA n.targets mRNAs

miR-944 313 SLC41A2, HNMT, LONRF3, GATA6, ARHGAP18, MGAT4A, ICA1, LPIN2, VPS13C, SLC12A2, NR3C2, HSD17B11, FOXP1,
THRA, C2orf88, PTPRB, TMEM50B, C20orf112, C11orf54, SEPSECS

miR-205 261 ENPP4, SERPINA5, PTPRJ, SPATA13, BTNL8, SPRY1, ACACB, SLC4A4, PHF17, MGRN1, PTP4A2, MGAT4A, MAGI1,
DOK1, EXOC6, PRDM16, NEK6, CASC4, HSD17B11, FBP1

let-7b 177 TTLL6, TFPI, TMEM135, SFMBT1, GALC, SLC46A3, CCL23, YPEL2, MUC3A, ITGB3, C7orf58, ATP8A1, SEC14L1, INSR,
GXYLT1, BHMT2, KLF9, HGF, MLXIP, MAP4K3

miR-338-5p 141 SAFB, VRK2, NEDD1, ABHD12B, LIMK2, AEBP2, TANC2, QSER1, RAB38, CERS3, ROBO1, MBD2, SP3, SYPL1,
SCPEP1, ATP2C1, UNK, CCNA1, FKBP3, NCK1

miR-27a 128 RALGPS1, NFATC2, EEPD1, PLEKHA6, MAN2A2, SPATA13, PPM1H, KIAA1958, FOXA3, PRDM16, KBTBD11, SEMA3B,
PTPRJ, RALGAPA2, TRIM2, PPFIA2, KIAA1147, GPD1, CAPN9, NKTR

miR-23a 115 KLHDC7A, PTPRB, REPS2, LONRF3, ZC3H12B, ZNF420, C11orf75, FUCA1, TTC6, TBC1D12, RAB17, ZNF518A, MLPH,
ZNF238, GPRC5B, C10orf68, CRBN, ZNF780B, ZNF506, ZNF253

miR-34c-5p 97 MLPH, TM9SF3, AHCYL2, CAPN5, LONRF3, CREB3L1, MYO7B, LGR4, C10orf81, BACE2, PARP4, MGAT4A, TGFBR2,
IYD, MICAL2, LRCH1, FUT8, GOLPH3L, UBR1, TM9SF2

miR-24 87 MEGF11, NDST3, SNTB1, HNF1B, ATP6V0A2, AHI1, EPB41L1, SNED1, SLC12A3, C9orf96, ARHGDIG, C20orf112,
FCGRT, TCAP, NLK, ARHGAP26, IDUA, SLC37A1, UBN2, SMPDL3B

miR-27b 87 ACAA2, PEAK1, ZFP36L2, JMJD1C, ARL14, GPD1, PLCL2, CTH, PDK4, PLEKHA6, ZC3H12B, PTPRB, GPR126, FOXA3,
OXER1, NR2F2, KBTBD11, SLC46A3, PAPSS2, GORASP1

miR-149 81 PLEKHA6, GJB1, CREB3L3, ACHE, GAB2, GRK5, FZD5, GPR114, RILP, MIA, MMP15, RPH3AL, MUC5B, DENND3,
MUC5AC, SEMA3B, C11orf86, BIN1, ANPEP, IGJ

doi:10.1371/journal.pone.0151127.t003

Table 4. Top 10 miRNAs sorted by number of specific targets in LIHC. Target mRNAs are sorted according to its negative correlation value (top 20 are
dislplayed).

miRNA n.targets mRNAs

miR-122 498 SLC9A1, G6PC3, PKM2, VPS24, TBC1D10B, NCDN, ZDHHC7, C9orf86, GYS1, CHST12, GIT1, DULLARD, ALDOA,
PLEKHB2, ATN1, SLC10A3, SLC25A6, TMEM87A, LMNB2, GLG1

miR-424 454 APLN, AMIGO3, RECQL5, FAM189B, UBE2Q1, MXD3, SNRPC, BAT4, ZNHIT3, NSMCE2, TOMM20, MTX1, BCAP31,
PUF60, E4F1, CDKN2A, DUS1L, NFKBIL1, TARBP1, DEDD

miR-22 451 FBXO46, RCC2, UTP18, NAT9, H2AFX, COPS7B, UBE2Z, PHF5A, MCM6, KIF18A, C17orf53, OLA1, POGK, WDR62,
HNRNPH1, FAM49B, FBXL19, TPM3, ENTPD2, RFXANK

miR-885-3p 448 BMP1, KIAA0174, ACCN2, C9orf116, CCDC103, E2F4, CDK6, RARG, SP5, OTUD5, OSR1, RALY, EIF2B4, CLDN2,
PRMT2, PLSCR3, CDYL2, GTF3C5, CCDC40, PPP1R12C

miR-101 444 LASS5, DNMT3A, NAP1L1, EZH2, RIT1, UCK2, SMARCA4, SUB1, C1orf77, KIAA1841, SMARCD1, RASD2, STK19,
DSTYK, ATP6V1E1, ATP5G2, UBE2D2, MFSD6, C12orf34, EED

miR-885-5p 439 NKD1, ADAMTS9, C20orf196, CMIP, VLDLR, DNAL1, RPGRIP1L, AP2M1, CDYL2, HSPB8, MFSD5, AAK1, HIF1AN,
LAMA5, WWTR1, LUZP6, TTC30A, RNASEL, CFLAR, CHMP5

let-7c 415 ARID3A, IGF2BP1, NAP1L1, PCBP4, NPEPL1, C7orf49, ABCC5, DLGAP4, ABCC10, BAX, SLC12A9, C15orf39, IRGQ,
CYB561D1, IGF2BP3, FBXL19, GGA3, DUSP9, MMP11, AARSD1

miR-125b 399 SLC26A6, RBCK1, NUP210, NEU1, THOC5, P2RX4, ARID3A, ATP5G2, STK11IP, GLTP, LIMK1, MAZ, RIT1, PLXNA1,
MAN1B1, CD2BP2, C15orf39, MSI1, RFXANK, TAZ

miR-30e 392 C8orf76, FKBP1A, MICAL1, DTX2, C19orf50, NME6, STK39, STOML1, DGKZ, TMC7, TTC39A, USF1, VOPP1, SEMA7A,
TTC35, GNPDA1, FZD2, LENG9, AURKB, RPS19BP1

miR-27b 376 PSMD7, KIAA0513, HM13, EFNA3, WDR45, ACCN2, SLC7A11, WDR8, ATP6AP1, ELOVL1, SCAMP3, PIGT, MRPL33,
BRSK1, KIAA0226, FAM21B, UNC45A, MEPCE, TSEN54, RRP12

doi:10.1371/journal.pone.0151127.t004
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Cluster analysis of miRNA-mRNA interactions. Globally, there are 106.426 miRNA-
mRNA interactions measured in all cancer data sets, and significantly negatively correlated in
at least one of them. In order to classify them into similar patterns, we applied clustering meth-
ods in order to summarize the main trends. We used the K-means method with 4 clusters as it

Table 5. Top 10 miRNAs sorted by number of specific targets in READ. Target mRNAs are sorted according to its negative correlation value (top 20 are
dislplayed).

miRNA n.targets mRNAs

miR-323-3p 262 KIAA0907, MYLIP, MACC1, RBM41, EFNA3, RBBP6, ABI1, TPR, TMEM106B, MLL5, PHF14, MKLN1, SLC25A36, AFTPH,
NCBP2, ZNF292, RBM39, RSBN1, ZNF485, NCOA3

miR-23a 179 WASL, UBE2D1, MTM1, PLEKHM3, TMEM87B, PPP1R12A, CBLL1, WAC, MLLT4, CDC40, PTP4A2, AEBP2, RPRD2,
RBBP6, CPEB2, TSR2, BMPR2, BACH2, PURB, ZYG11B

miR-369-3p 120 BMPR2, STYX, STON1, ZEB1, GOPC, RC3H1, RAB3GAP2, TMEM87B, PHACTR2, IQSEC1, GABPA, ZNF350, SEC63,
TNRC6A, RAB11FIP2, UBE2J1, JHDM1D, VPS36, SMG1, OSTM1

miR-382 109 BTBD7, PRKAA1, NT5C2, FBXO28, DHX32, MBNL1, HIPK1, ZMYM2, MIER1, PLEKHA1, ZNF638, C3orf63, DDX3X,
RSBN1L, ZNF197, FOXN2, CCDC132, PDE5A, C9orf68, CASP3

miR-409-3p 105 GPBP1L1, C9orf68, CCNT2, TCF7L2, CREB1, FANCL, ZNF14, ARHGAP5, CLK4, C5orf28, NSUN6, DPY19L4, PPHLN1,
EBAG9, NDFIP2, ATXN3, TBL1XR1, SLC35F5, ZNF540, SAV1

miR-23b 101 NCOA6, EEA1, ADNP, TSR2, PAPD5, TAB3, TXLNG, FAM123B, IYD, ZNF81, FMR1, UBN2, WASL, GCC1, WIPF2, XIAP,
ZBTB44, PICALM, KLHL15, SIAH1

miR-381 99 AKAP6, SORBS1, CACNB2, PBX1, ANK3, LMO3, MBNL1, ZFYVE21, BTBD7, SPPL3, TES, NBEA, MYST4, CHMP1B,
ARHGAP5, CACNA1C, CASD1, KIAA1143, ADAMTSL3, RABGAP1

miR-106a 93 ZBTB6, GMCL1, CDC40, FAM3C, PHTF2, ZNF800, TBC1D15, HOOK3, PTP4A2, SLC4A7, LMBRD1, ZBTB41, CNOT6L,
ITGB8, DEGS1, CMPK1, SNX16, SGTB, TMEM168, SNTB2

miR-27a 68 EGFR, STON1, CSF1, SERTAD2, MARCKS, HGSNAT, ATP2B1, SGMS1, C5orf41, SMCR8, SMCHD1, GPD2, SSH1,
SEPN1, ARHGAP21, TICAM2, WIPF2, PLS1, DIRC2, C16orf54

miR-409-5p 62 ANKRD13C, MON2, TLK1, DYRK1A, PDE4D, FRS2, FAM129A, PDIK1L, RAB3GAP1, C9orf45, NBEA, ZBTB34, PRKAA2,
USP15, ARID4B, SFRS11, ENSA, KIAA1598, BRAP, MKL2

doi:10.1371/journal.pone.0151127.t005

Table 6. Top 10 miRNAs sorted by number of specific targets in STAD. Target mRNAs are sorted according to its negative correlation value (top 20 are
dislplayed).

miRNA n.targets mRNAs

miR-330-3p 390 PRUNE2, NFIA, LMOD3, PARVA, TMEM35, KANK2, ZNF25, HCFC2, FOXP2, ATP2B4, PDE5A, TEAD1, HOXA3, DPYSL3,
RNF180, NRP2, TSHZ3, SMAD9, DDR2, SHISA9

miR-26a 357 KIAA1737, UBR3, RANBP9, TMEM106B, G3BP2, KPNA6, ZNF148, STXBP4, ZYG11B, FAM8A1, HEATR5A, UBE2H,
UBE2G1, RLF, PEX13, UBR1, SCAMP1, AHI1, LIMS1, FBXW2

miR-1 326 PIGW, UHMK1, CAPRIN1, MTHFD1, NXT2, POLA1, PHF6, CMTM8, AZIN1, SMG7, HOOK1, TMED5, SLC39A9, FAF2,
NUP54, IPO9, SMCR7L, PASK, SF3B3, SPTLC1

miR-340 319 LPP, VEZF1, ETV1, RBFOX2, NEK7, SLC25A12, SLC20A2, VAMP4, SGMS2, FBXO8, ZCWPW2, TEAD1, VCL, FAT3,
DIXDC1, NCAM2, SGCD, CALD1, MACF1, FBXO3

let-7g 315 RBFOX2, SLC8A2, DMD, CPEB1, GHR, KLHL4, NEFM, HLF, WNK3, DOCK3, FGF5, LEPR, NFASC, TGFBR3, KLF8,
KIAA2022, EZH1, NOVA1, PBX1, FOXN3

miR-129-5p 314 TMEM62, COL11A1, NXT2, C6orf223, WDFY1, FCGR1A, DTL, NOX1, TRIAP1, PRPF40A, WDR12, TGIF2, CACYBP,
SLBP, ALG6, MRPL13, TPM3, RPIA, NDUFA10, E2F7

let-7f 313 ACTR10, FGF5, MAP4K3, BACH1, PPAPDC1A, SNX6, RBFOX2, CALM1, DPH3, CALU, SESTD1, SLMAP, BAG2, CRBN,
ELOVL4, SGCD, COPS4, FBXO32, PRKAB2, KPNA4

miR-29a 310 DIP2C, IL17RD, DNAL1, RMND5A, TGFB2, BACE1, FBXL20, PRICKLE2, ATP2B4, ILDR2, OXTR, SBF2, RYBP, PCYT1B,
CALU, CACNA1C, C16orf72, CDKL2, KIF5A, JAZF1

miR-15b 290 FOXP2, NOS1, GRPR, KATNAL1, TEAD1, ANKRD53, GPR135, PENK, KY, WNK3, PRTG, CHIC1, TLE4, BAI1, AASS,
KCNQ5, BCL2, SYDE2, PID1, BMPR1A

miR-30b 286 VSTM4, TEAD1, AFF4, ABCC9, BCL6, KLF11, ZYG11B, PRKAR1A, UBE2G1, EPN2, C3orf58, ZCCHC24, CCDC6,
PCDH10, SETD7, AMOTL2, YPEL2, SAMD4A, ZNF264, PHACTR2

doi:10.1371/journal.pone.0151127.t006
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gave a reasonable interpretation of the results (Fig 6). Interestingly, hierarchical clustering of
cancers according to the mean correlation coefficients of the clusters gives the following result:
STAD and ESCA are first grouped, as well as READ and COAD. Next, these four cancers are
grouped, and finally LIHC is added to the tree. Principal Components Analysis shows the same
pattern. It is an expected result and is reasonable with biological similarities of these tumors.
Successive increase of the number of clusters allow to differentiate other trends according to
the correlations (data not shown), but the tree structure described before (COAD+READ,
ESCA+STAD and then LIHC) is always maintained.

Clusters can be interpreted as follows: Cluster 1: miRNA-mRNA interactions slightly nega-
tively regulated across all cancers and interactions that do not fit other clusters; Cluster 2:
miRNA-mRNA interactions negatively correlated in COAD and READ, but not in the other

Fig 5. Specificity of MiRNA-mRNA interactions in LIHC. Number of total miRNA targets in LIHC versus number of miRNA targets present only in LIHC but
not in COAD, ESCA, READ or STAD. Size of the points is proportional to the mean miRNA expression on the LIHC samples included.

doi:10.1371/journal.pone.0151127.g005
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cancers; Cluster 3: miRNA-mRNA interactions negatively regulated in ESCA and STAD, but not
in the other cancers; Cluster 4: miRNA-mRNA interactions negatively regulated in LIHC, but not
in the other cancers. For example, miR-106a and its targets are quite specific of Cluster 2 –COAD
and READ- (although they are also present in some extent in Cluster 1 –all cancers-). Another
example, miR-29c targets are specific from Clusters 3 –LIHC and ESCA- and 4 –LIHC-, and have
almost no presence in Cluster 2. Furthermore, miR-22 targets are specific from Cluster 4 –LIHC-,
and others such as miR-30b or let-7b targets seem to not show any clear specificity (S3 Fig).

Conclusions
The miRComb R package is structured in functions that use well-established statistical con-
cepts and translates complex biological processes to statistical tests in a comprehensive way.
That structure allows changing any step of the workflow and adapting it to further improve-
ments making it an easy updatable tool.

MiRComb R package implements a method that elucidatesthe most suitable miRNA-
mRNA interactions that are involved in a specific disease and helps us to interpret them in that
biological context. Moreover, it presents the results in a standardised way (pdf report). Interest-
ing results could be obtained from the reports, meaning that they are useful to understand gene
regulation in that specific biological context.

Integrative analysis of the five studied digestive cancers revealed some similarities regarding
miRNA-mRNA interactions between all cancer data sets (COAD, READ, ESCA, STAD and
LIHC). However, COAD and READ; and ESCA and STAD, shared respectively much more
interactions between them than with LIHC. This observation leads to a reasonable result link-
ing the miRNA-mRNA signatures obtained from miRComb to the pathophysiology of each
cancer. Furthermore, this integrative analysis allowed us to determine the specific pattern of
miRNA-mRNA interactions across the five studied cancers.

Fig 6. Clustering and Principal Components Analysis of the five digestive cancers.Computations are based on the correlation coefficients of the
106.426 miRNA-mRNA pairs that are expressed across all five cancer data sets. A) Heatmap showing the centers of the different clusters. Values represent
the mean of the Pearson correlation coefficient of the miRNA-mRNA pairs that fall into the cluster. B) Principal Components Analysis (based on correlation
matrix) of the Pearson correlation coefficient of the miRNA-mRNA pairs from the five digestive cancer data sets.

doi:10.1371/journal.pone.0151127.g006
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The huge amount of information regarding miRNA-mRNA interactions generated in this
study provides the basis for developing many testable hypotheses that could be the starting
point for setting up multiple challenging projects aimed to understand gene regulation in these
cancers or, even, aimed to discover new therapeutic targets.

Supporting Information
S1 Fig. KEGG Pathway for hsa-miR-148a targets in liver cancer: Antigen Processing and
Presentation. Hsa-miR-148a targets (negative correlation with hsa-miR-148a (FDR< 0.05)
and predicted in at least one database) are highlighted in red.
(PNG)

S2 Fig. Network for common miRComb miRNA-mRNA interactions across five digestive
cancers. Figure showing the common 1570 miRComb miRNA-mRNA interactions across all
studied cancers. Circles are mRNAs, while diamonds are miRNAs. Fill color represents in
which pathways the resulting protein of the mRNA is involved. Yellow: Pathways in cancer;
Blue: MAPK signalling pathway; Red: Cell Cycle; Green: Pathways in cancer +MAPK signalling
pathway; Orange: Pathways in cancer+Cell cycle; Magenta: MAPK signalling pathway+Cell
cycle; Grey: MAPK signalling pathway+ Pathways in cancer+Cell cycle.
(EPS)

S3 Fig. Targets distribution by clusters. Number of miRNA targets in each cluster. The repre-
sented miRNAs are the top 50 sorted by the total number of targets. Blue: Cluster 1; Green:
Cluster 2; Magenta: Cluster 3; Orange: Cluster 4.
(ZIP)

S1 File. MiRComb pdf reports from colon cancer TCGA data set. The report has been made
by mkReport function.
(PDF)

S2 File. MiRComb pdf report from rectum cancer TCGA data set. The report has been made
by mkReport function.
(PDF)

S3 File. MiRComb pdf report from esophagus cancer TCGA data set. The report has been
made by mkReport function.
(PDF)

S4 File. MiRComb pdf report from stomach cancer TCGA data set. The report has been
made by mkReport function.
(PDF)

S5 File. MiRComb pdf report from liver cancer TCGA data sets. The report has been made
by mkReport function.
(PDF)

S1 Table. Excel table showing specific miRNA-mRNA interactions for each digestive cancer
compared to the remaining four. Columns: miRNA: name of the miRNA; mRNA: name of
the mRNA; cor: value of the Pearson Correlation estimate between the expression of the
miRNA and the mRNA; pval: p value of the Pearson Correlation estimate; adj.pval: p value of
the Pearson Correlation estimate corrected for multiple testing (Benjamini & Hochberg
method applied); logratio.miRNA: log-ratio of the miRNA in the comparison between Cancer
vs Healthy samples; logratio.mRNA: log-ratio of the mRNA in the comparison between Cancer
vs Healthy samples; meanExp.miRNA: mean expression of the miRNA across all samples;
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meanExp.mRNA: mean expression of the mRNA across all samples; dat.microCosm_v5_18:
“1” if the miRNA-mRNA pair is a computationally predicted miRNA-mRNA pair according to
microCosm database, “0” if not; dat.targetScan_v6.2_18: “1” if the miRNA-mRNA pair is a
computationally predicted miRNA-mRNA pair according to TargetScan database, “0” if not;
dat.sum: colum that sums the values of columns dat.microCosm_v5_18 and dat.targetS-
can_v6.2_18;; score: score (see section 2.5) of the miRNA-mRNA, according their log-ratios.
(XLSX)
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