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Abstract

Background: The study design with the smallest bias for causal inference is a perfect randomized
clinical trial. Since this design is often not feasible in epidemiologic studies, an important challenge
is to model bias properly and take random and systematic variation properly into account. A value
for a target parameter might be said to be "incompatible" with the data (under the model used) if
the parameter's confidence interval excludes it. However, this "incompatibility" may be due to bias
and/or extra-variation.

Discussion: We propose the following way of re-interpreting conventional results. Given a
specified focal value for a target parameter (typically the null value, but possibly a non-null value like
that representing a twofold risk), the difference between the focal value and the nearest boundary
of the confidence interval for the parameter is calculated. This represents the maximum correction
of the interval boundary, for bias and extra-variation, that would still leave the focal value outside
the interval, so that the focal value remained "incompatible" with the data. We describe a short
example application concerning a meta analysis of air versus pure oxygen resuscitation treatment
in newborn infants. Some general guidelines are provided for how to assess the probability that the
appropriate correction for a particular study would be greater than this maximum (e.g. using
knowledge of the general effects of bias and extra-variation from published bias-adjusted results).

Summary: Although this approach does not yet provide a method, because the latter probability
can not be objectively assessed, this paper aims to stimulate the re-interpretation of conventional
confidence intervals, and more and better studies of the effects of different biases.

Background

Conventional causal estimates from observational data
involve many assumptions, e.g. assumptions about ran-
dom exposure assignment, selection and participation,
ignorable missing data and absence of measurement error
[[1], ch. 12-17; [2,3]]. Although causal systems in epide-
miology are commonly assumed to be so complex that
one cannot expect to understand or correct for all biases,

one can hope to adjust for the major ones and estimate
uncertainty more accurately [2].

Conventional frequentist analyses often yield biased
point estimates because they implicitly set all bias param-
eters (e.g. misclassification probabilities) to zero. Bias also
arises from misspecation of models, e.g. the ignoring of
covariates or of heterogeneity in individual effects [4,5].
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Moreover, the interval estimates in conventional analyses
reflect at most random errors and not systematic errors
(biases). Ignoring uncertainty about bias parameters can
make the intervals too narrow [2,6,7]. Importantly, while
random error decreases with increasing sample size,
uncertainty about biases remains [2,6,7]. Random error
due to sampling and randomisation is often modelled in
an unrealistically simple way. Usual regression, ANOVA
and ANCOVA models, for instance, assume that the out-
come has equal means and variances after conditioning
on the covariates. However, unobserved covariates and
varying individual effects may cause heterogeneity in the
outcome's mean and variance structures [8-12]. These
problems can often be addressed by the use of appropriate
mixed and multi-level models [5]. Furthermore, explora-
tory analyses that precede the final analysis are often
ignored when modelling random error. These include
simplifying a regression model (e.g. omitting nonsignifi-
cant main-effect and interaction terms) and categorisation
of continuous variables [13]. Finally, design issues such as
the presence of clustered observations or multi-stage sam-
pling [14] are often ignored but can also be considered in
multi-level models [5].

In this paper we use the term "extra-variation" to summa-
rize uncertainties about biases and unmodelled random
error. The term "bias" denotes all biases and is defined as
the difference between the expectation of the estimator
and the true average causal effect. Strictly speaking, we
mean "expected bias" because we invoke a Bayesian
model that involves priors.

There are basically five approaches to address bias and
uncertainties about bias (some of which also address
unmodelled random-error):

1. Most frequently, only intuitive discussions about the
impact of bias are provided. These are often found to be
wrong when evaluated quantitatively, for instance, when
misclassification is falsely assumed to be non-differential
for all individuals [15,16].

2. Sometimes, a subsample is used to investigate a single
source of bias (most often measurement error). Such val-
idation studies, however, are often small, giving large ran-
dom error, and may also be biased, e.g. due to selection
bias [17].

3. In sensitivity analysis several bias scenarios are investi-
gated. Bias parameter values are added to the model and
values specified for these. The data are then analysed sup-
posing these values to be true, and the dependence of the
results on the assumed values of these unknown bias
parameters examined. However, sensitivity analysis often
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shows only that a great variety of results are possible if
bias parameters are chosen accordingly.

4. In Monte Carlo sensitivity analysis (MCSA), distribu-
tions for the bias parameters are specified. Causal-effect
estimates are then sampled by drawing bias parameter val-
ues from their distributions and repeating the analysis for
each draw [6].

5. Bayesian methods complete the hierarchy of sophistica-
tion. Here, the posterior distribution of the causal effect is
calculated given the data and the priors for the bias
parameters. Uncertainties about the unknown parameters
are incorporated through prior distributions. These may
be derived from other data sources such as validation
studies. MCSA results have an approximate Bayesian
interpretation if the estimator of the causal effect is effi-
cient, the data are uninformative about the bias parame-
ters and the MCSA procedure is modified by adding
normal disturbances to the causal-effect estimates [2].
From the Bayesian perspective, frequentist confidence
intervals are Bayesian intervals with inappropriate point
priors at zero for bias parameters, e.g. misclassification
probabilities [2,7], and flat priors for the causal effect. Pri-
ors at zero for the bias parameters are inappropriate if the
data are not randomly sampled or not randomly assigned
to groups [18]. The use of flat priors for causal effects can
be criticised, as it implies that a risk ratio of, say, 10-, is a
priori as probable as a risk ratio of 1.5 [19]. Nevertheless,
in practice, such priors are often used in Bayesian analy-
ses.

Instead of modifying the interval estimate, as is done in all
the quantitative approaches mentioned above, we pro-
pose to re-interpret it. The general procedure is as follows:

1. Suppose we are interested in whether a particular value
(called the focal value) of a parameter of interest is "com-
patible" with the observed data. The parameter could be,
for example, the risk ratio (RR) and the focal value might
be 1, which is its null value, or it could be some non-null
value, e.g. 2. Suppose this focal value lies outside the fre-
quentist confidence interval (CI), so that we say it is
"incompatible" with the data. (Although, of course, in
reality even a perfect interval estimate would exclude
nothing with certainty [20].) This "incompatibility" may,
however, be due to bias or extra-variation.

2. Calculate the difference between the focal value and the
nearest boundary of the CI. This difference represents the
maximum permitted correction (MPC) to the interval
boundary that would still leave the interval excluding the
focal value.
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3. Sources of possible bias and extra-variation in the study
would then be examined to assess how likely it is that the
appropriate correction is less than the MPC.

This procedure aims to improve intuitive discussions on
bias by assessing the probability in stage 3. After present-
ing a motivational example, we derive the maximum per-
mitted correction in the general case and for risk ratios
and risk differences, and describe an application to a meta
analysis of air versus oxygen resuscitation treatment in
newborn infants. Finally, we present some general guide-
lines for the assessment of the probability in 3.

Discussion

Motivational example

Suppose we are assessing the average causal effect of a
binary exposure X on a binary outcome Y, quantified by
the risk ratio (RR). If the outcome is rare under all expo-
sure and covariate levels, the odds ratio (OR) approxi-
mates the RR.

Asssume that in a study of a rare disease 200 of 2000
undiseased and 20 of 120 diseased individuals are
exposed. The OR is (2000-200)*20/{200*(120-20)} =
1.8. An estimate of the standard error (SE) of the natural
logarithm (log) ORis (1/1800 + 1/200 + 1/100 + 1/20)V/
2=0.256. Using the Wald method, the 95% CI for log OR
islog(1.8) +/- 1.96 * 0.256 = 0.086 - 1.090. Thus, the cor-
rection of the lower boundary of the interval must be
smaller than 0.086 if the interval is to exclude 0.

Now, suppose for illustration that the only bias is due to
misclassification in the disease status which operates in
such a way that some exposed individuals without disease
may be classified as diseased. Were 3 of the 20 apparently
diseased exposed individuals actually to be undiseased,
the OR would decrease to (1800*17)/(100*203) = 1.51
and the lower limit of the confidence interval would be
log(1.51)-1.96*(1/1800 + 1/203 + 1/100 + 1/17)%/2 = -
0.052. The CI now includes zero. Hence, the null value of
the log OR, 0, excluded by the original CI, would then lie
within the interval. Thus, if it is likely that at least 3 of the
20 apparently diseased exposed individuals have been
misclassified, it is likely that the shift required in the CI
boundary is more than the maximum permitted correc-
tion: the null value would then be compatible with the
data. Note that the simple calculation above did not
address uncertainty in the misclassification probability, a
probability which might have been estimated from a vali-
dation dataset. Methods for taking in account such uncer-
tainty are described in [21].

The maximum permitted correction
The average causal effect of X = 1 versus X = 0 on an out-
come Y (not necessarily binary) could be assessed using
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different indices depending on the outcome, the study
design and the research aim. The index could be a multi-
plicative measure like RR or OR, or an additive measure
like the risk difference (RD). For differences "average
effect” refers to the arithmetic mean of the individual
effects, whereas for ratios it refers to the geometric mean.
(Note that the odds ratio can only be interpreted in this
way if the vast majority of individual risks are low [22].)
Let 6 denote the parameter to be estimated; i.e., the pop-
ulation-average effect for additive measures or the log-
population average effect for multiplicative measures.
(One could also use other smooth functions of the mean
causal effect, but the population-average interpretation
might then fail.)

Let éobs denote the model-based point estimate of 6 from

a frequentist analysis, and (I, u,,) be the (1-0.)*100 %

CI. Bias may have been reduced by adjusting for observed
confounders and/or by using weights to account for

known selection bias [23]. If &is the log OR, éobs can be

computed by logistic regression; if a log-rate ratio, by Pois-
son regression.

Imagine a hypothetical Bayesian multiple bias model that
removes all biases completely and take all uncertainties
about bias parameters and random error perfectly into
account. As in Greenland [2], we assume a non-informa-
tive prior for the causal effect. Let (I, ) denote the
associated interval estimate from this model; i.e., the o/2
and 1-0/2 quantiles of the Bayesian posterior distribution
of @ given the data and the hypothetical perfect bias
model. Discrepancies between (1, Uyys) and (1, ty,es) are
due to biases, uncertainties about biases and unmodelled
random variation.

Let a and b be the shifts in the interval boundaries, i.e.:

lperf= lobs -a
and
Uperf = Ugps + b.

The null value as focal value
Suppose the focal value is 0, and that the interval 1, 1,
| excludes 0. If [ ;. > 0, the MPC (in the lower boundary)
simply equals I, as we require that [ ;- a > 0. This result
is often applied intuitively: it simply indicates that, the
further the lower boundary is from the null, the more
room there is for bias and extra-variation. If u,, < 0, the
MPC (in the upper boundary) equals u

obs

obs*
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Other focal values

Alternatively, one may require that the causal effect, 6,
exceeds some pre-specified non-null focal value, x; that
reflects a relevant threshold for clinical or policy signifi-
cance. Assuming [, > &, the MPC is [, - k. Likewise, one
may ask whether @is smaller than a certain xwhich corre-
sponds to little harm. Assuming u,,< x the MPC is i - 1.

Special cases: RR, RD and number needed to treat

If 6=1og RR, one is often interested in effects of at least a
g-fold risk (e.g. ¢ = 2). Here, x=1log(q), so that a must be
less than [, - log(q).

If @is RD, then demonstrating a RD of more than « (e.g.
k= 0.1) requires that a be less than [, - x: RD equals the
inverse number needed to treat (NNT), the number of
individuals required to prevent (or delay) one adverse
event. Although NNT has often been misinterpreted [24],
this measure is becoming increasingly prominent in clin-
ical epidemiology because of its intuitive meaning [25].
Showing that NNT <q is equivalent to specifying that RD
> Kk=1/q.

Assessing whether the maximum permitted correction is
sufficient

We need to estimate the probability that the true shift, a
or b, is less than the maximum correction that would leave
the focal value "incompatible" with the data. This proba-
bility should be assessed with respect to understood bias.
Of course, the result could still be distorted by non-under-
stood or unknown bias. First, one should assess the shift
due to bias by looking at studies that have investigated
specific biases or global bias. Second, a further correction
should be added for the uncertainty about the bias param-
eter values. The magnitude of this correction depends on
the size of the studies from which bias was estimated, the
uncertainty about their applicability to the present data
and assumptions made about bias in these studies. Third,
a correction due to extra random variation should be
added. The magnitude of the true shift could be estimated
from studies (simulations or real-data studies) that have
compared, in similar settings, naive interval estimates
with estimates obtained using more sophisticated meth-
ods. Finally, one would compare the shift, a or b, esti-
mated using the above procedure with the MPC for the
focal value.

This approach aims to improve the intuitive assessment of
bias by relating it to MCSA and Bayesian methods. These
procedures allow a and b to be estimated based on under-
stood bias. Knowledge of such analyses should enable
researchers to improve their assessments about a and b. In
the discussion we give more guidance for assessing these
shifts.
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Application

Davis et al. performed a meta analysis of five clinical trials
of 100 % oxygen versus air resuscitation treatment of new-
borns [26]. Resuscitation treatment aims to prevent death
and longterm adverse neurodevelopmental consequences
in newborns with breathing difficulties ("asphyxia").
Although oxygen has been recommended for many years,
some researchers are concerned about possible side-
effects of pure oxygen on cerebral blood flow and the gen-
eration of oxygen free radicals (see [26], and references
therein). We focus here on the core outcome "death at lat-
est follow-up" (death during the first week in three studies
and death during the first four weeks in one study; in the
remaining study it was not assessed, so we exclude this
study).

Of the four trials, one was randomized and the care-pro-
viders and outcome-assessors were blind to treatment sta-
tus. The other three studies were only quasi-randomized
and without blinding. Three studies allowed backup-ther-
apy with oxygen therapy if air therapy was unsuccessful
and one study excluded the individuals who received
backup therapy. Davis et al [26] used a fixed-effects model
and found a higher death rate among newborns with oxy-
gen resuscitation: 107 out of 659 individuals treated with

oxygen died versus 70 out of 616 with air; the RD, éobs,

equals 0.05, 95 % CI is 0.01 - 0.08. No more decimal
places are provided, but in favour of a stronger effect, we
assume a lower CI boundary of 0.014 for the following
calculations. Thus, for a focal value of zero, i.e. no effect,
the MPC is 0.014.

Davis et al interpret their results as evidence to prefer ini-
tial use of air resusciation and to use oxygen as backup if
necessary. This is a conclusion about clinical practice:
about which treatment to use first given that the other
treatment may be available as back-up. If one is interested
in the pure efficacy of the competing treatments, i.e., how
well they work when used alone, then in the absence of
other biases, the RD estimate is likely to be biased towards
no effect (i.e. underestimated) because of the availability
of back-up oxygen treatment in three studies. The lack of
blinding in three of the four studies could have caused
over-estimation of RD, as has been found in other studies
[27]. Publication bias may suggest over-estimated effects
because small (under-powered) studies with non-signifi-
cant results may be less likely to be published [28-31], or
to under-estimation due to industry suppressing adverse
findings (although the latter seems unlikely in this case).
Other potential causes of bias include the quasi-randomi-
sation in some of the studies and variation in follow-up
duration. Because of the small study sizes and the small
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number of studies, the impacts of these design issues can-
not be well estimated.

There are various likely sources of extra-variation in the
estimated risk difference. First, there is the uncertainty in
the bias parameters: the results of Davis et al. assume
these are zero. Second, there is unmodelled random vari-
ation, e.g. due to heterogeneity in effect magnitude
between the studies. Heterogeneity was not statistically
significant but this may be due to low power, and it is
known that fixed-effect models underestimate the stand-
ard error when there is heterogeneity [32]. Unmodelled
random variation could also have arisen from shared,
unobserved factors at the level of clinicians or trials which
induced correlation in observations, or from unmodelled
individual heterogeneity in treatment response (which
might vary e.g. according to pulmonary hypertension, as
mentioned by the authors).

In conclusion, there could be several sources of bias and
extra-variation in the results. Information about the mag-
nitude of the bias parameters appears sparse, so large
uncertainty about them should be allowed, as well as con-
siderable unmodelled random error. It seems likely that
the true, unknown shift, a, is greater than 0.014: no clear
preference for either treatment can be inferred.

Summary

The approach advocated in this paper involves the assess-
ment of the probability that the true shift in the relevant
confidence bound is less than the maximum permitted
correction. Even for experts this is a very difficult task and
experts might disagree substantially in their assessment.
From cognitive psychology it is known since the 1970s
that people tend to rely on a small number of simple heu-
ristics when faced with decisions based on probability
assessments [33-36]. The reliance on such simple heuris-
tics, however, can be very prone to errors [33-35]. Even
statistically educated psychologists were found to make
severe errors when assessing probabilities [36]. More than
two decades later, however, Gigerenzer and his group
showed that people do indeed tend to use simple heuris-
tics, but that they are right in many instances (summa-
rized in [37]). They explained the earlier results by
demonstrating that contextual information (e.g. wording
of questions) plays an important role in determining the
answer given, and that humans can be led systematically
to give a "false" answer. Bearing all this in mind, here are
some conceptional guidelines to the problem:

1. The probability that the maximum permitted correction
is sufficient should be specified according to understood
bias. The inference could still be distorted by misunder-
stood or unknown bias, as well as by residual uncertainty.

http://www.biomedcentral.com/1471-2288/6/51

2. We recommend using information from similar studies
or MCSA and Bayesian analyses applied in similar situa-
tions. The results from such studies can be used as a crude
basis for the assessment of the probability that the MPC is
sufficient. In cognitive psychology, information used for
an assessment that is taken from similar entities or set-
tings is called "anchor information". In many applications,
specific biases have been investigated, for instance, by
comparing an instrument with small measurement error
with another known to have much larger error. However,
such estimates of specific biases and associated uncer-
tainty are themselves error-prone because of potential
incomparability of studies with respect to other biases
(and random error). Moreover, the same kind of bias
might operate differently in different studies. For instance,
an instrument with good validity in clinical populations
might perform poorly in general populations. Therefore
using information from other studies has to be done very
carefully because it could cause more harm than good.

Likewise, cognitive psychology tells us that anchor infor-
mation can be quite misleading [37-42] and that almost
anything could serve as an anchor when a subject is faced
with the task of estimation. Therefore, strategies are
required to separate useful from useless or even mislead-
ing anchor information and to take into account uncer-
tainty about their applicability. Moreover, there are
various ways of combining different kinds of bias when
assessing global bias and global unmodelled variance. The
easiest is just to sum them up, but they may act depend-
ently on one another. The less anchor information there is
and the less precise is that information, the more the
boundary should be shifted, in addition to the shift due to
assumed bias.

3. The shift in the interval boundaries could be directly
estimated by MCSA or Bayesian methods. However, these
analyses are not easy for non-experts to conduct. We
expect, on the other hand, that the more results research-
ers see from such analyses, the more they would develop
an intuitive feeling for the effects that multiple bias and
extra variation might have in specific situations. At the
very least, such analyses show that one should have much
less confident in conventional analyses than is suggested
by their confidence intervals.

However, given these guidelines there remains much
uncertainty and subjectivity in assessing the probability
that the MPC is sufficient. Therefore, the way of re-inter-
preting confidence intervals described in this paper does
not yet constitute a method. Further studies on bias are
required to provide more objective information and to
render the approach more useful. This paper is intended
to be just a starting point for thinking about re-interpret-
ing conventional confidence limits.
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