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Abstract: Recent epidemiological studies suggest that prenatal exposure to acetaminophen (APAP) is
associated with increased risk of Autism Spectrum Disorder (ASD), a neurodevelopmental disorder
affecting 1 in 59 children in the US. Maternal and prenatal exposure to pesticides from food and
environmental sources have also been implicated to affect fetal neurodevelopment. However, the
underlying mechanisms for ASD are so far unknown, likely with complex and multifactorial etiology.
The aim of this study was to explore the potential effects of APAP and pesticide exposure on
development with regards to the etiology of ASD by highlighting common genes and biological
pathways. Genes associated with APAP, pesticides, and ASD through human research were retrieved
from molecular and biomedical literature databases. The interaction network of overlapping genetic
associations was subjected to network topology analysis and functional annotation of the resulting
clusters. These genes were over-represented in pathways and biological processes (FDR p < 0.05)
related to apoptosis, metabolism of reactive oxygen species (ROS), and carbohydrate metabolism.
Since these three biological processes are frequently implicated in ASD, our findings support the
hypothesis that cell death processes and specific metabolic pathways, both of which appear to be
targeted by APAP and pesticide exposure, may be involved in the etiology of ASD. This novel
exposures-gene-disease database mining might inspire future work on understanding the biological
underpinnings of various ASD risk factors.
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1. Introduction

According to the Center for Disease Control and Prevention (CDC), 1 in 59 children
born in 2008 in the United States have been diagnosed with Autism Spectrum Disorder
(ASD), and the prevalence of ASD has increased in recent decades [1]. While broadening
diagnosis criteria for autism is partially responsible for the observed increases in ASD
prevalence, both genetic and environmental factors have also been suggested to contribute
to ASD risk through gene-environment interactions [2,3].

Based on recent evidence, two prenatal exposures of importance to the risk of devel-
oping ASD are the common analgesic, APAP, and pesticides, which are highly present in
our current environment and food [4]. APAP is the most commonly used drug during
pregnancy, with approximately 65% of women taking the analgesic at some point during
pregnancy [5]. This prenatal exposure has been associated with long-term negative effects
on brain function [6]. Meanwhile, prenatal pesticide exposure, which likely increases
with increased caloric intake during pregnancy, has been associated with traits related to
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ASD [7,8]. In fact, a recent systematic review found that among environmental toxicants,
pesticides have one of the strongest associations with ASD risk [9,10].

Recent epidemiological cohort studies conducted in various countries have associated
maternal use of APAP with increased risk of ASD and ASD-linked symptoms, such as
internalizing and communication behavioral problems, in offspring and raise concerns that
APAP may interfere with optimal fetal brain development [11–16]. For example, studies
from the Danish National Birth Cohort have reported that maternal APAP used during
pregnancy was associated with attention-deficit/hyperactivity disorder (ADHD) [11] and
ASD cases co-morbid with hyperkinetic phenotypes [12]. A Spanish birth cohort study
reported elevated childhood autism spectrum test scores among males prenatally exposed
to APAP and stronger effect size with increasing frequency of maternal APAP use [13].
The Norwegian Mother and Child Cohort study used a same-sex sibling-pairs study
design and revealed, through sibling-control analysis, that prenatal exposure to APAP for
more than 28 days was associated with worse gross motor development, communication,
externalizing and internalizing behaviors [14]. A recent study from the Boston Birth Cohort
found concentrations of biomarkers for fetal exposure to APAP to be associated with
significantly higher risk of ASD and ADHD [16]. Thus, the association between APAP
exposure in utero and ASD is supported by consistent findings among studies. However,
study limitations, including reliance on self-reported data, lack of information related to
maternal exposure dose, and insufficient consideration of postnatal exposure, highlight the
need for caution when assigning causation and underscore the necessity for studies that
explore the mechanisms by which APAP exposure could contribute to the etiology of ASD.
APAP can cross the placenta and the fetal brain barrier [17,18]. As such, APAP-induced
oxidative stress, endocrine effects [19], and impacts on placental function [20] are suggested
mechanisms that could influence fetal neurodevelopment.

Widespread environmental chemicals might modify the effects and toxicity of phar-
maceutical agents, a concept known as drug-exposome interactions, resulting in reduced
drug efficacy, increased drug resistance, or adverse effects [21,22]. Cross interactions be-
tween pollutants and drugs can potentially lead to inhibitory effects of drug metabolism,
resulting in increased concentration of the drug in the body and amplification of pharma-
ceutical side effects [23]. The p-cresol metabolite produced by bacteria reduces the body’s
ability to metabolize APAP, potentially increasing the risk of APAP-induced toxicity [24].
Environmental contaminants can also interact with various drug transporters, reduce
drug-elimination rates, and thus increase the toxicity of the medication [25]. One instance
of environmental exposures modifying the effectiveness of medication is the association
between higher air pollutant exposure and lower risk of ASD among mothers consuming
high levels of folic acid during the first month of pregnancy [26]. This concept has been
proposed in the multicausal or multifactorial disease model, hypothesizing that a disease
can be produced by various sufficient sets of genetic and environmental factors to induce
disease occurrence [27].

Another possible environmental agent that could target similar pathways or modify
the effects of APAP would be neurotoxic pesticide compounds, which have also been
linked to ASD risk [9,28]. Some mechanistic studies have suggested that pesticide com-
pounds that target receptors on the blood-brain barrier prevent drug transport and delivery
through the brain, potentially leading to pharmaceutical ineffectiveness and other adverse
effects [29]. One method by which pesticide exposure can alter or worsen the intended
effect of medications is by interfering with the P-glycoprotein system, one of the body’s
natural detoxification mechanisms found in secretory or barrier tissues such as the placenta
and the vascular endothelial cells of the central nervous system [30]. However, there have
been no studies that consider both APAP and pesticide exposures effects on human health.

The work presented here is a novel, first attempt to explore whether there are shared
underlying biological pathways connecting genes associated with these two external ex-
posure risk factors for the development of ASD. Both APAP and numerous pesticide
compounds can function as oxidative stressors and subsequently affect neurodevelop-
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ment [6]. Although the mechanism by which oxidative stress may affect neurodevelopment
and ASD is not fully understood, it is accepted that the nervous system is vulnerable to
oxidative stress-mediated injury [31]. One proposed mechanism connecting oxidative
stress with ASD implicates membrane lipid abnormalities, inflammation, impaired energy
metabolism, and excitotoxicity as being involved in the pathogenesis of ASD [6,32].

Studies have shown that prenatal exposure to pesticides may result in the occurrence
of general neurobehavioral disorders [33]. Of the 37 studies considered in one systematic
review, 34 found an association between estimated environmental exposure to toxicants
and ASD risk, with some of the strongest evidence implicating pesticides in ASD [9].
Ambient prenatal exposure to pesticides, such as glyphosate and chlorphyrifos, has also
been associated with increased risk of ASD [28]. Although the external validity of some of
these studies is limited to examining the effects of ambient, prenatal pesticide exposure
in agricultural areas, they still offer insight to the potential effects of prenatal pesticide
exposure among the general population, which is exposed via ingestion and residential use.

To explore whether APAP and pesticide exposure might influence ASD risk through
similar underlying biological mechanisms, we conducted this study to perform database
mining of the genetic associations of ASD in combination with network and functional
analysis of candidate genes. Computer-based text mining methods have been used before
to generate biomedical hypotheses on the impact of multiple exposures by examining
novel associations between genes and diseases [34]. For example, literature mining and
computational systems biology methods were used to explore the possible etiologic links
between environmental chemicals, genes of interest, and type II diabetes [35]. By applying
integrated molecular interaction network mining and text mining techniques, a previous
study created a molecular connectivity map with novel information on AD-related genes
and proteins to identify candidate drugs [36]. Such an in silico approach is particularly apt
for addressing the present research question as it can simultaneously consider one specific
exposure, APAP, with a broad class of exposures, pesticides, with regards to a clinically
heterogeneous disease, ASD. The aim of the present study was to mine literature and
molecular databases for genetic associations between APAP, pesticides, and ASD, which
were then functionally annotated to lead to a novel perspective in understanding autism’s
etiology. This work may shed light on the underlying biological mechanisms APAP and
pesticide exposures have on ASD risk by targeting different genes on similar biological
pathways and can offer guidance to future research on the pathogenesis of ASD.

2. Materials and Methods

Finding and retrieving genetics associations: Lists of genes associated with the expo-
sures and disease of interest (APAP, Pesticides and ASD) were extracted from the public
databases: Comparative Toxicogenomics Database (CTD) [37], PubChem [38], Open Targets
Platform [39], DrugBank [40], PhegenI [41], and Clinvar [42], as well as from the propri-
etary knowledgebases Ingenuity Pathway Analysis (IPA) (QIAGEN Inc., Redwood City,
CA, USA, https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis,
accessed in May 2020) [43] and MetaCore (Clarivate Analytics, Philadelphia, PA, USA).
Appendix A provides a summary on each of these databases, while Appendix B indicates
which databases were used to find and extract genes associated with each concept.

The PubChem, DrugBank, CTD, Open Targets, and IPA databases were searched
with keywords such as “Acetaminophen”, “Tylenol”, and “APAP” to identify genes in
the human genome associated with APAP. Each database then matched the search term
to existing concepts before executing the search. The search term “Tylenol”, for example,
yielded results related to terms such as “Paracetamol”. For identifying genes associated
with pesticides, the Chemicals and Diseases tabs were selected in independent searches
of the term “Pesticides” using CTD. Each independent search of CTD employed differ-
ent combinations of disease category, set to either Autism Disorder or Nervous System
disease, and association type, set to curated or inferred. Finally, independent searches
of the six molecular databases (Clinvar, PheGenI, MetaCore, IPA, Open Targets, and
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CTD) were performed to identify genes related to ASD using the search terms “Autism”,
“Autism Spectrum Disorder”, or “Autism or Intellectual Disability” and find genes as-
sociated with ASD. The lists of genes generated by these searches were sorted into their
respective categories (APAP, pesticides, ASD) and used to create Venn diagrams using In-
teractiVenn (http://www.interactivenn.net/, accessed in May 2020), which revealed over-
lapping genes between lists. The genes in each category that were identified in at least two
databases, or the same database but with two independent search criteria, were used for
further analysis.

To complement the results from the molecular databases, we used Coremine Medical
(https://www.coremine.com/medical/, accessed in June 2020), a biomedical literature
search engine, to retrieve genetic associations for APAP, pesticides and ASD. This is a
mining tool that utilizes various ontologies (Medical Subject Headings, Gene Ontology)
to map terms (e.g., diseases, genes) from the MEDLINE database. When any two terms
are both found in any particular record, they become connected in the network. This tool
also calculates a statistical score for the association between the two terms using a function
that considers the frequency with which the entities co-occur versus their independent
occurrence in the corpus as a whole (https://www.coremine.com/medical/help.html,
accessed in June 2020). Genes significantly associated (p < 0.05) with the search terms
(e.g., APAP, ASD) were used for further analysis. Both molecular database and literature
methods are necessary as the former is more sensitive, while the latter is more specific to
the search terms. Thus, incorporating both leads to more comprehensive results.

Pathway and network analysis: Ingenuity Pathway Analysis (Ingenuity Systems QIA-
GEN, Content version: 45865156, 2018, Redwood City, CA, USA) was used to carry out
analyses for pathway, network, and molecular and cellular functions for found genetic
associations. Each gene symbol was mapped onto its corresponding gene object in the
Ingenuity Pathways Knowledge Base. This tool provides information about the over-
representation (p-value of the Fisher’s Exact test and the corrected Benjamini-Hochberg
FDR p-value) of these genes in pathways, diseases, and biological functions. We used the
Comparison Analysis function in IPA to compare the pathways overrepresented in the
genetic associations found in the molecular database and literature analyses. IPA was also
used to find the associations of overlapping genes with neurodevelopment functions. This
knowledgebase contains associations between molecules, diseases and functions manually
curated from the biomedical literature. It also calculates the significance of the overlap
using Fisher’s Exact test.

For network analysis, we used the STRING database to retrieve the gene interaction
networks (https://string-db.org/, accessed in June 2020) database [44]—with a minimum
required interaction score > 0.4. Cluster analysis of the resulting interaction networks
was carried out using the MCODE application on the Cytoscape v3.8.0 software [45] with
degree cutoff 2, node score cutoff 0.2, and K-core 2. Both IPA and STRING were used to
reveal functional patterns emerging from the three search terms of interest.

3. Results

Six genes retrieved via molecular database mining were found in all three categories
of interest: ABCB1, ABCB4, CYP1A2, CYP3A4, FAS, and IGF1R. These six genes were
analyzed for ingenuity canonical pathways and then added to a functional network topo-
logical analysis along with their interacting genes, as determined by the STRING database.
Carbohydrate metabolism and apoptosis were overrepresented as biological processes of
common genes between APAP, pesticides and ASD risk. CTD produced the higher number
of genetic associations. Sixteen different common genes to the three categories were found
via literature mining using Coremine Medical: CAT, CD4, TNF, VEGFA, EGFR, INS, AGT,
IL2, FN1, PTH, TP53, ERBB2, GCG, TSC1, APP, and F2. This approach was conducted to
compliment the genetic associations found using molecular databases. These 16 genes were
then used for pathway and network analysis. Carbohydrate transport, ROS metabolism,
response to oxidative stress, growth, and regulation of ERK1 and ERK2 cascades as biologi-
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cal processes that relate to APAP, pesticides and ASD risk. Finally, comparison analysis of
the two methods was done to reveal common findings.

3.1. Molecular Database Search for Genetic Associations
3.1.1. Gene Retrieval from Molecular Databases

The Venn diagram in Figure 1 contains the genes found in at least two separate
searches from the molecular databases and shows that six genes overlap in the center: ATP
Binding Cassette subfamily B member 1 and 4 (ABCB1, ABCB4), CYP1A2, CYP3A4, FAS
Cell Surface Death Receptor (FAS), Insulin like Growth Factor Receptor 1 (IGF1R).
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Figure 1. Venn diagram for overlapping genes associated with APAP, pesticides and ASD. The
diagram shows the number of genes associated with APAP, pesticides, or ASD, or jointly with any
two or all three factors. Six genes overlapped in all three categories: ABCB1, ABCB4, CYP1A2,
CYP3A4, FAS, and IGF1R. These six genes were used for pathway analysis in IPA. The 65 genes found
to overlap between the pesticide and ASD nodes, as well as the 26 genes overlapping between the
APAP and ASD nodes, are listed in Appendix C.

3.1.2. Pathway Analysis

Table 1 presents the significant pathways overrepresented for the six common genes—
identified from the database search—in the master Venn diagram (Figure 1). Each pathway
is presented with Fisher’s Exact Test p-value of the overrepresentation analysis, and the
overlapping genes. Results from this table are reassuring as pathways related to metabolism
of foreign substances are present, as well as pathways that have been targeted in treatment
efforts relating to ASD.

Table 1. Ingenuity Pathway Analysis showing overrepresented pathways (Fisher’s Exact Test p < 0.05) of the six genes
found in the molecular databases. Pathways with significant p-values > 0.01 are displayed in Appendix D.

Ingenuity Canonical Pathways p-Value Genes

PXR/RXR Activation 4.47 × 10−7 ABCB1, CYP1A2, CYP3A4
Xenobiotic Metabolism CAR Signaling Pathway 1.12 × 10−5 ABCB1, CYP1A2, CYP3A4

Bupropion Degradation 1.74 × 10−5 CYP1A2, CYP3A4
Acetone Degradation I (to Methylglyoxal) 2.51 × 10−5 CYP1A2, CYP3A4

Xenobiotic Metabolism Signaling 3.89 × 10−5 ABCB1, CYP1A2, CYP3A4
Estrogen Biosynthesis 4.79 × 10−5 CYP1A2, CYP3A4

Aryl Hydrocarbon Receptor Signaling 5.75 × 10−4 CYP1A2, FAS
Hepatic Fibrosis/Hepatic Stellate Cell Activation 9.77 × 10−4 FAS, IGF1R
Xenobiotic Metabolism PXR Signaling Pathway 1.05 × 10−3 ABCB1, CYP3A4
LPS/IL-1 Mediated Inhibition of RXR Function 1.41 × 10−3 ABCB1, CYP3A4
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3.1.3. Network Analysis

The interaction network in Figure 2 shows the six genes from the master Venn diagram
represented as large triangles and interacting genes from the STRING database as circles.
Red nodes relate to apoptosis, or programmed cell death (FDR p = 1.41 × 10−11). Green
nodes comprise a cluster that is significantly related to carbohydrate metabolism (FDR
p = 3.39 × 10−12).
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Figure 2. Network topological analysis of the six genes overlapping among ASD, pesticides, and
acetaminophen. A cluster analysis of the STRING Protein–Protein Interaction network was carried
out in Cytoscape. Triangles indicate the six original genes while circular nodes are first neighbors
from STRING database interactions. Red lines connecting triangular nodes indicate connections
between six original genes. Red nodes are overrepresented for apoptosis (FDR p = 1.41 × 10−11).
Green nodes are overrepresented for carbohydrate metabolism (FDR p = 3.39 × 10−12).

3.2. Literature Search for Genetic Associations
3.2.1. Gene Retrieval from Coremine Medical

In order to complement the results from different molecular databases, literature
mining analysis was carried out using Coremine Medical. Figure 3 shows the results from
Coremine in a Venn diagram of genes with significant (p < 0.05) frequencies of co-occurrence
between the searched terms (e.g., ASD, APAP).
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Figure 3. Venn diagram for genes retrieved from Coremine Medical associated with APAP, pesticides,
and ASD. The 16 genes from the center of this Venn diagram are: CAT, CD4, TNF, VEGFA, EGFR,
INS, AGT, IL2, FN1, PTH, TP53, ERBB2, GCG, TSC1, APP, and F2. These 16 genes are used in IPA to
perform canonical pathway analysis, the results of which are shown in Table 2. The 15 genes found
to overlap between the pesticide and ASD nodes, as well as the seven genes overlapping between the
APAP and ASD nodes, are listed in Appendix E as they may be synergizing in common pathways.
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Table 2. Ingenuity pathway analysis showing significant (Fisher’s Exact Test p < 0.05) pathways overrepresented for the 16
genes found via Coremine Medical. Pathways with significant p-values > 0.01 are displayed in Appendix F.

Ingenuity Canonical Pathways p-Value Genes

Acute Phase Response Signaling 6.306 × 10−6 AGT, F2, FN1, TNF
Hepatic Cholestasis 7.244 × 10−6 GCG, IL2, INS, TNF

Telomerase Signaling 5.494 × 10−5 EGFR, IL2, TP53
Type I Diabetes Mellitus Signaling 6.026 × 10−5 IL2, INS, TNF

Estrogen Receptor Signaling 6.768 × 10−5 AGT, EGFR, TP53, VEGFA
FXR/RXR Activation 8.91 × 10−5 AGT, INS, TNF

NF-κB Signaling 2.51 × 10−4 EGFR, INS, TNF
mTOR Signaling 3.98 × 10−4 INS, TSC1, VEGFA

Hematopoiesis from Pluripotent Stem Cells 5.37 × 10−4 CD4, IL2
Myc Mediated Apoptosis Signaling 5.62 × 10−4 TNF, TP53

PXR/RXR Activation 9.33 × 10−4 INS, TNF
Sirtuin Signaling Pathway 1.02 × 10−3 APP, TNF, TP53

VDR/RXR Activation 1.35 × 10−3 IL2, PTH
Agrin Interactions at Neuromuscular Junction 1.39 × 10−3 EGFR, ERBB2

Glucocorticoid Receptor Signaling 1.55 × 10-3 AGT, IL2, TNF
Allograft Rejection Signaling 1.62 × 10−3 IL2, TNF

Crosstalk between Dendritic Cells and Natural Killer Cells 1.78 × 10−3 IL2, TNF
OX40 Signaling Pathway 1.82 × 10-3 CD4, IL2

ErbB Signaling 1.95 × 10−3 EGFR, ERBB2
Neuregulin Signaling 2.04 × 10−3 EGFR, ERBB2
Apoptosis Signaling 2.19 × 10−3 TNF, TP53

PPAR Signaling 2.40 × 10−3 INS, TNF
HIF1α Signaling 2.82 × 10−3 TP53, VEGFA

Neuroprotective Role of THOP1 in Alzheimer’s Disease 3.02 × 10−3 AGT, APP
Insulin Receptor Signaling 4.27 × 10−3 INS, TSC1

Type II Diabetes Mellitus Signaling 4.37 × 10−3 INS, TNF
Necroptosis Signaling Pathway 5.37 × 10−3 TNF, TP53

Mitochondrial Dysfunction 6.31 × 10−3 APP, CAT
PI3K/AKT Signaling 6.61 × 10−3 TP53, TSC1

3.2.2. Pathway Analysis

The 16 genes found in the center node of Figure 3 are detailed in the discussion section.
Ingenuity Pathway Analysis was used to assess the significance of the interactions between
these 16 genes. Significant overrepresented functions include inositol lipid-mediated
signaling (FDR p = 9.10 × 10−7), ERK1 and ERK2 cascade (FDR p = 9.20 × 10−7), and cell
growth (FDR p = 1.40 × 10−7).

Over representation analysis using the STRING database of the 16 genes resulted
in a protein–protein interaction enrichment p-value of 2.02 × 10−7. Such an enrichment
p-value indicates that the proteins are at least partially biologically connected, as a group.
STRING database analysis also showed interesting biological processes in the functional
enrichment of the 16-gene network. Of note, regulation of phosphate metabolic pro-
cess (FDR p = 3.19 × 10−12), regulation of cell death (FDR p = 6.25 × 10−9), regulation
of ROS metabolic process (FDR p = 2.00 × 10−9), regulation of ERK1 and ERK2 cascade
(FDR p = 1.02 × 10−9), and regulation of apoptotic process (FDR p = 4.76 × 10−8) were all
processes related to the interactions between these genes.

IPA pathway analysis results are shown in Table 2 along with their p-values and
respective genes. Some relevant pathways include Telomerase Signaling (p = 5.45 × 10−5),
FXR/RXR activation (p = 8.86 × 10−5), Type I Diabetes Mellitus (p = 6.08 × 10−5), as well
as several neurological pathways, such as Hypoxia-inducible factor 1α (HIF1α) signaling
(p = 2.82 × 10−3), Agrin Interactions at Neuromuscular Junction (p = 1.39 × 10−3), Neureg-
ulin Signaling (p = 2.04 × 10−3), and Neuroprotective Role of THOP1 in Alzheimer’s
Disease (p = 3.02 × 10−3).
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3.2.3. Network Analysis

Figure 4 displays the interaction network resulting from the 16 overlapping genes
among the three concepts from the Coremine Medical search engine. The cluster in yellow
contains nine of the 16 genes, while the purple cluster contains the remaining seven.
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Figure 4. Cytoscape diagram showing the interaction network of 16 common genes between the
three concepts from the Coremine search engine. The yellow cluster on the left is overrepresented for
carbohydrate transport (FDR p = 1.39 × 10−4), ROS metabolic process (FDR p = 5.01 × 10−5), and
response to oxidative stress (FDR p = 2.26 × 10−4). The right purple cluster is overrepresented for
growth (FDR p = 2.98 × 10−6) and regulation of ERK1 and ERK2 cascade (FDR p = 1.08 × 10−3).

3.3. Pathway Comparison Analysis

We compared the results from molecular datasets with those obtained with literature
mining at the pathway level. Overrepresented common pathways are shown in Table 3.
Aryl Hydrocarbon Receptor (AHR) signaling regulates xenobiotic metabolism and transpos-
able elements that may control a large number of gene expression patterns [44]. Chemokine
(C-C motif) Receptor 5 (CCR5) signaling in macrophages has been linked to neuroinflam-
mation and neurodegeneration [46]. The above-mentioned FXR/RXR activation and those
related to xenobiotic metabolism are also present in Table 3. Other pathways include PEDF
signaling and PTEN signaling, which induces insulin resistance and modulates cell growth
and apoptosis, respectively [47,48].

Table 3. Pathway comparison analysis. Table shows significant pathways found amongst all 22 genes retrieved through
molecular databases and literature mining. Rows sorted by alphabetical order of canonical pathway.

Canonical Pathways Molecular Database Analysis p-Value Literature Analysis p-Value

Aryl Hydrocarbon Receptor Signaling 9.79 × 10−4 8.86 × 10−5

CCR5 Signaling in Macrophages 2.69 × 10−2 1.69 × 10−2

Death Receptor Signaling 2.87 × 10−2 1.85 × 10−2

FXR/RXR Activation 2.25 × 10−2 4.46 × 10−3

LPS/IL-1 Mediated Inhibition of RXR Function 9.69 × 10−4 6.78 × 10−5

Myc Mediated Apoptosis Signaling 1.29 × 10−2 5.59 × 10−4

NF-κB Signaling 1.60 × 10−2 1.76 × 10−3

p53 Signaling 3.05 × 10−2 4.01 × 10−2

PEDF Signaling 2.59 × 10−2 1.18 × 10−2

PTEN Signaling 2.38 × 10−2 1.05 × 10−2

PXR/RXR Activation 4.45 × 10−7 9.43 × 10−4

Type I Diabetes Mellitus Signaling 2.15 × 10−2 2.17 × 10−3

Xenobiotic Metabolism CAR Signaling Pathway 1.40 × 10−3 1.97 × 10−4

Xenobiotic Metabolism PXR Signaling Pathway 5.81 × 10−4 6.08 × 10−5

Xenobiotic Metabolism Signaling 1.04 × 10−3 1.50 × 10−4

IPA knowledgebase showing the overlap between the 6 and 16 genes found via
molecular database and literature mining approaches, respectively, as they relate to neu-
rodevelopmental functions (Figure 5). Each arrow represents an association between
molecules, diseases and functions manually curated from the biomedical literature. Nine
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out of 22 genes significantly overlap with the function Development of central nervous
system, as calculated by the Fisher’s Exact test (p = 2.91× 10−11), in the IPA knowledgebase.
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Figure 5. Ingenuity Pathway Analysis diagram connecting 9 out of the 22 overlapping genes
from the molecular database and literature mining, as they are significantly associated with the
development of the central nervous system according to Fisher’s Exact test (p = 2.91 × 10−11) in the
IPA knowledgebase.

4. Discussion

To the best of our knowledge, this is the first study to explore the potential effects
of two common prenatal exposures, APAP and pesticides, on development with regards
to the increasingly prevalent ASD. We found overlapping genes associated with APAP,
pesticides, and ASD to be overrepresented in several biological pathways relating to
apoptosis, metabolism of ROS, and carbohydrate metabolism. These pathways, many of
which relate to the nervous system and xenobiotic metabolism, could elucidate the shared
biology of APAP and pesticide exposures on ASD risk through the lens of genetic functions.
Our results show that the considered co-exposures have many biological and mechanistic
overlaps that connect them with the disease of interest and support the hypothesis that
APAP and pesticides may target the same genes and molecular pathways.

The functions for each of the six genes uncovered through the molecular database
associated with APAP, pesticides, and ASD, as well as the 16 genes elucidated through
the literature mining approach, are presented in Table 4. Interestingly, there is no overlap
between the individual genes selected by these two approaches. The molecular database
and literature mining likely result in different genes because the former takes advantage of
preexisting, published datasets, while the latter identifies significant genes associated with
the exposures of interest in peer-reviewed studies. Ultimately, the two approaches aim to
complement one another. Despite the absence of overlap between the two methods, the
biological pathways elucidated via these two approaches have considerable amounts of
significant overlap (Table 3).



Toxics 2021, 9, 97 10 of 19

Table 4. Resulting genetic associations for the interaction between APAP, pesticides and ASD.

Source of
Association

Official Gene
Symbol Name NCBI Gene Description/Function

Molecular
databases

ABCB1 ATP Binding Cassette subfamily B
member 1 multidrug resistance, and ATP-dependent drug efflux

pumps for xenobiotic compounds; transporter in the
blood-brain barrierABCB4 ATP Binding Cassette subfamily B

member 4

CYP1A2 Cytochrome P450 Family 1 Subfamily A
Member 2

catalyzes many reactions involved in drug metabolism
and the synthesis of cholesterol, steroids and other lipids

CYP3A4 Cytochrome P450 Family 3 Subfamily A
Member 4

metabolizes steroids as well as carcinogens, involved in
the metabolism of approximately half of all drugs

currently in use

FAS Fas Cell Surface Death Receptor

contains a death domain, plays a central role in the
physiological regulation of programmed cell death,

involved in transducing the proliferating signals in normal
diploid fibroblast and T cells

IGF1R Insulin like Growth Factor Receptor 1
binds insulin-like growth factor, highly overexpressed in
most malignant tissues, functions as anti-apoptotic agent

by enhancing cell survival

Literature

CAT Catalase enzyme that protects cells from ROS-induced
oxidative damage

CD4 Cluster of differentiation 4 membrane glycoprotein of T lymphocytes

TNF Tumor Necrosis Factor triggers activation of the MLKL cascade which is critical in
the generation of ROS

VEGFA Vascular Endothelial Growth Factor A encodes heparin-binding protein, induces proliferation
and migration of vascular endothelial cells

EGFR Epidermal Growth Factor Receptor encodes for a transmembrane glycoprotein that is a
member of the protein kinase superfamily

INS Insulin peptide hormone, plays major role in regulating
carbohydrate and lipid metabolism

AGT Angiotensinogen codes for a liver protein involved in maintaining
blood pressure

IL2 * Interleukin 2 encodes for a protein important in the proliferation of B
and T lymphocytes

FN1 Fibronectin 1 codes for fibronectin, a protein involved in cell adhesion
and migration processes including embryogenesis

PTH Parathyroid Hormone encodes a preproprotein that is proteolytically processed
to a protein involved in parathyroid hormone signaling

TP53 Tumor Protein p53
tumor repressor protein involved in cellular stress

responses that can induce cell cycle arrest, apoptosis,
senescence, DNA repair, and changes in metabolism

ERBB2 erb-b2 Receptor Tyrosine Kinase 2 encodes a member of the epidermal growth factor
receptor family

GCG Glucagon stimulates glycogenolysis and gluconeogenesis

TSC1 TSC Complex Subunit 1 encodes hamartin, a growth inhibitory protein

APP Amyloid Beta Precursor Protein serves as a cell surface receptor and transmembrane
protein that is cleaved to form several types of peptides

F2 Coagulation Factor II, Thrombin

encodes the prothrombin protein that is cleaved in several
steps to generate thrombin, a protein that plays a role in

cell proliferation, tissue repair, and maintaining
vasculature during perinatal development

* Interestingly, IL2′s related gene, interleukin 1β (IL1β), was found to be significantly increased in the plasma of fetuses taken from pregnant
rats treated with APAP [49].
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4.1. Main Biological Themes
4.1.1. Apoptosis

Various biological pathways identified here, such as ERK1 and ERK2 cascade, as well
as telomerase signaling, play a direct role in the signaling pathway of apoptosis [50,51] and
programmed cell death, which have been implicated in the etiology of ASD. Experiments
have shown that 1 and 2 mM APAP concentrations, which are similar to the concentrations
in human plasma during an APAP overdose, cause concentration-dependent neuronal
death in vitro; additionally, APAP doses below what is required to induce acute hepatic
failure (250 and 500 mg/kg) in vivo in rats lead to neuronal death [52]. CYPs in the
brain have been suspected to play a role in this neurotoxic metabolism of APAP [53].
While neuronal cell death is clearly a consequence of high levels of APAP in cell and
mouse models, one study found therapeutic doses of APAP to have no apparent toxic
effects on human neuronal stem cells [54]. Still, the main limitation of this study is its
model, which employs induced stem cells in vitro to infer the effects occurring in vivo.
Thus, it is yet to be determined how APAP exposure effects developing human neurons
in vivo, but prior studies have demonstrated effects on transformed neuronal stem cell
lines in vitro utilizing toxic concentrations. HIF1α signaling (Table 2) has a role in the
development of sympathetic ganglion neurons and is known to regulate genes that are
involved in adaptive and protective neuronal processes during maturation [55,56]. In
mice, genetic deletion of HIF1α leads to increased cell death and decreased proliferation
of neuronal progenitor cells within the sympathetic nervous system [55]. Another mouse
model also showed that inhibition or deletion of neuronal HIF1α increased necrotic and
apoptotic cell death [56]. After exposing pregnant rats to glyphosate-based herbicides,
one study found offspring to exhibit significant increases (73%, p = 0.017) in HIF1α in
the cerebellum [57]. Following pesticide exposure, the placentas of a cohort of pregnant
tea garden workers showed increased levels of HIF1α expression [58]. Neuropathological
evidence suggests that activation of apoptosis during development may mechanistically
explain the pathophysiology of ASD [59]. In mice treated with 300 mg/kg of APAP, HIF1α
was induced even prior to the onset of any hepatoxic effects and contributed to oxidative
stress, which also links it to ROS metabolism [60]. Thus, alterations in HIF1a expression
may be an important contributing factor to the development of ASD. Future studies should
address the effect of cumulative APAP and pesticide exposure on the regulation of HIF1a,
as it is currently unclear whether APAP or APAP in combination with pesticides can alter
HIF1a expression in a manner that would result in the activation of apoptosis.

An established connection between ROS and apoptosis is further supported by our
finding of AHR signaling. AHR is a ligand-induced receptor involved in interactions
between an individual and its environment [44]. After certain exposures, AHR signaling
has been found to mediate apoptosis and neurotoxicity [61]. A study using mouse primary
neuronal cells derived from neocortical and hippocampal tissues has shown that AHR acti-
vation by beta-naphthoflavone, an AHR agonist, leads to apoptosis [62]. Furthermore, AHR
signaling is also connected with the metabolism of ROS via kynurenine, a ligand of AHR,
which has been shown to stimulate AHR in human embryonic stem cells, which leads to in-
creased expression of self-renewal genes [63]. It has been shown that microbiome-mediated
AHR-ligands engage the host immune system and stimulate metabolic responses [64]. It is
worth noting that many AHR ligands are able to cross the blood–brain barrier, implying
a possible role of AHR in the central nervous system [64]. Therefore, it is possible that
AHR receptor signaling, which is linked to APAP and pesticides, could participate in
the etiology of ASD. Another apparent link between apoptosis and ROS metabolism is
indicated by identification of the various xenobiotic, p53, and PTEN signaling pathways
listed in Table 3.

4.1.2. Metabolism of ROS

ROS metabolism has been implicated in perinatal mechanisms potentially leading
to ASD’s clinical symptoms and its pathogenesis [6,31,32,65]. Excess production of ROS
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can impair DNA methylation, which normally silences certain genes, leading to a positive
feedback mechanism that makes individuals with ASD more vulnerable to oxidative stress
and neuronal toxicity [31]. It has also been speculated through an age- and sex group-
matched case control study that different perinatal oxidative stress-related environmental
and genetic factors could lead to the development of ASD [65]. Toxicity of APAP is mainly
due the formation of APAP’s reactive intermediate, NAPQI, which leads to excessive
formation of ROS [66,67]. In human neuroblastoma cells, exposure to the pesticides
endosulfan and zineb resulted in the production of ROS in a dose- and time-dependent
manner [68]. As suggested by the overlapping results presented here, it is possible that
pesticides activate pathways that also lead to greater production of ROS, which would
then place further ROS-stress on cells of interest. Another step in the mechanism by which
APAP enacts its toxicity on cells is through glutathione (GSH) depletion [66]. GSH is
the antioxidant involved in anti-ROS defense mechanisms [32]. APAP has been shown
to significantly reduce GSH levels in the brains of mice [69]. Interestingly, GSH levels
have been shown to be significantly lower in the cerebellum and Brodmann Area 22 (a
portion of Wernicke’s area and thus assists in language comprehension) of individuals
with ASD [70]. While the understanding of fetal metabolism of APAP as well as the safe
reference level for fetal brain exposure to APAP and NAPQI are unclear, the metabolism of
ROS is another biological process that connects co-exposure to APAP and pesticides with
ASD. The combined risk that APAP and pesticides pose to normal ROS metabolism could
have relevant implications in the etiology of ASD. A connection between ROS metabolism
and carbohydrate metabolism has also been implicated in the pathogenesis of ASD [71].

4.1.3. Carbohydrate Metabolism

Proper metabolism of carbohydrates is essential for normal neurodevelopment in
order to supply the developing brain with the necessary energy demands needed for
such dramatic changes in brain function and structure [72,73]. Studies have shown that
impairments in carbohydrate metabolism in the brain are associated with ASD [71,74]. It
is within reason that this study implicates carbohydrate metabolism in ASD’s etiology,
considering that some pesticides exact their neurotoxic effects by targeting carbohydrate
metabolism [75,76]. FXR/RXR activation and Type I Diabetes Mellitus (Table 3) are two
pathways identified here that support this carbohydrate metabolism hypothesis. FXR/RXR
activation regulates the metabolism of several carbohydrates, such as cholesterol, triglyc-
eride, and glucose [77,78]. Type I Diabetes Mellitus relates to carbohydrate metabolism, as
this disease’s predominant symptom is a decrease in the production of insulin. The sirtuin
signaling pathway (Table 2) has been connected to the insulin/insulin-like growth factor 1
signaling pathway [79]. Thus, it is also associated with the IGF1R (Figure 2), which has
been connected to ASD via neo-neuron myelination [80].

4.2. Intra-Pathway Interactions

APAP and pesticides may not always affect the same genes, apart from those identified
in the center of the presented Venn diagrams, but they are associated with genes related to
the same pathways, which is relevant because no single gene or region of the genome is
responsible for ASD [81]. If the malfunctioning of a pathway is implicated in the etiology
of ASD, then affecting multiple genes related to that pathway is more likely to increase
the risk of developing ASD. If one exposure is affecting several genes on a given pathway,
and the other is also affecting genes on that same pathway, their combined effect could
lead to a loss of function or an upregulation of that pathway. Existing research supports a
potential multiplicative association between APAP and pesticides in relation to ASD, as
both APAP and many pesticides show a significant degree of bias towards, or selective
targeting of, autism susceptibility genes [82]. One illustration of this is demonstrated when
considering the Reelin signaling pathway. Mutations in the RXR motif suggested in our
pathway analyses are highly associated with the development of ASD; however, these
mutations on their own are insufficient and likely secondary genetic or environmental
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factors for a diagnosis [83]. Interestingly, mammalian target of rapamycin (mTOR) signaling
is also implicated in this study as the downstream signaling of the reelin pathway interacts
with the mTOR pathway [83]. While the exact effect (e.g., upregulation, downregulation,
silencing) these exposures have on certain pathways is not ascertainable through the
methods employed here, the overlap presented here in itself suggests the potential for
pesticides and APAP to modify the adverse exposure effects of one another. Altogether,
co-exposure to APAP and pesticides may be involved in the still unknown etiology of ASD
by route of the pathways identified here and should be considered in future studies. A
multitude of other anthropogenic chemicals, such as PCBs, air pollutants, heavy metals, and
phthalates [9], may also interact in a manner that leads to suboptimal neurodevelopment,
but given the genetic and biological overlap presented here, as well as the commonness of
the considered exposures, attention should be given to APAP and pesticide exposures in
conjunction. Future studies could also expand this in silico analytical approach to include
the aforementioned environmental pollutants that have been linked to ASD risk.

4.3. Strengths and Limitations

This novel network analysis reveals patterns that add to the evidence in favor of
studying a mixture of APAP and pesticides in relation to ASD. A major strength of this
study’s exploratory, hypothesis-generating approach is the ability of in silico methods to
relate and consolidate genetic associations of APAP, a widely used medication in pregnancy,
with pesticides, a broad class of chemicals, and with ASD, a heterogeneous disorder with
varying impacts on the lives of affected individuals. The use of broad inclusion criteria
for pesticides in the methods may appear too heterogeneous; however, because pesticide
exposures among pregnant women are common and variable, a strength of the present
approach is the general inclusion criteria that capture all pesticide exposures, which might
vary by location, age, occupation and socioeconomic status. One limitation of this work is
its reliance on public databases. The quality of such databases cannot always be controlled
because the extent of their reporting excludes effect size and effect direction, and they lack
comprehensive lists of genetic associations with pesticides. Additionally, these methods
do not enable us to differentiate between exposure timing. Thus, database gene-exposure
associations are not specific to perinatal exposure but instead represent associations among
the adult population; however, a literature review reveals that the 22 genes listed in
Table 4 are discussed to some extent with consideration of ASD and pre- and perinatal
neurodevelopment in 35 studies. These studies include several rodent models, epigenetic
approaches, and case studies, and consider various environmental exposures. We set a
threshold of two to avoid false positive signals in our network analyses, but this could
have resulted in a small degree of overlap within factors, thus missing some important
genetic information or pathways.

APAP and pesticides are widespread exposures that have been implicated to affect
risk of ASD, but the exposure-disease mechanisms were unknown. We presented a novel in
silico analysis by mining literature and molecular databases to elucidate the potential role
of these exposures in the etiology of ASD. Our findings suggest apoptosis, ROS metabolism,
and carbohydrate metabolism as biological pathways intertwined in a possible mechanism
of ASD’s etiology. Further, our results reveal the potential for intra-pathway interactions
regarding genes and biological processes as a possible means by which APAP and pesticide
co-exposure may modify the adverse exposure effects of one another. Future biological
tests are needed to show the interactions between these genes of interest as they relate to the
considered exposures and their larger roles in affecting apoptosis, the metabolism of ROS,
and carbohydrate metabolism during development. Such work would involve in vivo or
in vitro models and should consider testing the exposure mixtures of APAP and select pes-
ticides that have been shown to affect neurodevelopment via developmental neurotoxicity
studies and are evidenced to target the three biological processes identified here.
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Appendix A

Table A1. Table describing each database used for network topological analysis work. Information taken from the about
page of each database’s website.

Database Information about Database

CTD

CTD is a robust, publicly available database that aims to advance understanding about how environmental exposures
affect human health. It provides manually curated information about chemical–gene/protein interactions,

chemical–disease and gene–disease relationships. These data are integrated with functional and pathway data to aid in
development of hypotheses about the mechanisms underlying environmentally influenced diseases.

PubChem

PubChem is an open chemistry database at the National Institutes of Health (NIH). “Open” means that you can put
your scientific data in

PubChem and that others may use it. Since the launch in 2004, PubChem has become a key chemical information
resource for scientists, students, and the general public. Each month our website and programmatic services provide

data to several million users worldwide.

Open Targets
Platform

The Open Targets Platform is a comprehensive and robust data integration for access to and visualization of potential
drug targets associated with disease. It brings together multiple data types and aims to assist users to identify and

prioritize targets for further investigation.

IPA

IPA is an all-in-one, web-based software application that enables analysis, integration, and understanding of data from
gene expression, miRNA, and SNP microarrays, as well as metabolomics, proteomics, and RNAseq experiments. IPA
can also be used for analysis of small-scale experiments that generate gene and chemical lists. IPA allows searches for

targeted information on genes, proteins, chemicals, and drugs, and building of interactive models of experimental
systems. Data analysis and search capabilities help in understanding the significance of data, specific targets, or

candidate biomarkers in the context of larger biological or chemical systems. The software is backed by the Ingenuity
Knowledge Base of highly structured, detail-rich biological and chemical findings.

DrugBank

The DrugBank database is a comprehensive, freely accessible, online database containing information on drugs and
drug targets. As both a bioinformatics and a cheminformatics resource, DrugBank combines detailed drug (i.e.,

chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e., sequence, structure, and
pathway) information. Because of its broad scope, comprehensive referencing and unusually detailed data

descriptions, DrugBank is more akin to a drug encyclopedia than a drug database. As a result, links to DrugBank are
maintained for nearly all drugs listed in Wikipedia. DrugBank is widely used by the drug industry, medicinal chemists,

pharmacists, physicians, students and the general public. Its extensive drug and drug-target data has enabled the
discovery and repurposing of a number of existing drugs to treat rare and newly identified illnesses.

PheGenI
The Phenotype-Genotype Integrator (PheGenI), merges NHGRI genome-wide association study (GWAS) catalog data
with several databases housed at the National Center for Biotechnology Information (NCBI), including Gene, dbGaP,

OMIM, eQTL and dbSNP

MetaCore

MetaCore provides the core capabilities of precise pathway analysis, knowledge mining, simple bioinformatics and
effective visualizations in a comprehensive, off-the-shelf package. Use high-quality, 100% manually curated biological

pathway data from peer-reviewed literature to accelerate drug development by rapidly generating and validating
hypotheses for novel biomarkers, targets and mechanisms of action.

Clinvar
ClinVar processes submissions reporting variants found in patient samples, assertions made regarding their clinical
significance, information about the submitter, and other supporting data. The alleles described in submissions are

mapped to reference sequences, and reported according to the HGVS standard

CoreMine Medical Coremine Medical™, the first domain-specific information community built on top of the COREMINE Platform. It is a
free Internet service for searching, updating, and sharing medical information–both search and social network.
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Databases include Comparative Toxicogenomics Database, Pubchem, Open Targets Platform, Inge-
nuity Pathway Analysis, DrugBank, PhegenI, MetaCore, and Clinvar. Each of these databases was
used for one or more of the three factors, these being acetaminophen, pesticides and or autism.

Appendix C

The 65 genes found to overlap between the pesticide and ASD nodes of the molecular
database analysis in Figure 1 are: PON1, ACHE, GSTM1, BDNF, CYP2D6, MTHFR, TH,
CYP19A1, ESR1, AR, PRDX6, CYP11A1, GRIN1, LEP, NECAP1, SERPINE1, CAPN3, CCL3,
CHCHD2, FAH, LAMB1, LAMP2, NTF3, PPARA, RASGRF1, SC5D, SERPINC1, CYP1A1,
PRDX4, FOXO1, G6PD, MID1IP1, ACACA, C1R, CD36, CREB5, DGKK, EGFR, FABP4,
GAPDH, LHX1, MIOX, NBPF10, NBPF11, NBPF12, NBPF15, NBPF8, NBPF9, NEFM,
NFE2L3, NHS, NOTCH2NLA, OLR1, OPCML, PAIP2B, PIR, PKM, PTPN9, SERPINF2,
SNORA5A, SOX9, TPT1, UGP2, WNT7B, ZNF202.

The 26 genes that overlap between the APAP and ASD nodes of the molecular database
analysis in Figure 1 are: UGT1A6, IL6, AIFM1, PRKN, RELA, ABCC1, IFRD1, IGFBP1,
GJB1, SORD, ACTB, CYCS, NDRG2, SERPINF1, CAST, LIPC, PRKCB, ACO1, ASL, CCNG1,
CYP3A5, IGFBP3, CXCR3, NR0B1, TUBB, UGT1A9.

Appendix D

Table A2. Ingenuity Pathway Analysis showing significant (Fisher’s Exact Test p ≤ 0.05) pathways
related to the 6 genes found in the molecular databases. These significant pathways are associated
with p-values > 0.01.

Ingenuity Canonical Pathways p-Value Genes

Death Receptor Signaling 2.40 × 10−2 FAS
p53 Signaling 2.57 × 10−2 FAS

Apoptosis Signaling 2.57 × 10−2 FAS
IGF-1 Signaling 2.69 × 10−2 IGF1R

Type I Diabetes Mellitus Signaling 2.88 × 10−2 FAS
FXR/RXR Activation 3.31 × 10−2 ABCB4

Necroptosis Signaling Pathway 4.07 × 10−2 FAS
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Appendix E

The 15 genes found to overlap between the pesticide and ASD nodes of the literature
analysis are: LRRC4C, BMND7, BMND8, MS, CRP, SLC18A2, PLG, IFNG, NFKB1, ARCN1,
COPD, KLK3, MYC, IL1B, AVP. The 7 genes that overlap between the APAP and ASD nodes
of the literature analysis are: ALB, FBXO15, CASP3, CNR1, MMD2, MIR124-1, CYCS.

Appendix F

Table A3. Ingenuity Pathway Analysis showing significant (Fisher’s Exact Test p < 0.05) related to
the 16 genes found using Coremine Medical as a text search engine. These significant pathways are
associated with p-values > 0.01.

Ingenuity Canonical Pathways p-Value Genes

EIF2 Signaling 1.07 × 10−2 INS, VEGFA
Huntington’s Disease Signaling 1.17 × 10−2 EGFR, TP53

Senescence Pathway 1.58 × 10−2 CAT, TP53
Xenobiotic Metabolism Signaling 1.70 × 10−2 CAT, TNF

Neuroinflammation Signaling Pathway 1.86 × 10−2 APP, TNF
Axonal Guidance Signaling 4.47 × 10−2 ERBB2, VEGFA
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