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Abstract: Codon usage bias (CUB) could reflect co-evolutionary changes between viruses and hosts
in contrast to plant and animal viruses, and the systematic analysis of codon usage among the
mycoviruses that infect plant pathogenic fungi is limited. We performed an extensive analysis
of codon usage patterns among 98 characterized RNA mycoviruses from eight phytopathogenic
fungi. The GC and GC3s contents of mycoviruses have a wide variation from 29.35% to 64.62%
and 24.32% to 97.13%, respectively. Mycoviral CUB is weak, and natural selection plays a major
role in the formation of mycoviral codon usage pattern. In this study, we demonstrated that the
codon usage of mycoviruses is similar to that of some host genes, especially those involved in RNA
biosynthetic process and transcription, suggesting that CUB is a potential evolutionary mechanism
that mycoviruses adapt to in their hosts.

Keywords: mycovirus; codon usage bias; natural selection; transcription; RNA biosynthetic process

1. Introduction

Within the standard hereditary code, 20 amino acids are encoded by 61 sense codons,
and 3 (TAG, TAA, and TGA) of them are termination codons. With the exception that two
amino acids (Met and Trp) are encoded by a single codon, the other eighteen amino acids
are encoded by two or more codons, resulting in codon redundancy. Diverse codons encode
the same amino acid, which is known as synonymous codons. Synonymous codons are not
utilized with same frequency during the process of transcription and translation. A few
synonymous codons are utilized more regularly than others, which leads to a phenomenon
that is called codon usage bias (CUB) [1,2].

CUB plays crucial roles in protein function, translation efficiency, and/or accuracy [3,4].
CUB has facilitated the understanding of genome evolution [5], heterologous gene expression [6],
gene-level prediction, and gene function [7,8]. Multiple factors could be involved in the occur-
rence course of CUB, and two of them, mutation pressure and natural selection, are fundamental
driving forces for CUB [9,10]. Notably, there are other factors associated with CUB, including
base composition [11], gene expression level and length [12,13], protein secondary structure,
protein hydrophobicity and hydrophilicity [14], and tRNA abundance and type [15,16].

CUB commonly occurs in viruses, and systematic CUB analysis has been conducted in
some essential viruses, from plant viruses [17,18], animal viruses [19], and insect viruses [20]
to human viruses [21,22]. Viruses are pure parasites and rely on the host cellular machinery
for replication. The CUB of viruses provides another example to explain how viruses adapt
to expression conditions in their hosts. Viral coding sequences, especially those with high
expression, have similar CUB to their hosts [23]. Thus, CUB analysis provides an alternate
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perspective to understand viral molecular evolution and ecology better. The codon usage
pattern can reflect some changes in virus evolution, allowing viruses to optimize their
survival and improve their fitness in their hosts [24–26], especially when escaping the host
immune system [27]. Co-evolution between viruses and susceptible hosts (plant or animal)
has been extensively elaborated at the codon usage level [18,19,28].

Mycoviruses are prevalent in all major taxonomic groups of fungi [29]. All known my-
coviruses have diverse genomic types, including double-stranded RNA (dsRNA), positive-
sense single-stranded RNA ((+)ssRNA), negative-sense single-stranded RNA ((−)ssRNA),
and single-stranded circular DNA. An expanding number of novel mycoviruses have
been unremittingly reported due to the broad application of high-throughput sequencing
technologies. Most known mycoviruses with latent infection are adapted to live within
their hosts for long periods or have unknown functions in their hosts [30,31]. Some studies
of the codon usage among mycoviruses have been reported. Je et al. (2019) analyzed
the codon usage pattern of the RNA-dependent RNA polymerase (RdRP) genes of the
Aspergillus-infecting viruses, AfuPmV-1 has the stronger codon usage bias relative to other
viruses, and AfuPmV-1 has higher adaptability to human and fungal hosts compared with
other [32]; the sequence characteristics and codon usage patterns of RdRP and coat protein
(CP) genes among Partitiviridae viruses that infect fungi were analyzed [33]. Simón et al.
(2021) studied the relation between viruses and the respective hosts by analyzing the GC
content of viruses and hosts, including mycoviruses [34]. Although the discovery and
research on mycoviruses have mainly focused on plant pathogenic fungi, the systematic
analysis of codon usage among mycoviruses infected plant pathogenic fungi is limited.

In this study, we retrieved 98 RNA mycoviral sequences from the National Center
for Biotechnology Information (NCBI) database, including dsRNA, (+)ssRNA, (−)ssRNA
mycoviruses. We further evaluated the CUB of the mycoviruses studied here based on
replication-associated polyprotein (RP) coding sequences. We also investigated the main
factors affecting CUB in mycoviruses and the relationship of codon usage between my-
coviruses and fungal genes. Our study could fill a knowledge gap in understanding the
mycovirus codon usage pattern and presents intriguing possibilities to study mycoviruses-
fungi co-evolution.

2. Results
2.1. Analysis of Mycoviral RP Genes Nucleotide Composition

The nucleotide composition could profoundly influence the CUB of a coding se-
quence [11,34]. Therefore, to understand the potential influence of compositional con-
straints on mycoviral codon usage, the nucleotide composition of mycoviral RP-coding
sequences was analyzed (including A%, C%, T%, G%, and GC%). The results showed an un-
equal distribution of A-, C-, T-, and G- among the mycoviral RP-coding sequences (Data S2).
The overall GC contents range widely from 29.35% (Botrytis cinerea negative-stranded
RNA virus 1, BcNSRV1) to 64.62% (Rhizoctonia solani fusarivirus 1, RsFV1) among the
mycoviruses. Eighty-eight mycoviruses have 40–60% GC values, while ten mycoviruses are
outside 35–60% of the interval. The mean GC% of (−)ssRNA, (+)ssRNA, and dsRNA my-
coviruses includes 37.76% ± 5.52%, 49.71% ± 6.68%, and 50.44% ± 5.30%, respectively, and
(+)ssRNA and dsRNA mycoviruses have a higher GC content than (−)ssRNA mycoviruses
(Figure 1A). The GC content’s comparison within different taxonomic families showed that
the GC contents of members within Endornaviridae and Partitiviridae families are 40.76%
± 3.44% and 46.51% ± 3.28%, respectively, and those within Totiviridae, Tymovirales, and
Botourmiaviridae exceeded more than 50% (Figure 1B).

In addition to the nucleotide composition, GC3s (the frequency of the third nucleotides
G + C in the synonymous codons) contents of mycoviruses were also investigated. Various
mycoviruses have their own A/T-ended and C/G-ended codon preference due to com-
positional constraints (Data S2). It is different from mycoviral GC contents analysis, the
extreme GC3s values occurred within Rhizoctonia solani bunya/phlebo-like virus 1 (RsB-
PLV1, 97.13%) and BcNSRV1 (24.32%) (Data S2). Of codons related to the entire 18 amino



Int. J. Mol. Sci. 2022, 23, 7441 3 of 17

acids (except Met and Trp), 23 over-represented codons (the relative synonymous codon
usage (RSCU) ≥ 1.6) in RsBPLV1 all end with C or G, and 30 of the 32 under-represented
codons (RSCU ≤ 0.6) in RsBPLV1 all end with A or T (Data S5). Contrarily to RsBPLV1,
A- or T-ended codons were strongly preferred in BcNSRV1, and it does not prefer to use
C- and G-ended codons (Data S5). The trend of GC3s content analysis was similar to
that of GC% content analysis in mycoviruses (Figure 1C,D). (+)ssRNA and dsRNA my-
coviruses have a higher GC3s content than (−)ssRNA mycoviruses, and Endornaviridae
mycoviruses have the lowest GC3s values (37.87% ± 7.68%) compared with other families.
This unequal nucleotide usage suggested that GC and GC3s could contribute in influencing
mycoviral CUB.

Figure 1. Comparative analysis of the GC and GC3s (the frequency of the third nucleotides G +
C in the synonymous codons) contents in different mycoviruses. The x-axis represents (−)ssRNA,
(+)ssRNA, and dsRNA mycoviruses in (A,C) and represents the Hypoviridae, Partitiviridae, Totiviri-
dae, Tymovirales, Botourmiaviridae, and Endornaviridae mycoviruses in B and D. The y-axis represents
the percent of GC values (A,B) and GC3s values (C,D) among (−)ssRNA, (+)ssRNA, and dsRNA
mycoviruses (A,C), and Hypoviridae, Partitiviridae, Totiviridae, Tymovirales, Botourmiaviridae, and En-
dornaviridae mycoviruses (B,D). Statistical significance was determined by the LSD test. Different
lowercase letters in the graph indicate statistical differences (p < 0.05), the statistical difference is
not significant with same lowercase letter, and the different lowercase letters represent significant
statistical differences.

2.2. Overall CUB among Mycoviral RP Genes

To measure the extent of mycoviral CUB, the effective number of codon (ENc) values
were estimated for mycoviral RP genes. Of the 98 mycoviruses, RsBPLV1 displays ENc
value < 35 (28.28), indicating that RsBPLV1 has a dramatic codon usage bias. ENc values of
twenty-three mycoviruses range from 40 to 50, and seventy range from 50 to 60. Further-
more, ENc values of three mycoviruses, including Rosellinia necatrix hypovirus 2 (RnHV2),
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Magnaporthe oryzae ourmia–like virus 4, and Sclerotinia sclerotiorum ourmia-like virus 4,
are more than 60 (Figure 2, Data S3). Those results revealed that the CUB among mycovirus
is weak. The ENc values of (−)ssRNA mycoviruses (48.88 ± 5.53) are lower than those
of (+)ssRNA and dsRNA mycoviruses (53.85 ± 4.39 and 53.10 ± 3.54, respectively). ENc
values (56.35 ± 1.85) of members within Hypoviridae are the highest at the family level.

Figure 2. A heat map of the ENc (the effective number of codons) values of the selected mycoviruses,
and it was drawn by pheatmap package in R. The legend was determined by the true ENc values of
mycoviruses, the red represented the high value, the blue represented the low value, and the white
represented the intermediate value among the 98 mycoviruses.

2.3. The Contribution of Mutation Pressure and Natural Selection in Forming Mycoviral CUB

To determine the potential roles of mutation pressure and natural selection in shaping
the CUB of mycoviral RP-coding sequences, we performed ENc-GC3s, Parity Rule 2 (PR2),
and neutrality plot analyses.

ENc-GC3s analysis. The ENc value of each mycoviral RP gene was plotted against the
corresponding GC3s content (Figure 3A). In the case of the true mycoviral ENc values are
lying on or just under the curve of the expected ENc values, it means that the CUB is mainly
constrained by mutation pressure; otherwise, natural selection plays non-negligible roles
in shaping the mycoviral CUB [35]. Ninty-five of the ninty-eight mycoviruses were below
the blue theoretical curve (Figure 3A). Furthermore, person correlation analysis revealed
a weak negative correlation between ENc and GC3s (r = −0.23, p < 0.05). These results
suggesting that mycoviral CUB is shaped by both mutational pressure and natural selection.

Figure 3. The ENc-GC3s plot (A) and Parity Rule 2 plot (B) of all mycoviruses. (A) The ENc-GC3s
plot. The x-axis represents the GC3s (the frequency of the third nucleotides G + C in the synonymous
codons) values of mycoviruses, and the y-axis represents the calculated ENc (the effective number of
codons) values among mycoviruses. Each red point corresponds to one mycovirus, the solid blue
line represents the expected ENc value when codon usage is only determined by GC3s composition.
(B) The Parity Rule 2 plot. The x-axis represents the G3/(G3 + C3)|4 (the content of the third
codon position of the four-codon amino acids) values, and the y-axis represents the A3/(A3 + T3)|4
values. Each three-dimensional ball represents a mycovirus, the color of the three-dimensional ball is
automatically colored according to the corresponding data, and the intersection of gray dotted lines
is the midpoint.

PR2 analysis. G and C (or A and T) are proportionally used among the degenerate
codon groups in one gene when CUB is affected by the mutational pressure alone [36].
Natural selection would not necessarily cause the proportionate use of nucleobase (G
and C or A and T). The PR2 plot is a measure of intra-strand bias, which demonstrates
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the influence of mutation and selection stress on the codon usage of genes. In a PR2
plot, in the case where mycoviruses are lying on or near the midpoint, this means that
CUB is constrained by mutation pressure, otherwise, natural selection is the main force in
shaping the mycoviral CUB [36]. In our analysis, we set the values of A3/(A3 + T3)|4 (the
third codon position of the four-codon amino acids) and G3/(G3 + C3)|4 as the ordinate
and abscissa, respectively. As shown in Figure 3B, all the points were away from the
origin point (0.5, 0.5), suggesting that mutation pressure and natural selection all can affect
mycoviral CUB.

Neutrality plot analysis. Previously, the ENc-GC3s and PR2 plot indicated that mycovi-
ral CUB is influenced by natural selection and mutational pressure. Then, we performed
the neutrality plot analysis to quantify the relative contributions of mutation pressure
and natural selection on mycoviral CUB, when the regression coefficient is near 1, CUB
is mainly affected by mutation pressure and is the dominant factor, in contrast, if the
regression coefficient is near 0, natural selection plays the key role. Considering that we
selected the mycoviruses from eight different hosts, we conducted the neutrality plot analy-
sis (GC3 (GC values at the third position of codons) was plotted against GC12 (the average
of GC values at the first (GC1) and second (GC2) positions of codons)) of mycoviruses that
infected the same fungi host, and the outlier GC12 or GC3 values among mycoviruses that
infected the same host were removed. As shown in Figure 4, the slopes of the regression
lines in C. parasitica, R. necatrix, B. cinerea, F. graminearum, R. solani, M. oryzae, U. virens,
and S. sclerotiorum were 0.0978, 0.4801, 0.1794, 0.3485, 0.4708, 0.2088, 0.2577, and 0.3497,
respectively. All slopes were less than 0.5; this implied that mycoviral codon usage is
mainly influenced by natural selection.
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Figure 4. The neutrality plot analysis. The x-axis represents the GC3 (GC values at the third position
of codons) values of mycoviruses, and the y-axis represents GC12 (the average of GC values at the
first (GC1) and second (GC2) positions of codons) values of mycoviruses. The solid lines represent the
correlation line, and the correlation curve equations are shown on the plot. Each blue dot represents
one mycovirus. (A–H) represent the neutrality plot analysis of mycoviruses that infected C. parasitica,
R. necatrix, B. cinerea, F. graminearum, R. solani, M. oryzae, U. virens, and S. sclerotiorum, respectively.

2.4. The Relative Abundance of Dinucleotide among Mycoviral RP Genes

Previous studies have suggested that the relative dinucleotide abundance can also
affect the codon usage of virus [37]. The relative abundances of 16 dinucleotides from
the mycoviral RP sequences were calculated to investigate the dinucleotides effect on
codon usage in mycoviruses. All dinucleotides were non-randomly distributed (Figure 5
and Data S4). The frequencies of CpA, GpA, and TpG were the three highest of the 16
dinucleotides, and the mean values were 1.11 ± 0.15, 1.17 ± 0.15, and 1.18 ± 0.14, re-
spectively. TpA had the lowest mean value (0.69 ± 0.14) and was under-represented
(ρxy < 0.78), especially in members of Hypoviridae (0.62 ± 0.05, except RnHV2), Partitiviridae
(0.66 ± 0.08), Tymovirales (0.55 ± 0.10), and Botourmiaviridae (0.68 ± 0.07, except Magna-
porthe oryzae ourmia-like virus 1). The RSCU values analysis of six codons containing TpA
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(TTA, CTA, ATA, GTA, TAT, and TAC) suggested that these codons were not preferentially
used (Data S5). Moreover, there were several over-represented dinucleotides (ρxy > 1.23)
(Data S4, marked with red), and mycoviruses preferred to use the codons containing these
over-represented dinucleotides (Data S5). Overall, these findings revealed that dinucleotide
composition plays potential roles in mycoviral CUB.

Figure 5. Violin plot illustrating the overall relative abundance of dinucleotides in mycoviruses. The
x-axis represents the types of 16 dinucleotides in codons, and the y-axis represents the calculated
relative abundance of dinucleotides among mycoviruses. Statistical significance was determined
by LSD test. Different letters in the graph indicate statistical differences (p < 0.05), the statistical
difference is not significant with same lowercase letter, and the different lowercase letter represents
significant statistical differences.

2.5. The Similarity of Codon Usage between Mycoviruses and Their Fungi Host

The codon usage pattern of viruses is also affected by the host [24,38]. The four
phytopathogenic fungi, Rhizoctonia solani, Fusarium graminearum, Sclerotinia sclerotiorum,
and Botrytis cinerea, have well genomic annotations. Moreover, mycoviruses in these
four fungi showed rich diversity and are abundant in number [39–42]. To determine the
similarity for codon usage patterns between mycoviruses and fungal genes, we performed
principal component analysis (PCA) based on the RSCU values of mycoviruses and the four
fungal genes (Data S5). The values of the first four axes of RSCU-PCA for R.solani genes
and mycoviruses were 11.88%, 5.24%, 5.12%, and 3.06%; those observed for F. graminearum
genes and mycoviruses were 22.70%, 4.31%, 3.07%, and 2.93%; for S. sclerotiorum genes and
mycoviruses, they were 13.07%, 7.55%, 5.74%, and 4.71%, while for B. cinerea genes and
mycoviruses, they were 13.99%, 7.79%, 4.92%, 4.06%. These results revealed that axis1 was
the major factor in determining codon usage pattern for the mycoviruses and fungal genes.
Then, axis 1 (PC1) was plotted against axis 2 (PC2) (Figure 6). The mycoviruses showed a
scattered distribution, and the observations verified that there were differences in the codon
usage pattern among the mycoviruses that infect the same host. Some mycoviruses, such
as Rhizoctonia solani negative-stranded virus 2, Fusarium graminearum mycotymovirus
1 (FgMTV1), Sclerotinia sclerotiorum RNA virus L (SsRV-L), and Botrytis virus X (BVX),
have higher PC1 or PC2, indicating that the codon usage patterns of these mycoviruses
were highly different from that of fungal genes and other mycoviruses; however, there
were 11, 5, 9, and 5 mycoviruses that were relatively concentrated together in R. solani, F.
graminearum, S. sclerotiorum, and B. cinerea, respectively (Figure 6 and Data S6). The average
PC1 and PC2 of these mycoviruses were calculated, and then the average PC1 and PC2
were set as the center of a circle with the radius calculated to be minimal. To cover those
mycoviruses, the fungal genes that were in the circles were taken as host genes that have
similar codon usage patterns to mycoviruses (Data S7).
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Figure 6. The PCA of the RSCUs among mycoviruses and fungal genes. The RSCU (the relative
synonymous codon usage) values of fungal genes and mycoviruses were subjected to principal
component analysis (PCA). The PCA was plotted by the first two axes (PC1 (x-axis) and PC2 (y-
axis)). (A) R. solani genes and R. solani mycoviruses; (B) F. graminearum genes and F. graminearum
mycoviruses; (C) S. sclerotiorum genes and S. sclerotiorum mycoviruses; (D) B. cinerea genes and B.
cinerea mycoviruses. The red triangles represent the mycoviruses. The blue dots represent fungal
genes that have similar RSCUs to mycoviruses, which were listed in Data S6, and the gray dots
represent the other fungal genes.

To investigate the contributions of fungal genes that have similar codon usage pattern
to mycoviruses in the biological processes of fungi, we analyzed these fungal genes for
enriched to gene ontology (GO) terms in biological processes. These fungal genes are
enriched 15, 44, 78, and 21 GO terms in R. solani, F. graminearum, S. sclerotiorum, and B.
cinerea, respectively (Data S7). As shown in Figure 7, the fungal genes that have similar
codon usage patterns to mycoviruses were enriched, including the top 20 of GO terms in
the biological processes of R. solani (Figure 7A), F. graminearum (Figure 7B), S. sclerotiorum
(Figure 7C), and B. cinerea (Figure 7D). The GO enrichment results of F. graminearum,
S. sclerotiorum, and B. cinerea shared 10 identical GO terms (Figure 7B−D) involved in
nucleobase-containing compound metabolic/biosynthetic process, heterocycle biosynthetic
process, RNA biosynthetic process, and transcription, and the results of the four hosts
(R. solani, F. graminearum, S. sclerotiorum, and B. cinerea) shared four identical GO terms
involved in transcription (Figure 7).

Additionally, with the exception of the 11, 5, 9, and 5 mycoviruses in R. solani, F.
graminearum, S. sclerotiorum, and B. cinerea that have been analyzed above (listed in Data S6),
we also analyzed the function of the fungal genes that have similar codon usage pattern to
other mycoviruses. The PC1 and PC2 of each remaining mycovirus were set as the circle’s
center with a radius of 0.3 units, and the fungal genes that are located within the circle
were taken as the host genes with RSCUs similar to this mycovirus. We only selected the
two mycoviruses with the least number of similar host genes for analysis in each fungus
(Data S8). While these mycoviruses were visibly distant from the majority of fungal genes
and they were close to fungal genes with different function, the fungal genes involved
in transcription also can be found around RsFV1 and BcNSRV1. The host genes with
similar codon usage to two Tymovirales mycoviruses, FgMTV1 and Sclerotinia sclerotiorum
mycotymovirus 1, were involved in protein modification, transport, ubiquitination and
heterodimerization (Data S8).
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Figure 7. GO terms enrichment in the biological processes from fungal genes that have similar codon
usage pattern to mycoviruses. The Y-axis shows the names of clusters of GO terms and the X-axis
displays the −log10 (p-value) of corresponding GO term. GO terms with p < 0.01 were taken as a
significant enrichment. (A–D) showed the top 20 of significant enriched GO terms from R. solani
genes (A), F. graminearum genes (B), S. sclerotiorum genes (C), and B. cinerea genes (D), respectively.
The alphabets indicate GO terms that which were co-enriched in different fungi; R (R. solani), F (F.
graminearum), S (S. sclerotiorum), and B (B. cinerea).

Most of viruses do not have their own tRNAs, and the translation of viral proteins
depends entirely on the host’s tRNA pool [26]. We received the copy number of tRNAs
for R. solani, F. graminearum, S. sclerotiorum, and B. cinerea from GtRNAdb. The tRNAs
corresponding to some codons are missing from the four fungal genomes. We analyzed
the use of these missing tRNA-corresponding codons among mycoviruses that infected
the four fungi (Data S9). The RSCU values of these codons among most mycoviruses and
the four fungi fell within the normal frequency range (0.6 ≤ RSCU ≤ 1.6). However, in
the mycoviruses that were visibly distant from the majority of fungal genes, these codons
were over-represented than other mycoviruses, such as SsRV-L, which had seven over-
represented codons, and there were 8, 8, and 6 codons in BVX, FgMTV1, and RsBPLV1,
respectively (Data S9). These resulted suggesting that the compatibility of mycovirus
synonymous codon usage and host tRNA abundance can influence the similarity between
virus and host on codon usage.

2.6. The Expression of Fungal Genes That Have Similar Codon Usage Pattern to Mycoviruses
Response to Mycoviruses Infections

A certain number of fungal genes could respond to mycovirus infection, whether
upregulated or downregulated [43–45]. However, it is unclear how the fungal genes that
have similar codon usage pattern to mycoviruses are changed upon mycoviruses infections.
To answer this question, we detected the transcriptional changes in S. sclerotiorum following
the infection of Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4) using RNA-Seq. The
upregulated and downregulated S. sclerotiorum genes in SsMYRV4 infection were examined
by GO enrichment analysis in biological processes, respectively, and the results were
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compared to the enriched GO terms of S. sclerotiorum genes that have similar codon usage
patterns to mycoviruses. There were eight identical GO terms between the enriched GO
terms of S. sclerotiorum genes that have similar codon usage pattern to mycoviruses with the
GO enrichment results of upregulated genes for SsMYRV4 (Table 1 and Data S7) involved
in RNA processing, compound, RNA, and nucleic acid metabolic process; it also enrichened
one GO term involved in transcription (GO:0006360) (Data S7). There were no identical
GO terms between the enriched GO terms of S. sclerotiorum genes that have similar codon
usage pattern to mycoviruses with the GO enrichment results of downregulated genes
for SsMYRV4 (Data S7), suggesting that S. sclerotiorum genes with similar codon usage to
mycoviruses were upregulated upon SsMYRV4 infection.

Table 1. The identical GO terms in the biological processes between host genes with similar codon
usage to mycoviruses and the upregulated host genes upon mycoviruses infections.

Mycovirus GO Term Description

SsMYRV4

GO:0006725 cellular aromatic compound metabolic process
GO:0044260 cellular macromolecule metabolic process
GO:0046483 heterocycle metabolic process
GO:0090304 nucleic acid metabolic process
GO:0006139 nucleobase-containing compound metabolic process
GO:1901360 organic cyclic compound metabolic process
GO:0016070 RNA metabolic process
GO:0006396 RNA processing

FgV2

GO:0019438 aromatic compound biosynthetic process
GO:0018130 heterocycle biosynthetic process
GO:0097659 nucleic acid-templated transcription
GO:0034654 nucleobase-containing compound biosynthetic process
GO:1901362 organic cyclic compound biosynthetic process
GO:2000112 regulation of cellular macromolecule biosynthetic process
GO:0010556 regulation of macromolecule biosynthetic process
GO:1903506 regulation of nucleic acid-templated transcription
GO:0019219 regulation of nucleobase-containing compound metabolic process
GO:2001141 regulation of RNA biosynthetic process
GO:0051252 regulation of RNA metabolic process
GO:0006355 regulation of transcription, DNA-templated
GO:0032774 RNA biosynthetic process
GO:0006351 transcription, DNA-templated

Lee et al., (2014) and Wang et al., (2016) reported transcriptional changes in F. gramin-
earum infected by Fusarium graminearum virus 1 (FgV1), FgV2, FgV3, FgV4, and Fusarium
graminearum hypovirus 1 (FgHV1) [44,45]. The upregulated and downregulated F. gramin-
earum genes upon FgV1, FgV2, FgV3, FgV4, and FgHV1 infections were also examined
by GO enrichment analysis in biological processes, respectively, and the results were also
compared to the enriched GO terms of F. graminearum genes that have similar codon usage
pattern to mycoviruses. There are no identical GO terms between the enriched GO terms of
F. graminearum genes that have similar codon usage to mycoviruses with the GO enrich-
ment results of differentially expressed genes for FgV3, FgV4, and FgHV1 (Data S7); the
same results appeared in the downregulated genes for FgV1 and FgV2 (Data S7). How-
ever, there are 13 identical GO terms between the enriched GO result of F. graminearum
genes that have similar codon usage pattern to mycoviruses and the GO enrichment result
of the upregulated genes for FgV2, which almost covered all the enriched GO terms of
upregulated genes for FgV2, and includes eight identical GO terms of F. graminearum, S.
sclerotiorum, and B. cinerea (Table 1 and Data S7), suggesting that F. graminearum genes with
similar codon usage to mycoviruses were upregulated upon FgV2 infection. Although
the GO enrichment result of upregulated genes for FgV1 share no identical GO term with
the enriched GO terms of F. graminearum genes that have similar codon usage pattern to
mycoviruses, it enriched one GO term involved in transcription (GO:0045944) (Data S7),
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while the differentially expressed genes for FgV3, FgV4, and FgHV1 were not enriched
in the GO term involved in transcription or RNA biosynthetic process, indicating that
FgV1 can upregulate F. graminearum transcriptional genes with similar codon usage relative
to mycoviruses.

3. Discussion

CUB is a common phenomenon and has been analyzed in viruses infecting plants,
insects, animals, and fungi [17,19,20,32–34,46]. However, a systematic analysis of CUB
has not been conducted in mycoviruses that infect plant pathogenic fungi. In this study,
the codon usage patterns of 98 RNA mycoviruses from eight phytopathogenic fungi were
investigated. In contrast to previous studies on mycoviral codon usage, our analysis was
more detailed and systematic, and we also analyzed the relationship between mycoviruses
and fungi at the single gene level.

ENc is a simple measure for estimating the overall CUB in whole viral genomes. Weak
CUB was previously detected in RNA viruses, such as the Ebola virus [47], Zika virus [38],
SARS-CoV-2 [48], and Aspergillus-infecting mycoviruses [32]. We also found that 97 RNA
mycoviruses have high ENc values (>35), except for RsBPLV1 (28.28), suggesting that
CUB in mycovirus is weak. This was consistent with Aspergillus-infecting mycoviruses
and Partitiviridae mycoviruses [32,33]. A possible explanation is that weak viral CUB
favors adaptation to the host using various preferred codons, promoting efficient viral
replication and transcription by reducing the competition machinery for protein synthesis
between viruses and hosts [21]. The ENc values of R. solani genes, F. graminearum genes, S.
sclerotiorum genes, and B. cinerea genes were also calculated (Data S3). The ENc values of
101, 819, 177, and 289 genes were less than 40 in R. solani, F. graminearum, S. sclerotiorum, and
B. cinerea, respectively, and the codon usage patterns between these genes and mycoviruses
show high difference. The fungal genes of R. solani, F. graminearum, S. sclerotiorum, and B.
cinerea that have similar codon usage pattern to mycoviruses show weak CUB. High CUB is
present in several viruses (for instance, Lymantria dispar nucleopolyhedrovirus and Orgyia
pseudotsugata nucleopolyhedrovirus that are usually correlated with a high GC%) [20].
Indeed, RsBPLV1 has a high GC% (54.92%) and GC3s content (97.13%) and high CUB.

A previous study has reported that there is a moderate positive correlation of GC
content between fungi and mycoviruses [34]. In our analysis, the GC and GC3s values
of mycoviruses have a large span, 29.35% to 64.62% and 24.32% to 97.13%, respectively.
The GC3s average contents of R. solani genes, F. graminearum genes, S. sclerotiorum genes,
and B. cinerea genes are 50.80%, 53.17%, 40.02%, and 41.52%, respectively. By conducting
a comparative analysis of GC3s contents between mycoviruses and their fungi hosts, we
found that the more significant difference in GC3s contents between the mycoviruses and
their fungi host genes, the greater the difference of codon usage pattern compared to host
genes, and GC3s contents between mycoviruses and genes are similar, and their codon
usage patterns are similar (Figure 6, Data S2).

The relative dinucleotide abundance can also affect CUB in viruses [37]. Our analysis
showed that the occurrence of dinucleotide was not randomized, and mycoviruses typically
used CpA, GpA, and TpG (Figure 5 and Data S4). The frequencies of CpA, GpA, and TpG
were also in the top four in fungi hosts (R. solani, F. graminearum, S. sclerotiorum, and
B. cinerea) (Data S4). Due to the susceptibility of uracil in TpA to RNase [49] and low
thermal stability [50], TpA content is restricted in many organisms. In mycoviruses, TpA
was suppressed, and mycoviruses avoided using codons containing TpA, in R. solani, F.
graminearum, S. sclerotiorum, and B. cinerea; TpA was also suppressed (Data S4). CpG
dinucleotide is the foremost broadly and deeply studied dinucleotide in virus genome
recently, and CpG is under-represented in many RNA viruses [36,51]. The frequency of CpG
in mycoviruses and fungi hosts was not under-represented, but it fell within the normal
frequency range (Data S4). (−)ssRNA mycoviruses have the lowest mean CpG frequency
(0.82 ± 0.31) compared with those of dsRNA (0.86 ± 0.18) and (+)ssRNA mycoviruses (0.99
± 0.16). This finding is similar to the previous CpG analysis of RNA viruses [36]. However,
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the CpG values of mycoviruses are relatively higher in our analysis than in previously
reported analyses.

As obligate intracellular parasites, mycoviruses are entirely dependent on the host
cellular system to replicate [29]. Thus, the codon usage pattern of viruses may be likely
affected by host. Such as poliovirus’s codon usage pattern is mostly coincident with that
of its host [52]. In contrast, the hepatitis A virus has a codon usage pattern that is the
opposite of that of its host [53]. Unlike completely identical or opposite patterns, some
viruses have evolved a mixture of coincident and antagonistic codons, for instance, Citrus
tristeza virus [18], Zika virus [25], and chikungunya virus [54]. Jitobaom et al. (2020)
analyzed codon usage similarity between human RNA viruses and human genes, which
demonstrated that the codon usage of cell-cycle-regulated genes are similar to that of
human RNA viruses, indicating that human RNA viral genes may be efficiently expressed
at the certain stages of the cell cycle [55]. In this study, we found that the fungal genes
involved in nucleobase-containing compound metabolic/biosynthetic process, heterocycle
biosynthetic process, RNA biosynthetic process, and transcription that have similar codon
usage pattern to mycoviruses are significantly enriched. Chen et al. (2020) confirmed that
when an exogenous gene has a CUB more similar to the host, it can impose minimum
translational loads on the host cell, whereas the expression efficiency of the exogenous
gene was improved [56]. Similar codon usage of mycoviruses and fungal genes involved in
the transcription and RNA biosynthetic process can decrease the load on the host when
mycoviruses replicate and transcribe in the host, and this can be beneficial to the self-
replication and translation of mycoviruses in the host. This phenomenon could be an
adaptative mechanism used by mycoviruses in resistance to fungi host immunity during
long-term co-evolution.

Human genes that have similar codon usage to human immunodeficiency virus type
1, Zika virus, influenza A virus, and dengue virus serotype 2 may be upregulated in viral
infections [55]. In our analysis, 9 and 13 GO terms of S. sclerotiorum and F. graminearum
genes that have similar codon usage pattern to mycoviruses have been found to be identical
to the GO terms of upregulated S. sclerotiorum and F. graminearum genes in SsMYRV4 and
FgV2 infection, respectively; FgV1 infection can also upregulate F. graminearum transcrip-
tional genes that with similar codon usage to mycoviruses, while there was no effect on
the F. graminearum genes that have similar codon usage pattern to mycoviruses during
FgV3, FgV4, and FgHV1 infections. This may be due to SsMYRV4, FgV1, and FgV2 are
hypovirulence-associated mycoviruses [44,57], and FgV3, FgV4, and FgHV1 are latent
mycoviruses [44,58].

The research on mycoviruses Fusarium oxysporum f. sp. dianthimycovirus 1, Het-
erobasidion partitivirus 13 strain an1, Phytophthora endornavirus 2 (PEV2), and PEV3
show that the high titer of mycoviruses can induce more severe symptoms in the host
than mycoviruses with low titer [59–61]. Hypovirulence-associated mycoviruses can cause
the hypovirulence of hosts and this may be due to hypovirulence-associated mycoviruses’
ability to upregulate host genes that have similar codon usage patterns to mycoviruses, and
this may be beneficial in increasing their accumulation; while latent mycoviruses cannot
upregulate the hosts genes that have similar codon usage, their accumulation may be at a
low level, and they cannot cause a hypovirulent host.

There are still several analyses that need to be conducted on mycovirus codons usage.
Some mycoviral genomes have more than one ORF. For example, members within the
family Partitiviridae have two ORFs (encoded coat protein and RNA-dependent RNA poly-
merase). Generally, genes in the same plant virus have similar codon bias patterns, and they
are slightly different [17]. However, the codon bias patterns of different genes in the same
mycovirus are still unknown. Several mycoviruses are allocated to families that contain
members infecting animals or plants, and it will be of great interest to analyze whether
these mycoviruses show codon bias patterns similar to animal/plant-infecting members.
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4. Materials and Methods
4.1. Sequence Data Acquisition

The fungal gene sequences data and mycoviral RP sequences were retrieved from the
NCBI database based on the following criteria [62]: (i) The gene has a complete coding
sequence (CDS); (ii) the length of the CDS is more than 300 nucleotides (nt); (iii) the
CDS starts with ATG and ends with a stop codon; (iv) the CDS has no degenerate bases.
Detailed information for all chosen mycoviruses was listed in Data S1. The BioSamples
of Rhizoctonia solani, Fusarium graminearum, Sclerotinia sclerotiorum, and Botrytis cinerea are
SAMEA2810501, SAMEA3283145, SAMN05908049, and SAMN02953628, respectively.

The nucleotide compositional were calculated for the RP genes utilizing the CAIcal
web application (http://genomes.urv.es/CAIcal) (assessed on 15 June 2020): (i) A%, C%,
T%, G%, and GC%; (ii) GC3s% (the frequency of the third nucleotides G + C in the
synonymous codons). The nucleotide composition of each mycovirus was detailed in
Data S2.

4.2. The Effective Number of Codons Analysis

ENc is presented by Wright at 1990 to quantify the synonymous codon usage bias, and
it is independent of gene length and amino acid composition [35]. ENc values range from
20 (using only one synonymous codon) to 61 (all synonymous codons are used equally).
A high ENc value indicates a low CUB, whereas a low ENc value signifies a high CUB. A
value of 35 is a typical cutoff point [35,63]. Mycoviral ENc values were calculated using
CodonW 1.4.4 software (http://codonw.sourceforge.net) (accessed on 15 June 2020). The
ENc values of fungi host genes and mycoviruses were detailed in Data S3.

4.3. ENc-GC3s Plot Analysis

An ENc-GC3s plot was drawn using ENc (the effective number of codons) values as
the Y-axis and the GC3s values as the X-axis. The plot was used to examine the contribution
of mutation and selection in forming mycoviral CUB. In the case of mycoviral ENc values
that are lying on or just under the curve of the expected ENc values, this means that CUB is
constrained by mutation pressure. Otherwise, natural selection is the main force in shaping
the mycoviral CUB [35]. The expected ENc values for each GC3s were calculated using the
following formula:

ENc = 2 + s +
29

s2 + (1 − s)2

in which “s” stands for GC3s value [35].

4.4. Parity Rule 2 (PR2) Analysis

The PR2 plot shows the AT-bias (A3/(A3 + T3)) versus the GC-bias (G3/(G3 + C3)) at
the third codon position of the four-codon amino acids: alanine, glycine, proline, threonine,
valine, arginine (CGA, CGT, CGG, and CGC), leucine (CTA, CTT, CTG, and CTC), and
serine (TCA, TCT, TCG, and TCC). The midpoint equaling 0.5 (A = T and G = C) in the
PR2 plot indicates that mutation and selection pressure play the same role in shaping CUB;
in the case where mycoviruses are lying on or near the midpoint, this means that CUB is
constrained by mutation pressure. Otherwise, natural selection is the main force in shaping
mycoviral CUB [64].

4.5. Neutrality Plot (GC12 vs. GC3) Analysis

The mycoviral GC values at the first (GC1), second (GC2), and third (GC3) positions
of codons were calculated. Three stop codons (TAA, TAG, and TGA) and three isoleucine
codons (ATT, ATC, and ATA) were eliminated from GC3 calculation. In addition, ATG
and TGG were excluded in GC1, GC2, and GC3 analyses. GC12 stands for the average of
GC1 and GC2. A neutrality plot (GC12 vs. GC3) was drawn using GC12 as the Y-axis and
GC3 as the X-axis. The neutrality plot was used to quantify the relative contributions of

http://genomes.urv.es/CAIcal
http://codonw.sourceforge.net
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mutation pressure and natural selection in shaping mycoviral CUB. Each dot represents
an independent mycoviral RP gene. In a neutrality plot, when the regression coefficient is
near 1, CUB is mainly affected by mutation pressure and is the dominant factor. In contrast,
if the regression coefficient is near 0, natural selection plays a key role [65].

4.6. Relative Dinucleotide Abundance Analysis

The relative dinucleotide frequency was characterized as the observed frequency of
a dinucleotide pair in a given sequence divided by the frequencies of the two mononu-
cleotides that shape the dinucleotide pair in the same sequence. The relative dinucleotide
frequency was calculated based on the following formula:

ρxy =
f xy

f x f y

in which “fx” and “fy” stand for the frequencies of nucleotides X and Y, respectively, and
“fxy” stands for the observed dinucleotide XY value (calculated with DAMBE software).
The XY dinucleotide was over-represented when ρxy > 1.23 and under-represented when
ρxy < 0.78 [66]. The frequencies of 16 dinucleotides of fungi host genes and mycoviruses
were detailed in Data S4.

4.7. Principal Component Analysis of RSCUs

The relative synonymous codon usage (RSCU) value represents the observed codon
frequency ratio to the expected codon frequency, given that all synonymous codons for any
particular amino acid are used identically in a gene. RSCU accurately expresses the synony-
mous codon frequencies without the confounding factors of amino-acid composition and
sequence length. The RSCU value was calculated following a previously described method;
ATG, TGG, and TAA in addition to TAG and TGA, were eliminated from the analysis [67].
An RSCU value > 1.0, <1.0, and =1.0 indicates a positive, negative, and null CUB, respec-
tively. Moreover, codons with an RSCU value > 1.6 were regarded as over-represented,
whereas those with an RSCU value < 0.6 were considered under-represented [68].

The RSCU patterns of fungal single-gene and mycoviral RP genes were calculated
(Data S5). Principal component analysis (PCA) was used to reflect the similarities of codon
usage patterns between mycoviruses and fungal genes. The RSCU pattern of each gene
involves the distribution of 59 synonymous codons in 59 dimensions vector, and PCA can
reduced the 59 values of each gene into the first two components: principal component 1
(PC1) and principal component 2 (PC2). Then, PC1 (x-axis) was plotted against PC2 (y-axis),
and the RSCUs patterns of the fungal genes and mycoviruses were represented by PC1
and PC2 on the PCA graph. The PCAs of the RSCU graphs were analyzed using prcomp
function in R.

4.8. Gene Ontology Enrichment Analysis

On the PCA graph of mycoviruses and fungal genes, the fungal genes that were in the
same region of mycoviruses were taken as host genes that have similar RSCU patterns to
mycoviruses. A great variation in RSCU patterns was observed among mycoviruses, and
some mycoviruses were relatively concentrated together. To select the fungi host genes that
have similar RSCUs to mycoviruses, the average PC1 and PC2 of the relatively concentrated
mycoviruses were calculated; these mycoviruses were listed in Data S6. Subsequently, the
average PC1 and PC2 of those mycoviruses were set as the center of a circle with the radius
calculated to be minimal and to cover those mycoviruses. The radius (r) from the circle
center (a, b) was calculated as follows:

(a – x)2 + (b – y)2 = r2

in which a and b stand for the average PC1 and PC2 of mycoviruses in each host, and x and
y stand for the PC1 and PC2 of the host genes.
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The fungal genes with similar RSCUs to mycoviruses were analyzed for GO enrich-
ment using the OmicShare tools, a free online platform for data analysis (https://www.
omicshare.com/tools) (accessed on 7 October 2021); all fungal genes that were annotated
to specific GO terms were used as the background. p < 0.01 was used as the threshold to
evaluate significant GO terms in the biological process.

4.9. Correlation Analysis

Correlation analysis assessed possible relationships between variables. These analyses
were carried out using the Pearson’s rank correlation test included in SPSS 18.0 for Windows.
p < 0.01 and p < 0.05 indicate extremely significant and significant correlations, respectively.
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