
Research Article
Angiotensin Receptor Blocker and Neprilysin Inhibitor
Suppresses Cardiac Dysfunction by Accelerating Myocardial
Angiogenesis in Apolipoprotein E-Knockout Mice Fed a High-
Fat Diet

Yasunori Suematsu ,1 Kohei Tashiro,1 Hidetaka Morita,1 Akihito Ideishi,1

Takashi Kuwano,1 and Shin-ichiro Miura 1,2

1Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
2Department of Cardiology, Fukuoka University Nishijin Hospital, Fukuoka, Japan

Correspondence should be addressed to Shin-ichiro Miura; miuras@cis.fukuoka-u.ac.jp

Received 27 March 2021; Accepted 8 July 2021; Published 4 August 2021

Academic Editor: Robert Speth

Copyright © 2021 Yasunori Suematsu et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Hypothesis. Myocardial angiogenesis is important for maintaining cardiac contractile function in patients with cardiac
hypertrophy. Evidence shows that angiotensin receptor blocker and neprilysin inhibitors (ARNIs) improve heart failure. The
present study investigated the myocardial angiogenic effect of valsartan plus sacubitril in early-stage cardiac dysfunction.
Materials and Methods. Male apolipoprotein E-knockout mice fed a high-fat diet were divided into control (CTL), valsartan
(30mg/kg) (VAL), sacubitril (30mg/kg) (SAC), and valsartan plus sacubitril (30mg/kg each) (VAL/SAC) groups after 4 weeks
of prefeeding and were subsequently treated for 12 weeks. Results. The VAL/SAC group exhibited significantly higher serum
brain natriuretic peptide levels; more subtle changes in left ventricular systolic diameter, fractional shortening, and ejection
fraction, and significantly higher expression levels of natriuretic peptide precursor B and markers of angiogenesis, including
clusters of differentiation 34, vascular endothelial growth factor A, and monocyte chemotactic protein 1, than the CTL group.
Conclusions. Valsartan plus sacubitril preserved left ventricular systolic function in apolipoprotein E-knockout mice fed a high-
fat diet. This result suggests that myocardial angiogenic factors induced by ARNI might provide cardioprotective effects.

1. Introduction

Obesity [1], hypertension [2], diabetes mellitus [3], and
metabolic syndrome [4] can cause cardiac hypertrophy,
leading to heart failure [5, 6]. Myocardial angiogenesis is
necessary for maintaining cardiac systolic function during
cardiac hypertrophy [7]. Under overload conditions, cardi-
omyocytes become hypertrophic and myocardial angiogen-
esis accelerates in response to an increased demand for
oxygen. However, sustained cardiac hypertrophy causes
maladaptation, cardiac remodeling, and heart failure [7].
Evidence shows that myocardial angiogenesis can help pre-
vent heart failure progression, and therapeutic angiogenesis
is an important issue in the field of cardiovascular disease

[8–10]. Nonetheless, optimal treatment protocols have yet
to be established.

Neprilysin, also known as neutral endopeptidase, inacti-
vates natriuretic peptides by cleaving a variety of peptide
bonds [11]. Therefore, the valsartan/sacubitril combination
serves as an angiotensin receptor blocker and neprilysin
inhibitor (ARNI) [12], a type of medication that increases
natriuretic peptide availability. The PARADIGM-HF clinical
trials showed that the valsartan/sacubitril combination
exhibited better cardioprotective effects against heart failure
with reduced left ventricular ejection fraction (HFrEF) than
angiotensin-converting enzyme inhibitors [13]. Moreover,
the US and European guidelines for HF management rec-
ommend valsartan/sacubitril as first-line therapy for HFrEF
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[14, 15]. Furthermore, clinical trials have shown that valsar-
tan/sacubitril promoted better reduction in secondary func-
tional mitral regurgitation than valsartan (PRIME) [16],
with another a clinical trial investigating the effects of valsar-
tan/sacubitril on ventricular remodeling (i.e., PROVE-HF)
currently ongoing [17]. Basic studies confirmed the pleiotro-
pic effects of ARNI. Accordingly, our previous studies
reported that ARNI exhibited antifibrotic cardioprotective
effects against diabetic HFrEF [18], promoted antihyper-
trophic cardioprotective effects [19], improved renal func-
tion during chronic kidney disease [20], and suppressed
aldosterone synthesis [21], and ARNI also affects pulmonary
hypertension [22], endothelial dysfunction [23], and athero-
sclerotic plaque formation [24]. However, no study has yet
investigated the effects of ARNI on myocardial angiogenesis
in an early-stage cardiac dysfunction model. Therefore, the
present study sought to determine whether valsartan plus
sacubitril administration could improve cardiac dysfunction
in an animal model of early-stage cardiac dysfunction.

2. Materials and Methods

2.1. Experimental Protocol. All experimental protocols were
approved by the Animal Care and Use Committee of
Fukuoka University and conformed to the Guide for the
Care and Use of Laboratory Animals of the Institute of
Laboratory Animal Resources.

Apolipoprotein E-knockout mice were purchased from
Charles River Laboratories Japan, Inc., Japan. Apolipopro-
tein E-knockout mice with or without a high-fat diet report-
edly exhibited cardiac dysfunction [25–28]. To establish a
model of early-stage cardiac dysfunction, 8-week-old male
apolipoprotein E-knockout mice were started on a high-fat
diet (week 4) containing 0.5% cholesterol and 17% coconut
oil with a normal chow diet. The proportions of calories from
protein, fat, and nitrogen-free extract were 16.8%, 43.0%, and
40.2%, respectively. After 4 weeks of prefeeding, the mice
were divided into control (CTL), valsartan (30mg/kg)
(VAL), sacubitril (30mg/kg) (SAC), and valsartan plus sacu-
bitril (30mg/kg each) (VAL/SAC) groups (week 0). Drugs
were administered by mixed drinking water. Body weight
and blood pressure were measured every 4 weeks (weeks 4,
0, 4, 8, and 12). Blood pressure was measured through a tail
cuff-based MK-2000 device (Muromachi Kikai Co., Ltd.,
Tokyo, Japan). Echocardiography was performed using iso-
flurane (2%–3%) at weeks 0 and 12. The drug dosages relied
on previous basic research using valsartan and sacubitril
[18–20, 22, 23]. Previous studies reported that male apoli-
poprotein E-knockout mice exhibited cardiac endothelial–
mesenchymal transition after 8 weeks on a high-fat diet,
starting from 8 weeks of age [27], and 7.5-month-old male
apolipoprotein E-knockout mice exhibited endothelial dys-
function [25]. Therefore, our study investigated 8-week-old
apolipoprotein E-knockout mice until they were 6 months
old, during which early-stage cardiac dysfunction would
have occurred based on the previous reports [25, 27].
After 12 weeks of treatment, we measured serum brain
natriuretic peptide (BNP) levels with a RayBio Mouse
BNP Enzyme Immunoassay Kit (Catalog #: EIAM-BNP,

RayBiotech, GA, USA); the expression of messenger ribo-
nucleic acid (mRNA) in the left ventricle was measured
using reverse transcription–polymerase chain reaction
(RT–PCR), and Masson’s trichrome staining and clusters
of differentiation 34 (CD34) immunostaining were per-
formed in the left ventricle.

Table 1: Primer sequences used in quantitative RT–PCR.

Gene Sequence (5′ to 3′)

NPPA
Forward GGGGGTAGGATTGACAGGAT

Reverse ACACACCACAAGGGCTTAGG

NPPB
Forward TCCTAGCCAGTCTCCAGAGC

Reverse CCTTGGTCCTTCAAGAGCTG

TGF-β
Forward GCTTCTAGTGCTGACGCCCG

Reverse GACTGGCGAGCCTTAGTTTG

MyH7
Forward GAGGAGAGGGCGGACATC

Reverse GGAGCTGGGTAGCACAAGAG

CD34
Forward GACAACATGTGGTGGCTGAC

Reverse AGCTGAAGGCAGCATGAAGT

VEGFA
Forward CAGGCTGCTGTAACGATGAA

Reverse TATGTGGCTGGCTTTGGTGAG

MCP1
Forward AGCACCAGCCAACTCTCACT

Reverse GGCGTTAACTGCATCTGGCT

ATP2a2
Forward TACTGACCCTGTCCCTGACC

Reverse CACCACCACTCCCATAGCTT

VCAM-1
Forward ACAGACAGTCCCCTCAATGG

Reverse ACCTCCACCTGGGTTCTCTT

β catenin
Forward GTGCAATTCCTGAGCTGACA

Reverse CTTAAAGATGGCCAGCAAGC

VE-cadherin
Forward ACCTTTCAGATGCAGCGACT

Reverse TGGCACACCATCATCTTGTTTT

Nfkbia
Forward TCGCTCTTGTTGAAATGTGG

Reverse CTCTCGGGTAGCATCTGGAG

Ikbkb
Forward GAGCTGTCCTTACCCTGCTG

Reverse TGCTGCAGAACGATGTTTTC

Ikbkg
Forward TGAAGAAATGCCAACAGCAG

Reverse CTAAAGCTTGCCGATCCTTG

Lamp2
Forward ATTTGGCTAATGGCTCAGCTT

Reverse GAAAGCACCTGCTCTTTGTTG

Pink1
Forward TTGAGGAGCAGACTCCCAGT

Reverse AGTCCCACTCCACAAGGATG

β actin
Forward CCACACCCGCCACCAGTTCG

Reverse TACAGCCCGGGGAGCATCGT

NPPA: natriuretic peptide type A; NPPB: natriuretic peptide type B; TGF-β:
transforming growth factor-beta; MyH7: myosin heavy chain 7; CD34:
clusters of differentiation 34; VEGFA: vascular endothelial growth factor A;
MCP1: monocyte chemotactic protein 1; ATP2a2: gene name of
sarcoplasmic/endoplasmic reticulum calcium adenosine triphosphatase 2;
VCAM-1: vascular cell adhesion protein 1; VE-cadherin: vascular
endothelial-cadherin; Nfkbia: nuclear factor-kappa B (NF-κB) inhibitor
alpha; Ikbkb: inhibitor of NF-κB kinase subunit beta; Ikbkg: inhibitor of
NF-κB kinase regulatory subunit gamma; Lamp2: lysosome-associated
membrane glycoprotein 2; Pink1: phosphatase and tensin homolog deleted
on chromosome 10-induced kinase 1.
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2.2. Evaluation of Cardiac Function. Echocardiographic
measurements were performed using NEMIO SSA-550A
(Toshiba, Tokyo, Japan). From the short-axis two-
dimensional view and M mode at the level of the papillary
muscle, we measured heart rate, interventricular septum

thickness diameter (IVSTd), left ventricular internal dimen-
sion in diastole (LVDd), left ventricular posterior wall thick-
ness diameter (LVPWd), left ventricular internal dimension
in systole (LVDs), left ventricular ejection fraction (LVEF),
and left ventricular fractional shortening (LVFS).
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Figure 1: Changes in body weight and blood pressure. Changes in (a) body weight and (b) blood pressure, including systolic blood pressure
and diastolic blood pressure in each group. CTL: control group; VAL: valsartan group; SAC: sacubitril group; VAL/SAC: valsartan plus
sacubitril group. The round marker and solid line, square marker and dotted line, triangle marker and dashed line, and rhombus marker
and chain line indicate CTL, VAL, SAC, and VAL/SAC. CTL (n = 8), VAL (n = 7), SAC (n = 8), and VAL/SAC (n = 8) were investigated.
∗ and ‡ indicate significant differences compared with CTL and SAC during the same week, respectively.

Table 2: Cardiac functions by echocardiography in pre and posttreatment.

CTL VAL SAC VAL/SAC

Week 0

HR 641 ± 76 636 ± 56 619 ± 84 596 ± 69
IVSTd 0:53 ± 0:09 0:54 ± 0:05 0:54 ± 0:12 0:53 ± 0:07
LVPWd 0:64 ± 0:13 0:66 ± 0:13 0:63 ± 0:05 0:68 ± 0:07
LVDd 3:6 ± 0:5 3:5 ± 0:4 3:6 ± 0:5 3:8 ± 0:4
LVDs 2:0 ± 0:4 1:9 ± 0:4 2:2 ± 0:3 2:3 ± 0:4
LVEF 81:6 ± 4:8 81:8 ± 5:3 79:4 ± 3:7 78:9 ± 5:3
LVFS 44:8 ± 5:1 44:8 ± 5:3 42:3 ± 3:8 41:9 ± 5:3

Week 12

HR 551 ± 42 513 ± 45 518 ± 43 575 ± 48†‡

IVSTd 0:70 ± 0:05 0:74 ± 0:05 0:78 ± 0:10∗ 0:71 ± 0:06
LVPWd 0:76 ± 0:09 0:87 ± 0:11∗ 0:84 ± 0:11 0:74 ± 0:07†‡

LVDd 4:4 ± 0:3 4:2 ± 0:3 4:0 ± 0:5 4:3 ± 0:2
LVDs 2:9 ± 0:4 2:5 ± 0:3 2:4 ± 0:5∗ 2:6 ± 0:4
LVEF 67:8 ± 8:2 76:0 ± 7:2∗ 76:1 ± 7:5∗ 76:6 ± 6:7∗

LVFS 33:3 ± 6:1 39:6 ± 6:4 39:6 ± 6:3 40:1 ± 6:1∗

CTL: control group; VAL: valsartan group; SAC: sacubitril group; VAL/SAC: valsartan plus sacubitril group; HR: heart rate; IVSTd: interventricular septum
thickness diameter; LVPWd: left ventricular posterior wall thickness diameter; LVDd: left ventricular internal dimension in diastole; LVDs: left ventricular
internal dimension in systole; LVEF: left ventricular ejection fraction; LVFS: left ventricular fractional shortening. ∗, †, and ‡ show significant differences
compared to CTL, VAL, and SAC, respectively.
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2.3. Quantitative Reverse Transcription–Polymerase Chain
Reaction Analysis. mRNA expression levels were quantified
using RT–PCR as previously described [18]. We extracted
total ribonucleic acid from the apex of the left ventricle using
a RiboPure RNA Purification Kit (Life Technologies,
Carlsbad, CA, USA). We produced complementary deoxyri-
bonucleic acid using a ReverTra Ace® qPCR RT Kit
(TOYOBO, Japan). We performed quantitative RT–PCR on
a 7500 Fast Real-Time PCR System (Applied Biosystems)
using a THUNDERBIRD® SYBR® qPCR Mix (TOYOBO,
Japan). We investigated natriuretic peptide type A (NPPA),

natriuretic peptide type B (NPPB), transforming growth
factor-β (TGF-β), myosin heavy chain 7 (MyH7), CD34, vas-
cular endothelial growth factor A (VEGFA), monocyte chemo-
tactic protein 1 (MCP1), gene of sarcoplasmic/endoplasmic
reticulum calcium adenosine triphosphatase 2 (ATP2a2),
vascular cell adhesion molecule-1 (VCAM-1), β catenin,
vascular endothelial-cadherin (VE-cadherin), nuclear factor-
kappa B (NF-κB) inhibitor alpha (Nfkbia), inhibitor of NF-
κB kinase subunit beta (Ikbkb), inhibitor of NF-κB kinase
regulatory subunit gamma (Ikbkg), lysosome-associated
membrane glycoprotein 2 (Lamp2), phosphatase and tensin
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Figure 2: Changes in cardiac parameters via echocardiography after 12 weeks of treatment. Changes in (a) IVSTd, (b) LVPWd, (c) LVDd, (d)
LVDs, (e) HR, (f) LVEF, and (g) LVFS in each group. IVSTd: interventricular septum thickness diameter; LVPWD: left ventricular posterior
wall thickness diameter; LVDd: left ventricular internal dimension in diastole; LVDs: left ventricular internal dimension in systole; HR: heart
rate; LVEF: left ventricular ejection fraction; LVFS: left ventricular fractional shortening; CTL: control group; VAL: valsartan group; SAC:
sacubitril group; VAL/SAC: valsartan plus sacubitril group. CTL (n = 8), VAL (n = 7), SAC (n = 8), and VAL/SAC (n = 8) were
investigated. ∗, †, and ‡ indicate significant differences compared with CTL, VAL, and SAC, respectively.
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homolog deleted on chromosome 10-induced kinase 1
(Pink1), and β actin in the left ventricule (LV). Table 1 lists
the primers. Although we also investigated tumor necrosis
factor α, interleukin-4, interleukin-6, interleukin-10, natri-
uretic peptide type C, plasminogen activator inhibitor 1, endo-
thelial nitric oxide synthase, and endoplasmic reticulum
oxidoreductin-1 in the LV, we could not analyze them due
to low or undetectable expression. mRNA levels were
expressed relative to mRNA levels of β actin, and the basal
expression relative to that in the CTL group was considered
to be 1.0.

2.4. Histological Analysis.We evaluated the quantity of myo-
cardial fibrosis in Masson’s trichrome-stained heart sections.
Left ventricular tissues of the midlayer were fixed with 4%
paraformaldehyde and stained with Masson’s trichrome.
The percentage of fibrotic area in the left ventricle was ana-
lyzed using the Image J software. To quantify myocardial
angiogenesis, we stained fixed left ventricular tissues for
immunohistochemical analysis of CD34. The percentage of
CD34-positive cell area in the left ventricle was analyzed
using the Image J software. Masson’s trichrome staining
and CD34 immunostaining were performed using Biopathol-
ogy Institute Co. (Oita, Japan), and digital photographs were
taken using a BZ-9000 series All-in-one Fluorescence Micro-
scope (Keyence Japan, Osaka, Japan).

2.5. Statistical Analysis. All data analyses were performed
using SAS (version 9.4, SAS Institute Inc., Cary, NC, USA)
at Fukuoka University (Fukuoka, Japan), with a p value of
<0.05 indicating statistical significance. Continuous variables
were expressed as mean ± standard deviation. Group differ-
ences were analyzed using a one-way analysis of variance.

3. Results

3.1. Changes in Body Weight and Blood Pressure. Figure 1
summarizes changes in body weight and blood pressure.
Before prefeeding, the average baseline body weight and sys-
tolic blood pressure were 24:8 ± 1:6 g and 113:7 ± 12:2
mmHg, respectively. After 4 weeks of prefeeding, the average
body weight and systolic blood pressure were 30:9 ± 1:9 g and
115:8 ± 14:6mmHg, respectively. There were no significant
differences between the groups. After 12 weeks of treatment,
the average body weight and systolic blood pressure were
34:7 ± 4:3 g and 123:0 ± 18:3mmHg, respectively. There
were no significant differences between the treatment and
CTL groups. None of the medications affected arterial blood
pressure in the experimental animals.

3.2. Changes in Cardiac Functions. We investigated cardiac
function using echocardiography at weeks 0 and 12
(Table 2). Figure 2 details the changes in cardiac parameters
after 12 weeks of treatment. In the CTL group, LVDs
increased by 0:98 ± 0:74mm, whereas LVEF and LVFS
decreased by 13:9% ± 11:1% and 11:5% ± 9:4%, respectively,
over 12 weeks. The VAL/SAC group showed a significantly
smaller increase in LVDs (0:36 ± 0:64mm; p = 0:04) and a
significantly smaller decrease in LVEF (2:25% ± 10:9%; p =
0:03) and LVFS (1:8% ± 10:5%; p = 0:04) than the CTL
group. The SAC group exhibited a significantly smaller
increase in LVDs (0:29 ± 0:46mm; p = 0:03) and a signifi-
cantly smaller decrease in LVEF (3:3% ± 8:3%; p = 0:04) than
the CTL group.

3.3. Serum BNP and mRNA Expression Levels of NPPA and
NPPB in the LV. Figure 3(a) presents serum BNP levels. After
12 weeks of treatment, the VAL/SAC group had significantly
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Figure 3: Serum BNP and mRNA expression levels of NPPA and NPPB in the LV. (a) Serum BNP levels and mRNA expression levels of (b)
NPPA and (c) NPPB in each group. BNP: brain natriuretic peptide; NPPA: natriuretic peptide type A; NPPB: natriuretic peptide type B; CTL:
control group; VAL: valsartan group; SAC: sacubitril group; VAL/SAC: valsartan plus sacubitril group. CTL (n = 8), VAL (n = 7), SAC (n = 8),
and VAL/SAC (n = 7) were investigated. ∗, †, and ‡ indicate significant differences compared with CTL, VAL, and SAC, respectively.
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higher serum BNP levels than the CTL group (CTL: 393:2 ±
191:7pg/mL and VAL/SAC: 605:2 ± 221:3pg/mL, p = 0:01).

Figures 3(b) and 3(c) present detailed mRNA expression
levels of NPPA and NPPB in the LV. The SAC and VAL/SAC
groups had significantly higher expression levels of NPPB
than the CTL group (SAC: 1:8 ± 0:9 times, p = 0:02 and
VAL/SAC: 1:9 ± 0:7 times, p = 0:01) due to the effects of the
neprilysin inhibitor. The neprilysin inhibitor did not increase
NPPA expression in the LV since NPPA is mainly expressed
in the atrium.

3.4. Cardiac Fibrosis and Hypertrophy in the LV. Considering
our previous reports on the antifibrotic and hypertrophic
effects of VAL/SAC [18, 19], we investigated cardiac fibrosis
and hypertrophy in the LV. In this model, the CTL group
showed only 1:8% ± 0:8% fibrosis following histological anal-
ysis, with no significant differences between the groups
(Figure 4(a)). After investigating mRNA expression levels
of TGF-β (a marker of fibrosis) and MyH7 (a marker of
hypertrophy) in the LV, the treatment groups did not show
significantly better improvement than the CTL group
(Figures 4(b) and 4(c)).

3.5. Regulation of NF-κB and Lysosome Activity. We investi-
gated the regulation of NF-κB, mitochondrial activity in mito-
phagy, and lysosomal activity in autophagy (Figures 5(a)–5(e)).
Accordingly, the VAL/SAC group had greater mRNA expres-
sion of Nfkbia, an NF-κB inhibitor, than the CTL group
(Figure 5(a)). Moreover, the VAL/SAC group showed greater
expression of Lamp2, which plays a critical role in autopha-
gosome maturation, than the CTL group (Figure 5(d)).

3.6. Angiogenic Effect. Figure 6(a) presents the results of his-
tological analysis via CD34 immunostaining in the LV.
Accordingly, there were no significant differences in the
CD34-positive cell area in the LV between the groups.
Figures 6(b)–6(h) show mRNA expression levels of markers
of angiogenesis in the LV. The VAL/SAC group had signifi-
cantly higher expression levels of CD34, VEGFA, MCP1,
ATP2a2, and VCAM-1 but not β catenin or VE-cadherin
(Figures 6(g) and 6(h)) than the CTL group (Figures 6(b)–6(f)).

4. Discussion

The present study showed that valsartan plus sacubitril
increased myocardial angiogenic factors. The NF-κB
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Figure 4: Cardiac fibrosis and hypertrophy in the LV. (a) Representative macrophotographs of the aorta with Masson’s trichrome staining
and quantification analysis for the percentage of fibrosis in each group. mRNA expression levels of (b) TGF-β and (c) MyH7 in each group are
shown. TGF-β: transforming growth factor-beta; MyH7: myosin heavy chain 7; CTL: control group; VAL: valsartan group; SAC: sacubitril
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inhibitor preserved lysosomal activity and suppressed cardiac
dysfunction in apolipoprotein E-knockout mice fed a high-
fat diet independent of changes in cardiac fibrosis and hyper-
trophy in this model. Valsartan plus sacubitril demonstrated
cardioprotective effects during early-stage cardiac dysfunc-
tion and ARNI might be useful for the primary prevention
of heart failure via adaptation to the increase in oxygen
demand.

Evidence showed that inhibition of the renin–angiotensin
system promoted anti-inflammatory, antioxidant, and antifi-
brotic effects [29]. ARNI improved lymphatic system remod-
eling in a hypertrophic cardiomyopathy model [30] while
decreasing oxidative stress and increasing adenosine triphos-
phate and Na+/K+-ATPase pump activity in ischemic
reperfusion-induced arrhythmia [31]. However, no study has
yet investigated the angiogenic effects of ARNI for adaptation
to increased oxygen demand during cardiac hypertrophy.

Apolipoprotein E-knockout mice with or without a high-
fat diet have been used to study atherosclerosis [32–36], pla-
que rupture [37], coronary artery disease [38], and cardiac

dysfunction [25–28]. Studies have shown that myocardial
hypertrophy due to peripheral vascular resistance [25],
hypertension and endothelial dysfunction 26, myocardial
fibrosis [27], and reduced cardiac functional reserve cause car-
diac dysfunction in apolipoprotein E-knockout mice [28].
Therefore, cardiac hypertrophy can be considered a cause of
cardiac dysfunction in apolipoprotein E-knockout mice.

The myocardial angiogenic effects of ARNI occur in
response to the increased oxygen demand under cardiac
hypertrophy. Our model showed that blood pressure
increased slightly, and that pathological proportion of fibro-
sis and mRNA expression of plasminogen activator inhibitor
1, a marker of fibrosis in the LV, remained low. The present
study found that valsartan plus sacubitril did not exert any
antihypertensive, antihypertrophic, or antifibrotic effects,
probably due to the mild pathology in the animal model used
herein. This finding may be attributable to the animals’
young ages, short experimental periods, mild high-fat diet,
or their interaction. Moreover, only slight changes in cardiac
dysfunction parameters were observed in this model,
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Figure 5: Regulation of NF-κB and activity of mitochondria and lysosome. mRNA expression levels of (a) Nfkbia, (b) Ikbkb, (c) Ikbkg, (d)
Lamp2, and (e) Pink1 in each group. NF-κB: nuclear factor-kappa B; Nfkbia: NF-κB inhibitor alpha; Ikbkb: an inhibitor of NF-κB kinase
subunit beta; Ikbkg: an inhibitor of NF-κB kinase regulatory subunit gamma; Lamp2: lysosome-associated membrane glycoprotein 2;
Pink1: phosphatase and tensin homolog deleted on chromosome 10-induced kinase 1; CTL: control group; VAL: valsartan group; SAC:
sacubitril group; VAL/SAC: valsartan plus sacubitril group. CTL (n = 8), VAL (n = 7), SAC (n = 8), and VAL/SAC (n = 7) were
investigated. ∗, †, and ‡ indicate significant differences compared with CTL, VAL, and SAC, respectively.
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Figure 6: Myocardial angiogenesis. (a) Representative microphotographs of the left ventricle, with immunohistochemical staining for CD34,
and a quantitative analysis for the percentage of the CD34-positive cell area in each group. mRNA expression levels of (b) CD34, (c) VEGFA,
(d) MCP1, (e) ATP2a2, (f) VCAM-1, (g) β catenin, and (h) VE-cadherin in each group. CD34: clusters of differentiation 34; VEGFA: vascular
endothelial growth factor A; MCP1: monocyte chemotactic protein 1; ATP2a2: gene name of sarcoplasmic/endoplasmic reticulum calcium
adenosine triphosphatase 2; VCAM-1: vascular cell adhesion protein 1; VE-cadherin: vascular endothelial-cadherin; CTL: control group;
VAL: valsartan group; SAC: sacubitril group; VAL/SAC: valsartan plus sacubitril group. CTL (n = 8), VAL (n = 7), SAC (n = 8), and
VAL/SAC (n = 7) were investigated. ∗, †, and ‡ indicate significant differences compared with CTL, VAL, and SAC, respectively.
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although valsartan plus sacubitril significantly suppressed the
progression of cardiac dysfunction. The above results suggest
that ARNI exerts cardioprotective effects in the early-stage of
cardiac dysfunction, and that it can be useful for the primary
prevention of heart failure onset during cardiac hypertrophy.

In this study, valsartan plus sacubitril increased serum
BNP and mRNA expressions of NPPB in the LV, sup-
pressed the dilation of LVDs, and preserved LVEF and
LVFS. The PARADIGM-HF clinical trials showed that val-
sartan/sacubitril combination exerted cardioprotective
effects against HFrEF [13]. Moreover, the US and Euro-
pean guidelines for HF management recommend valsar-
tan/sacubitril combination as the first-line therapy for
HFrEF [14, 15], with the present results being consistent
with these recommendations. Our findings showed that
one mechanism through which valsartan plus sacubitril
exhibited cardioprotective effects was increased myocardial
angiogenic factors. Based on our investigation, valsartan
plus sacubitril increased mRNA expression levels of
CD34, VEGFA, ATP2a2, and MCP1, all of which are
myocardial angiogenic factors [39–42]. Autologous CD34-
positive cell therapy for ischemic heart disease is associ-
ated with increased LVEF, exercise time, neovasculariza-
tion, decreased angina, nitroglycerine use, heart failure,
and mortality [43]. Meanwhile, ATP2a2 encodes sarcoplas-
mic/endoplasmic reticulum calcium adenosine triphospha-
tase 2 (SERCA2a). Cardiac SERCA2a has been associated
with myocardial angiogenesis [40] and calcium recycling
of the cardiac muscle [44], which is another therapeutic
target for heart failure [45]. Increasing mRNA expression
of ATP2a2 through valsartan plus sacubitril treatment
might improve cardiac dysfunction through calcium recy-
cling independent of myocardial angiogenesis. However,
the present study did not investigate the detailed pathway
of calcium recycling. Moreover, our findings showed that
the valsartan plus sacubitril group had low mRNA expres-
sion levels of inflammatory markers, including tumor
necrosis factor α and interleukin-6, but high mRNA
expression levels of MCP1. After investigating anti-
inflammatory markers, including interleukin-4 and inter-
leukin-10, our findings showed that both had low mRNA
expression levels. Our model showed that valsartan plus
sacubitril did not have anti-inflammatory or inflammatory
effects in the LV.

In the chronic phase, prolonged activation of NF-κB is
cytotoxic and promotes heart failure by triggering an inflam-
matory response [46]. NF-κB is also a good regulator of car-
diac hypertrophy [47]. Our findings showed that valsartan
plus sacubitril increased the mRNA expression of Nfkbia,
one of the main inhibitors of NF-κB, suggesting that ARNI
can regulate NF-κB during early-stage cardiac dysfunction.
Optimal autophagic activity is critical in the maintenance of
cardiovascular homeostasis and function [48]. Autophagic
or mitophagic flux in the cardiovascular system has been
associated with the spontaneous development of cardiovas-
cular disorders [49]. Lamp2 is a critical protein for autopha-
gic flux. Danon disease, which occurs due to loss of function
mutations in the Lamp2 gene, causes impaired mitophagy,
facilitating mitochondrial damage [50]. The valsartan plus

sacubitril group included herein showed high mRNA expres-
sion of Lamp2, which might be one of the effects of valsartan
and sacubitril for early-stage cardiac dysfunction.

The present study has several limitations worth noting.
First, older apolipoprotein E-knockout mice, a longer exper-
imental period, and a higher-fat diet should have been used
to investigate hypertension and cardiac fibrosis during car-
diac hypertrophy. However, given the fact that our focus
was on the angiogenic effects of valsartan plus sacubitril for
early-stage cardiac dysfunction, our model can be deemed
appropriate for this study. Second, our CD34 immunostain-
ing analysis showed no valsartan plus sacubitril-induced
enhancement of myocardial angiogenesis. Although ARNI
in another animal model [51] and natriuretic peptide
[52–54] reportedly exhibited angiogenic effects, some stud-
ies show that natriuretic peptide suppresses angiogenesis
[55, 56]. However, the present study found considerably
low mRNA levels of endothelial markers in the LV, including
endothelial nitric oxide synthase, endoplasmic reticulum oxi-
doreductin-1, and NPPC. Such discrepant outcomes need to
be carefully considered in future studies, together with the
use of other animal models in the investigation of myocardial
angiogenesis and endothelial markers in the heart.

5. Conclusions

The present study showed that valsartan plus sacubitril
preserved left ventricular systolic function in apolipopro-
tein E-knockout mice fed a high-fat diet. The ARNI-
induced myocardial angiogenic factors possibly explain its
cardioprotective effects.
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