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Abstract: Germ cell quality is a key prerequisite for successful fertilization and early embryo devel-
opment. The quality is determined by the fine regulation of transcriptomic and proteomic profiles,
which are prone to alteration by assisted reproduction technology (ART)-introduced in vitro methods.
Gaining evidence shows the ART can influence preset epigenetic modifications within cultured
oocytes or early embryos and affect their developmental competency. The aim of this review is to
describe ART-determined epigenetic changes related to the oogenesis, early embryogenesis, and
further in utero development. We confront the latest epigenetic, related epitranscriptomic, and
translational regulation findings with the processes of meiotic maturation, fertilization, and early
embryogenesis that impact the developmental competency and embryo quality. Post-ART embryo
transfer, in utero implantation, and development (placentation, fetal development) are influenced by
environmental and lifestyle factors. The review is emphasizing their epigenetic and ART contribution
to fetal development. An epigenetic parallel among mouse, porcine, and bovine animal models and
human ART is drawn to illustrate possible future mechanisms of infertility management as well as
increase the awareness of the underlying mechanisms governing oocyte and embryo developmental
complexity under ART conditions.
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1. Introduction

The purpose of living organisms’ reproduction is to give rise to a new generation.
According to the World Fertility Report from 2015, human fertility has halved in the past
65 years. In the 1950s, the norm was for one woman to give birth to 5 children, whereas in
2015 the average was only 2.5. If this pattern, along with demographic changes, continues,
we would gradually face the need to support human fertility clinically by preserving the
quality of germ cells, particularly oocytes.

Female fertility is influenced by genetic background, environmental factors, lifestyle,
nutrition, psychosocial setting, and many other factors. The proper understanding of
the molecular mechanisms underlying oocyte development is crucial for advancement
in assisted reproduction technology. This review is focused on how oocyte and embryo
development is affected by epigenetic changes, initially those originating from the in vitro
methods of assisted reproduction technology (ART) followed by in utero changes caused
by maternal diet, lifestyle, and environment. The epigenome is a complex of chemical
compounds that modify or mark a genome but are not part of the DNA itself (Figure 1).

Epigenetic changes may cause temporary or heritable alterations of gene expression.
Modifications to the epigenome are reversible and alter gene expression in different ways
but do not interfere directly with the DNA genetic code. Epigenetic changes are categorized
into DNA, RNA, histone modifications, and changes controlled by non-coding RNAs.
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Figure 1. Epigenetic modifications: This diagram shows the complexity of epigenetic processes,
which are divided into the following subgroups: DNA modifications—5-methylcytosine (5mC)
DNA methylation, 5-hydroxymethylcytosine (5hmC) DNA methylation; Histone modifications—
Acetylation, Methylation, Phosphorylation, Poly-ADP ribosylation, Ubiquitination; Non-coding
RNA interactions—piwi RNA (piRNA), small interfering RNA (siRNA), long non-coding RNA
(lncRNA), micro RNA (miRNA); RNA modifications—6-methyladenosine (6mA) RNA methylation,
5-methylcytosine (5mC) RNA methylation, 7-methylguanosine (7mG) RNA methylation, mRNA CAP,
5-hydroxymethylcytosine (5hmC) RNA methylation. The image was created with BioRender.com.

DNA methylation is the most studied epigenetic mechanism and plays a key role in
transcriptional repression/activation (Figures 1 and 2).

In vertebrates, DNA cytosine methylation is realized by the addition of a methyl
group onto the fifth carbon of cytosine residue within cytosine-phosphate-guanin (CpG)
sites, where a cytosine is followed by a guanine in the 5′ → 3′ direction of the DNA linear
sequence. DNA methylation is functionally associated with gene silencing and is for the
most part limited to CpG islands, i.e., areas rich in CpG dinucleotides that are typically
located within and nearby sites of about 40% of mammalian gene promoters [4,5]. As the
CpG dinucleotides are methylated symmetrically on both DNA strands, their methylation
can be heritable during cell division [4].
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Figure 2. Dynamic DNA methylation and protein translation changes in human oogenesis and early
embryogenesis: (A) Prenatal DNA demethylation in primordial germ cells (PGC) is followed by
de novo DNA methylation, which occurs earlier in males than females. Genomic imprinting loci
consisting of DMR (differentially methylated regions) maintain their methylation status despite
the important genome-wide DNA demethylation in pre-implantation embryos [1]. (B) Oocytes are
transcriptionally active during oocyte growth with rapid decline and silencing throughout meiotic
maturation [2]. According to the new evidence human embryonic genome activation is initiated at the
zygotic stage, but the transcriptional activity remains low until the 8-cell stage [3]. Correct regulation
of CAP-dependent translation is a key process in meiotic maturation despite continuous decrease in
global translational activity from oocytes to zygotes. The image was created with BioRender.com.

DNA is methylated by methyltransferases (DNMTs), and the methyl group for methy-
lation is provided by S-adenosylmethionine [6]. DNA methylation relies on the folate-
methyl metabolic pathway that supplies the essential methyl groups [7]. There are two
distinct types of DNA methylation. During cell division, DNA replication creates hemi-
methylated DNA where CpG dinucleotides are methylated only on the original parent
strand and methylation is absent from the newly synthesized daughter strand. Subse-
quently, the methylation maintenance methyltransferase DNMT1 methylates the unmethy-
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lated DNA strand [8]. In contrast, de novo methylation of un-methylated double stranded
DNA is ensured by DNMT3A and DNMT3B along with their coactivator DNMT3L [9,10].

DNA cytosine methylation can affect DNA activity and when it occurs in a gene
promoter, increased DNA methylation leads to a decrease in chromatin accessibility. Sub-
sequently, gene transcription is repressed by recruiting gene-silencing repressive proteins
to the methylated region, such as methyl-CpG-binding protein 2 (MeCP2) and methyl-
binding-domain (MBD) proteins [11,12]. Methylated DNA also presents a spatial obsta-
cle preventing binding of transcription factors and proteins to gene promoters [13,14].
However, methylation of CpGs over gene bodies is related to both active and repressed
transcription according to the tissue in which it occurs [15,16]. Evidently, DNA methylation
has dual roles, both inhibitory and permissive, depending on the genomic region.

Epigenetic modifications to RNA, the field of epitranscriptomics, have changed our
perception on how epigenetics can directly modulate the translation and stability of mRNAs
within oocytes and embryos. There are over 150 post-transcriptional mRNA transcript
modifications in eukaryotes, but the most prevalent is the N6-methyladenosine (m6A)
methylation (Figure 1) [17]. Generally, m6A transcript methylation is present ubiquitously
in every cell and across multiple species. Translation-related m6A modification occurs
within the 3′ UTR of mRNA. The interaction between the m6A reader and translation
initiation factors is needed for cap-dependent translation [18]. m6A were also found
to be capable of governing translation in a cap-independent manner by modifications
within internal ribosome entry sites (IRES) [19] or 5′ UTR sequences [20]. A direct link
between greater polysome occupancy and the presence of m6A methylation on mRNAs
was demonstrated in yeast [21] and HeLa cells [18].

Epigenetic regulation by non-coding RNAs (ncRNAs) recently gained more attention
in developmental biology literature. ncRNAs represent RNA molecules that do not code for
proteins but have a regulatory role at pre- and post-transcriptional levels [22]. Generally,
both short and long ncRNAs do exist. Among the smaller ones are small-interfering RNA
(siRNA), microRNA (miRNA), piwi-interacting RNA (piRNA), followed by long ncRNA
(lncRNA) (Figure 1). As ncRNAs are also implicated in histone modification and DNA
methylation, it has been suggested that gene silencing and upregulation by ncRNAs is a part
of the epigenetic mechanism [23,24]. The importance of ncRNAs in regulating primordial
germ cell specification, spermatogenesis, and oogenesis has been highlighted (reviewed
in [25,26]). ncRNAs are intensely expressed in the early human embryo and their role in
early human development remains to be fully investigated. It has been suggested that
future studies of the ncRNAs role could expand to the field of ART optimization [27,28].

2. Epigenetics of Germ Cells Development
2.1. Epigenetic Reprogramming

Two different waves of epigenetic reprogramming occur in gametes and the early
embryo, the first one during gametogenesis and the second in the preimplantation embryos
(Figure 2) [29,30]. During mammalian gametogenesis, pre-existing epigenetic marks are
globally deleted in the primordial germ cells. During sex determination in the developing
fetus, the global DNA methylation remains at very low levels in both male and female
primordial germ cells [31]. However, de novo methylation establishment proceeds in
different manners in male and female germlines. In the male gonocytes, a rapid increase of
methylation is initiated during embryo development, and the methylome of male germ
cells is fully established before the birth [32,33]. In female germ cells, DNA methyla-
tion is re-established during the postnatal oocyte growth phase and is dependent on the
functional interaction of the DNA methyltransferase Dnmt3a and the Dnmt3-like protein
(Dnmt3L) [34,35]. DNA de novo methylation is completed when oocytes reach the germinal
vesicle stage [1,36]. After a period of intense activity during oocyte growth, transcription is
ceased when the oocyte becomes arrested at the prophase of meiosis I, and this arrest is
released after a preovulatory hormonal surge of gonadotropins [37]. It has been proposed
that the phenomenon of meiotic arrest possibly protects oocytes from oxidative stress and
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DNA damage [38]. During oogenesis, the oocyte development and competence is not
dependent on DNA methylation as oocytes with genetically ablated DNA methylation
were successfully fertilized, and subsequent embryonic development progressed until
the mid-gestation stage [39,40]. It has been suggested that methylation of CpG islands
in gametes is not fully related to genomic imprinting but is an important factor in the
regulation of gene expression in preimplantation embryos [34].

2.2. Histone Deacetylation in Oocyte Maturation and Energy Metabolism

Histones are positively charged proteins, which form the integral part of the chromatin
core. The octamer core is composed of four histone variants—H2A, H2B, H3, and H4—with
connecting histone H1 [41]. They are essential for packaging the DNA into superstructures,
making it inaccessible for DNA-binding proteins to bind it and recruit further transcrip-
tion or regulation machinery. Important modification regulating histone interactions are
classified into methylations, acetylations, phosphorylations, ubiquitinations, and PolyADP
ribosylations (Figure 1) [41]. Particularly, the regulation of histone acetylations is relevant
for the final moments of oocyte maturation.

Histone deacetylases (HDACs) are enzymes that regulate a wide range of biological
processes by removing acetyl groups from lysine ε-amino groups, not only on histones but
also on many other proteins [42]. In particular, meiotic progression was discovered to be
dependent on HDACs activity progression in mice. Histone acetylation of lysine residues
was substantially reduced upon meiotic resumption in mouse oocytes [43]. Maintenance of
genome integrity and chromatin structure is controlled by HDAC3. In meiosis, HDAC3 is
located on the spindle. HDAC3 knockdown experiments on mice revealed defects in chro-
mosome alignment, spindle structure, and microtubule-kinetochore attachment (MT-K) [44].
Suppression of HDAC3 activity in porcine oocytes led to similar phenotypes as in mice,
spindle defects, chromosomal congression failure, and meiosis inhibition [45]. Disruption
of oocyte maturation by the selective HDAC6 inhibitor tubastatin-A induced asymmetric
division in maturing oocytes, failure to extrude the first polar body [46], increased α-tubulin
acetylation, and incorrect MT-K attachment as seen in HDAC3 [47]. Recently, primordial
follicle activation by mTOR signalling was associated with decreased HDAC6 activity. This
finding may be of importance for the management of premature ovarian failure (POF)
as an alternative approach to primordial follicle in vitro activation (IVA) [48]. HDAC8
has a similarly indispensable role as HDAC6 and is located on spindle poles. Its absence
led to the defective recruitment of γ-tubulin and consequently caused aberrant spindle
morphology and chromosome misalignment in mice [49] and pigs [50]. The activity of
HDAC1/2 in embryos is required for proper DNA methylation, cell lineage development,
and transformation from morula to blastocyst [51]. HDAC3 is closely connected with
HDAC 11. Its inhibition increased the acetylation level of α-tubulin [45,52], significantly
impaired the course of meiosis in mouse oocytes, and disrupted kinetochore–microtubule
attachment and spindle assembly checkpoint [52], which resulted in abnormal spindle
organization and chromosome misalignment.

The regulation of histone acetylation in oocyte meiosis is also reliant upon specific
NAD+-dependent HDACs, silent information regulator 2 (Sir2) proteins (“sirtuins”) that
belong to a seven-member family of deacetylases involved in the deacetylation of histones
as well as nonhistone proteins. Moreover, sirtuins are employed in the regulation of
metabolism, inflammation, and oxidative stress. [53]. SIRT1 plays a role in the activation of
primordial follicles in a deacetylase-independent manner [54] and was reported to slow
down the aging-related decrease of oocyte quality, which may under in vitro laboratory
conditions impact oocyte maturation [55]. SIRT1 overexpression decreased H3 histone
methylation and acetylation in post-ovulatory aged mouse oocytes as well as decreased
aging related reactive oxygen species (ROS), spindle abnormalities, and mitochondrial
dysfunction [56].

The SIRT2 impaired gap junctional communication during in vitro maturation of
bovine oocytes by phosphorylation of connexin-43 [57] is another sirtuin activity. In human
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serum samples from IVF patients, a basal SIRT2 level was proposed as a pregnancy outcome
predictor in combination with age, anti-Mullerian hormone (AMH), and antral follicle count
(AFC) [58].

At the GV stage of mouse oocytes, SIRT7 is located within the nucleus, then upon
meiotic resumption it is dispersed in the cytoplasm, with the highest SIRT7 concentration
occurring around the chromosomes. SIRT7 knockdown compromised mitochondria func-
tion, significantly decreased ATP levels, and increased ROS [59]. SIRT4 exhibited similar
phenotype to SIRT7 [60]. On the other hand, SIRT6 interacts with chromatin proteins and is
employed in DNA double-strand break (DSB) repair mechanisms. Its knockdown in early
mouse embryos shortened telomeres and caused an increase in DNA damage [61].

Sirtuins are also implicated in the regulation of energy metabolism and stress resis-
tance; particularly, SIRT3, SIRT4, and SIRT5 mainly localize in mitochondria [62]. SIRT1
and SIRT3 have been revealed to play a crucial role in ensuring protection against oxidative
stress in oocytes, granulosa cells, and early embryos [63]. It has been reported that the
SIRT1 anti-oxidative stress effect in mouse oocytes is attenuated during aging [64]. Recently,
a decrease of ovarian reserve in mice was linked to SIRT1-related changes in mitochondrial
oxidative phosphorylation [65]. Additionally, a protective role of SIRT3 against oxidative
stress was revealed in preimplantation mouse embryos [66]. A correlation between the
decreased expression of SIRT3 and lower embryonic developmental competence was found
in human in vitro cultured embryos [67].

2.3. Fertilization & Mitochondria

Mitochondria play a major role in providing each cell with energy by generating
adenosine triphosphate (ATP) through electron transport-linked oxidative phosphorylation
(OXPHOS) [68]. Since the aerobic respiratory pathway in eukaryotic cells is the only
system that fully relies on mitochondria function [69], any mutations in mtDNA or nuclear-
encoded mitochondrial genes can result in mitochondrial dysfunction that induces a variety
of pathologies and contributes to an abnormal aging process [70,71]. Mitochondria are
the prominent source energy for successful oocyte and sperm biogenesis and function.
This dependence is due to the high energy demand for the support of proper chromosome
segregation and the fertilization process [72,73]. In mammalian oocytes, a sufficient mtDNA
copy number is essential to promote fertilization and early embryo development. Human
oocytes with fewer than 100,000 copies of mtDNA evince a significantly lower fertilization
rate than oocytes with more than 150,000 copies [74,75]. In vertebrates, inheritance of
mitochondria is maternal as the paternal mitochondria of sperm origin are eliminated
during early embryo development [76,77].

Mitochondrial activity is an indicator of oocyte developmental competence [78].
Oocyte maturation and early embryo development depend on ATP derived mainly from
mitochondrial oxidative phosphorylation [79,80]. Events such as the formation and mainte-
nance of the meiotic spindle are also dependent on mitochondrial function [81]. Deficiency
of ATP and low mtDNA copy number are associated with poor oocyte quality, retarded em-
bryo development, aneuploidy, and decreased implantation and placentation rates [82,83].
mtDNA has a considerably higher mutation rate than the nuclear genome, and it is as-
sumed that mtDNA is prone to oxidative damage induced by reactive oxygen species [84].
Mitochondrial dysfunction and deficiency of mitochondria-derived ATP provoked by ox-
idative stress induces spindle disruption in MII mouse oocytes [85]. Mutations of mtDNA
can cause a set of physical and cognitive disabilities, including pathologies of the ner-
vous and muscular systems. However, progress has been made recently in the field of
inherited mitochondrial disease and therapeutic approaches, such as the development of
pre-implantation genetic screening and mitochondrial replacement therapy [86,87].

A decrease of mitochondrial number, function, and mtDNA quantity affect the via-
bility of oocytes and female fertility [88,89]. Advanced maternal age is associated with
a reduction of ATP production that leads to decreased metabolic activity and can neg-
atively affect cell cycle regulation, meiotic spindle formation, chromosome segregation,
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fertilization, embryo development, and implantation [72,90,91]. An increased expression of
the mitochondrial unfolded protein response gene Hspd1 in GV oocytes of PMSG-treated
aged mice reflects the mitochondrial stress caused by advanced age [88]. In ovaries of
aged mice, a decreased mRNA expression of mitochondrial antioxidants Prdx3 and Txn2
was reported [92]. An increased expression of the mitochondrial antioxidant TXN2 gene
and mitochondrial transcription factor TFAM gene in cumulus cells of unstimulated aged
cattle was detected [93]. To enhance the fertilization rate of aged oocytes, the technique of
mitochondrial supplementation can be applied. For this purpose, it is possible to use the
method of either partial or total cytoplasm transfer from donor to recipient oocyte [94,95].

2.4. Genomic Imprinting in Early Embryo

Genomic imprinting is defined as a monoallelic parent-of-origin-dependent gene
expression in offspring and consists in differential methylation inherited from the ga-
metes when one parental copy of the gene is silenced while the other parental allele is
expressed [96]. DNA methylation is one of the epigenetic changes regulating the expression
of imprinted genes during early development. It is an epigenetic process that involves
DNA methylation and histone methylation without altering the genetic sequence. These
epigenetic marks are established (“imprinted”) in the germline (sperm or egg cells) of
the parents and are maintained through mitotic cell divisions in the somatic cells of an
organism [14]. Although extensive nuclear reprogramming occurs in preimplantation
embryos, the methylation of imprints acquired through gametogenesis escapes from this
global epigenetic reprogramming and persists in preimplantation embryos (Figure 2) [9,97].
The methylation of the imprinted genes is thus preserved and then transmitted to the
offspring. As of 2019, around 260 imprinted genes have been identified in mice and 230
in humans [98]. Imprinted genes are involved in the regulation of embryonic growth,
placental function, postnatal growth, and neurobehavioral processes [99,100]. In humans,
abnormal expression of some imprinted genes has been related to numerous diseases, de-
velopmental abnormalities, and malignant tumours [101–103]. Although DNA methylation
is a key player in genomic imprinting through the establishment of imprinted marks on
either paternal or maternal alleles (Figure 2), the genomic imprinting process is significantly
influenced also by histone modifications and non-coding RNA [104–106].

2.5. Embryonic Genome Activation

During early embryogenesis between fertilization and implantation, parental DNA
is subjected to rapid and extensive demethylation, and consequently epigenetic informa-
tion inherited from the gametes is vastly reset in the preimplantation embryos [9,107].
In human embryos, a sharp decrease of paternal DNA methylation occurs between fer-
tilization and the two-cell stage; however, the decrease of maternal DNA methylation
is milder (Figure 2) [108]. The DNA methylation level is also decreased during zygotic
activation in mice, bovine, and goat preimplantation embryos [109–111]. In mice, the most
intense demethylation occurs in the zygotes, and gradual demethylation continues until
the blastocyst stage [112]. The newly activated DNA demethylation that occurs during
the early pronuclear stage precedes the increase of DNA replication indicating that DNA
demethylation in the early zygote is independent of DNA replication [113].

The early human embryo consists of a large number of transposable elements (TE) that
could be a potential cause of gene rearrangements, mutations, deletions, or duplications.
Therefore, as a precaution, silencing of these evolutionary younger TE is ensured by DNA
methylation or histone modifications [108].

Nearly all methyl groups are removed from the paternal-origin DNA immediately
after fertilization [97]. Methylation of maternal-origin DNA is diluted with each round of
replication and results in a substantial decrease of DNA methylation during the morula
stage [114]. Global epigenetic reprogramming occurs in the early embryo when DNA
demethylation is at the highest levels in the early blastocyst stage [115]. The genome-wide
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erasure of CpG methylation is more profound in early embryos from superovulated mice
when compared to embryos from naturally mating control mice [116].

2.6. Intrauterine Epigenetic Inputs

Subsequent reinitiation of DNA methylation occurs in the blastocyst stage in the cells
of the inner cell mass and establishment of new methylation marks continues during fetal
development [97]. During post-implantation development the activity of DNMT3A and
DNMT3B together with their coactivator DNMT3L are essential to establish the character-
istic methylation profile in the developing embryo [117]. DNA methylation provides an
epigenetic regulatory mechanism protecting the differentiating cells from regression to the
undifferentiated state [115]. In post-implantation embryos, DNA methylation is an integral
of epigenetic marks in the majority of embryonic tissues and persists in somatic tissues
during the lifespan of adults [118]. Mice embryos with insufficient DNA methylation
activity die at mid-gestation as a consequence of genome-wide demethylation [119].

3. Epigenetics within Translational Regulation: The Oocyte to Embryo Story
3.1. Active Transcription Fuels Maturing Oocyte

Primordial germ cells (PGCs) that are produced from female germ cells undergo mi-
tosis, forming oogonia and during subsequent oogenesis, the oogonia become primary
oocytes. Every oocyte originates from primordial germ cells (PGCs). PGCs migrate in
utero into a future ovary and go through repeated mitotic cycles to form nests of germ
cell syncytia [120]. All female mouse primordial germ cells are connected by intercellular
bridges in the ovaries at embryonic day 11.5 to 17.5 and form synchronously dividing
interconnected cysts or syncytia of up to 30 germ cells [121,122]. Following the homologous
recombination and formation of cytoplasmic bridges, oocyte nuclei are arrested at the
diplotene stage of meiotic prophase I. Following birth, germ cell nests are dispersed along
with the invasion of pre-granulosa cells [121]. Individual primordial follicles made of
primary oocytes enclosed by a basal layer of flattened granulosa cells are formed. However,
a substantial amount of primordial follicles undergo atresia, and one of the proposed
functions for follicular atresia is the selection of follicles containing oocytes of the high-
est developmental potential [123,124]. Activation of the primordial follicle that starts at
prepubertal stage and extends throughout the reproductive life is cross-regulated by key
transcriptional factors (FIGLA, LHX8, and SOHLH1) that cooperate on common down-
stream pathways in folliculogenesis [125]. If a primordial follicle is activated, it does so
via the binding of Kit Ligand from granulosa cells (KL) onto a Kit receptor present on the
oocyte and theca cells [126]. This Kit-KL system is connected downstream by a PI3K/Akt
pathway [127]. A feedback loop is further secured by oocyte-secreted factors (OSFs) such
as BMP-15 or GDF-9 [128,129]. As the oocyte grows further, macromolecules, proteins, and
transcripts are rapidly accumulating within. Experiments on bovine oocytes have shown
that a substantial amount of mRNA transcripts are capable of transport from granulosa
cells into the oocyte via gap-junctions. These connections between the oocyte and cumu-
lus cells were subsequently named as transzonal projections (TZPs) [130,131]. Once the
oocyte reaches the fully grown germinal vesicle stage (GV), the transcription in the GV
nucleus is ceased. Accumulated mRNAs are more stable than those present in somatic
cells [132]. Further, during the MI/MII transition, the oocyte is dependent on the effective
utilization of stored transcripts and proteins [133,134], which needs to be tightly regulated
based on the metabolic requirement, nutrient availability, and presence of environmen-
tal stress. Fine tuning of oocyte meiosis and early embryo development is ensured by
translational regulation.

3.2. Translational Regulation, the Key for Oocyte Success

The regulation of translation is orchestrated by many mechanisms, ranging from
modulating polyA tail length, modifying mRNA post-transcriptionally, regulating interac-
tions between proteins, degrading stored RNAs, clustering RNAs into ribonucleoproteins
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(RNPs), up to the 5′-terminal oligopyrimidine (TOP) motif mRNA regulation under stress
from nutrient or oxygen deprivation [135]. The best known regulation mechanism of
selective mRNA translation is the 3′ UTR polyadenylation, which works for about 70% of
the oocyte’s mRNAs [136]. PolyA tail length positively correlates with ribosome occupancy.
The ribosome loading itself is regulated by the CPE binding protein 1 (CPEB1) and deleted-
in azoospermia such as (DAZL) binding to the cytoplasmic polyadenylation element (CPE)
on the 3′ UTR of mRNA. Their absence compromises mouse oocyte meiotic maturation
and MII oocyte development by dysregulating effector proteins, polyA binding protein 1
(PABP1), and polyA specific ribonuclease (PARN) responsible for mRNA polyadenylation
and deadenylation respectively [137].

As oocyte meiosis is progressing, global translation decreases (Figure 2). However,
translation of m7G capped mRNAs is mainly regulated by the mTOR/S6K1/4E-BP1 sig-
nalling (mTORC1 pathway) [2,138]. The main player here, the mammalian target of
rapamycin (mTOR), a serine/threonine protein kinase, regulates diverse cellular functions
(reviewed in [139]). It has been documented that mTOR activation and the protein syn-
thesis initiation is influenced by the activity of cyclin-dependent kinase 1 [140]. mTOR is
responsible for translational regulation of capped mRNAs containing a TOP motif by re-
cruiting an eukaryotic initiation factor 4F (eIF4F) [2] and RNA-binding protein LARP1 [135].
Oocyte-specific conditional knockout of mTOR severely affected folliculogenesis. Deleting
mTOR in meiotic maturation changed the oocyte’s proteome composition, caused spindle
instability, aneuploidy, and failure to form a methaphase II equatorial plane [141].

Translatability of mRNAs is also indirectly regulated by the formation of superstruc-
tures with proteins into RNP cytosolic granules. In such a way, translation, degradation,
and storage of transcripts can be controlled simply by regulating their physical availability
to the translational or degradational machinery. RNP granules commonly found in oocytes
and embryos are stress granules or p-bodies. Stress granules are formed upon nutritional
deprivation, heat, or oxidative stress by liquid-liquid phase separation [142]. P- bodies,
on the other hand, are engaged in the storage of mRNAs with regulatory functions, previ-
ously thought to play a role in RNA decay [143]. Continuous degradation of stored RNA
expressed during early stages of oogenesis occurring in meiosis and during early embryo
development is preventing them from being inherited by simple eradication of redundant
RNAs [144].

3.3. Epitranscriptomics—Translational Regulation by mRNA Methylation

Not only oocyte translational regulation is key for meiotic maturation, but also the
recently discovered regulation by the epitranscriptomic m6A mRNA methylation [145,146].
Earlier studies in Xenopus oocytes found m6A methylation to inhibit mRNA recruitment
for translation. Key cell cycle and translation-related transcripts in Xenopus were demethy-
lated in order to become translated [145]. However, a study on porcine oocytes showed
rapid accumulation of m6A methylated transcripts inside the ooplasm as meiotic matu-
ration progressed. Inhibition of m6A methylation by cycloleucine, a specific inhibitor of
adenosyl-transferase, impaired oocyte maturation and further development [147]. A role
of m6A mRNA methylation during meiotic maturation and maternal to zygotic transi-
tion has been confirmed in the mouse model [146], and proper regulation of m6A mRNA
methylation was shown to be crucial for both preimplantation [148] as well as in utero [149]
embryo development.

Recent evidence stressed the importance of m6A mRNA methylation in the devel-
opment of fully matured and developmentally competent oocytes and early embryos.
Epitranscriptomic m6A RNA methylation is an ubiquitous and reversible process orches-
trated by methyltransferases (“writers”), binding proteins (“readers”) and demethylases
(“erasers”) [150,151].

Three major epitranscriptomic writers exist: METTL3, METTL14, and METTL3
adapter—WTAP [51,152]. The methyltransferase complex METTL3 was studied in detail
on mouse oocytes. Transient knockdown of METTL3 by RNAi led to a substantial decrease
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of mRNA translation efficiency, low oocyte maturation rate, problems with maternal to
zygotic transition [146], and inability to form blastocysts [148]. METTL3 was found to play
a role in folliculogenesis, ovulation, maintenance of DNA integrity, and preimplantation de-
velopment [153]. The same enzyme is engaged in the angiogenesis of atherosclerotic mouse
model embryos by upregulating vascular-endothelial growth factor (VEGF) [154] through
m6A [155]. In zebrafish embryos, METTL3 regulated PHLPP2/mTOR-AKT signalling [156].
The recently published data have shown METTL3 direct interaction with the known p53
transcription factor that enhanced p53 stability and together cooperatively modified p53
targeted RNAs by m6A upon DNA damage [154]; METTL14 was found to be needed
for embryonic post-implantation epiblast formation [149]. Further, data have shown the
importance of methyltransferase KIAA1429 for folliculogenesis and oocyte development,
as the KIAA1429 conditional knockout mice produced severe defects in oocyte growth,
alterations in OSFs expression, and an inability to undergo nuclear envelope breakdown
(NEBD) [157].

Many proteins can act as m6A readers. The most known are YTH domain contain-
ing family proteins (YTHDF1,2,3) [158] and IGF2BP1 protein regulating JAK2/STAT3
signalling [159], as well as many others. YTHDF1 promotes active translation in HeLa
cells by interconnecting m6A mRNA transcripts with translation initiation factors, ribo-
somes, or stress granules [18]. YTHDF3 was shown in HeLa cells to enhance YTHDF1
upregulation of translation as well as the promotion of RNA decay via YTHDF2 [160].
The YTHDF2 reader in mice is responsible for the maintenance of correct gene dosage
by utilizing RNA degradation machinery. This is coupled with the activation of CNOT7
deadenylase and DCP1A, DCP2 decapping enzymes. However, the most recent study on
HeLa concluded that all YTHDF1,2,3 readers have common core sites and act together on
selective m6A mRNA degradation via CCR4-NOT deadenylation complex [158]. Female
YTHDF2 double knockout mice are infertile and show cytokinesis defects in early zygotic
development. Nevertheless, YTHDF2 double knockout oocytes are capable of ovulation
and fertilization [161]. Additional enzymes do exist that relay m6A regulation onto common
physiologically important pathways. For example, recently discovered m6A reader activity
in Fragile-X mental retardation protein (FMRP) is important for the maternal RNA decay
in Drosophilla embryos. FMRP used m6A tagged mRNA transcripts for their sequestering
into FMRP granules. [162]. FMRP was also shown to create granules at the onset of meiosis
in human fetal ovaries, suggesting its importance in the translational regulation of oocyte
maturation [163]. This was supported by the detection of FMRP in all stages of mouse
oocyte meiotic maturation and its rapid decline in two cell embryos [26]. Therefore, m6A
methylation could both directly and indirectly regulate the translation of certain mRNAs.

The removal of m6A methylation marks from transcripts is done by two main demethy-
lases (“erasers”), fat mass- and obesity-associated (FTO), and α-ketoglutarate-dependent
dioxygenase alkB homolog 5 (ALKBH5) [164]. A decrease of FTO expression with age was
shown to increase m6A methylation in aged mouse ovaries and human granulosa cells of
elderly patients [162]. The same decrease of FTO expression followed by an increase in
m6A methylation was observed in ovarian tissues from premature ovarian failure (POF)
patients and POF model mice [165]. Therefore, proper regulation of m6A methylation is one
of the factors to ensure follicular developmental competence. Decreased m6A methylation
in placental tissues of patients suffering from recurrent miscarriage caused by the upregu-
lation of the second eraser, ALKB5H demethylase, revealed that in such endometrium the
trophoblast is unable to nidate [166].

4. Translation of Epigenetics into ART

Assisted reproduction techniques (ARTs) are widely applied in the field of human
reproduction (Figure 3) and animal breeding. Exposure to ART results in a decreased
developmental competence of fertilized mouse oocytes, partially due to the induction of
epigenetic changes [167] (Table 1).
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Figure 3. Assisted reproduction technology (ART) and external factors involved in epigenetic
alterations: visualization of ART procedures employed in the process of oocyte meiotic maturation
and early embryo development with proven (red arrows) or insignificant (pale red arrows) impact on
the epigenome. External factors influencing epigenetics of post-implantation in utero embryo and
fetal development (yellow arrows) are divided among nutritional (alcohol, diet) and lifestyle factors
(advanced age, smoking, living environment, endocrine-disrupting chemicals (EDCs)). The image
was created with BioRender.com.
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Table 1. Summary of effects induced by ART on epigenetic changes in oocytes, early embryos and
their influence on offspring. “NE” indicates specific gene effects were not evaluated.

Stressor Species Genes Affected Main Findings Reference

Ovarian Stimulation

Controlled ovarian
stimulation human NE Chromosomal aneuploidy [168]

Superovulation mouse Dnmt1, Dnmt3A,
Dnmt3B

Affected expressin of methyltransferases
in GV, MII oocytes, in one-cell and

two-cell embryos
[169]

Superovulation mouse Epab, Pabc1 Altered expression of translational regulators
mRNA in mouse GV and MII oocytes and in zygots [170]

Superovulation mouse Snrpn, Peg3,
Kcnq1ot1, H19

Disrupted methylation of imprinted genes in
blastocysts [171]

Superovulation mouse Gfod2, Foxi3, Celf4, Syf2
In oocytes, altered methylation of genes involved in
glucose metabolism, nervous system development,
cell cycle, cell proliferation, and mRNA processing

[172]

Superovulation mouse H19 Altered H19 methylation in mouse blastocysts after
in vivo fertilization [173]

Superovulation mouse Fasn, Dgat1, Dgat2
Decreased fatty acid content in mice 2-cell embryos
by reducing the Fasn and increasing the Dgat1 and

Dgat2 expression.
[174]

Repeated
superovulation mouse Cox1, Cytb, Nd2, Nd4 Altered expression of mitochondrial genes in

mouse cumulus cells [175]

Repeated
superovulation mouse NE Abnormalities in mitochondrial structure and

distribution in mouse oocytes [176]

Superovulation mouse NE Decrease of mitochondrial activity and ATP
production in mouse oocytes [177]

Superovulation bovine TXN2, PDX3
Decline of mtDNA copy number in bovine oocytes.,

decreased expression of antioxidant genes in
bovine cumulus cells

[93]

Oxidative stress

Presence of reactive
oxygen species human NE Sperm originated changes to epigenetic regulation

of human embryo development [178]

Culture under 20%
of oxygen bovine

CAT, GLRX2,
HSP90AA1. KEAP1,

NFR2, PRDX1, PRDX3,
SOD1, TXN, TXNRD1,

H2AFZ, H3F3B

Increase of transcript of genes associated with
epigenetic remodelling, oxidative stress and

cellular stress response in blastocysts
[179]

Culture under 20%
of oxygen bovine DNMT3A

Elevated DNMT3A expresiion and increase of
global DNA methylation in 4-cell embryos

and blastocysts
[180]

Oxidative stress
(palmitic acid) bovine PRDX3, HADHB,

UQCRB, CYCS

Upregulation of PRDX3 protein. Elevation of the
mitochondrial HADHB, UQCRB and CYCS

proteins in oocytes
[181]

Oxidative stress
(H2O2) mouse NE

Decrease in mitochondria-derived ATP and
disassembly of spindles in in vitro cultured

MII oocytes
[85]

In vitro techniques

Oocyte in vitro
maturation human HDAC1 Compromised deacetylation in oocytes. Residual

acetylation linked to aneuploidy [182]

Oocyte in vitro
maturation bovine SIRT2 Faulty mitochondria [183]
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Table 1. Cont.

Stressor Species Genes Affected Main Findings Reference

Cytoplasmic
transfer human Not tested yet 10–15% cytoplasm transfer into aged oocytes

prroduced healthy offspring [95]

Suboptimal culture
media rabbit NE Alteration of DNA methylation reprogramming in

paternal pronuclei of zygotes [184]

In vitro fertilization
& ICSI human H19 ART caused demethylation resulted in the changes

of genomic imprinting [185]

Embryo in vitro
culture human NE miRNAS detected in spent culture medium

downregulate embryonic mRNAs [186]

Cryopreservation human LINE1 Differently methylated placental DNA between
fresh and frozen embryotransfers [187]

Suboptimal culture
media mouse NE Higher methylation disturbances in embryos from

superovulated females and IVF [188]

Intracytoplasmic
sperm injection mouse H19, Snrpn, Peg3, Igf2 Imprinting defects in somatic tissues [189]

In humans, no significant epigenetic changes were found between regular pregnancy
and ART pregnancy in newborns, however only a few key imprinted genes were analyzed
in a small cohort of patients [190]. Recently, epigenetic imprinting-related disorders were
demonstrated on mouse models and also observed in ART newborns like Prader–Willi
syndrome (PWS), Silver–Russell syndrome (SRS), Beckwith–Wiedemann syndrome (BWS),
and Angelman syndrome (AS) [191]. The long-term epigenetic effects of ART still await
evaluation. Needless to say, more extensive follow-up of children born from ART embryos
should be carried out. Moreover, further investigations into the epigenetic impact of ART
methodology on cultured oocytes and embryos should be done.

4.1. Hormonal Stimulation

Superovulation or the clinical term controlled ovarian stimulation (COS) is applied to
statistically increase the chances of acquiring blastocyst stage embryos compared to normal
ovulation and increase the likelihood of a successful pregnancy. The basis of COS is the
stimulation by a recombinant follicle stimulating hormone (rFSH) and the ovulation trigger,
human chorionic gonadotropin (hCG). A co-administration with gonadotropin-releasing
hormone (GnRH) agonist or antagonist is needed to avoid premature ovulation.

Increased incidence of chromosomal aneuploidy in human COS oocytes was associ-
ated with changes in DNA methylation [168]. COS was also linked to embryo development
retardation [192] and negative effects on child health [193–195] A loss of genomic imprint-
ing, particularly associated with the overgrowth Beckwith–Wiedemann (BWS) syndrome
was reported in bovine fetal tissues. Demethylation of imprinted genes was observed in
other bovine genome loci [196].

Additionally, protein translation was affected using the mechanisms triggered by
superovulation. The mRNA expression of two critical players in translational regula-
tion of stored maternal mRNAs, the embryonic poly(A)-binding protein (ePAB), and the
poly(A)-binding protein cytoplasmic 1 (PABPC1), was modified in oocytes and two-cell
embryos [170]. After IVM oocyte culture in the presence of rFSH, a decreased global trans-
lation was observed in mouse, bovine, and porcine models including humans [197]. rFSH
may compromise regulation of specific translatome essential for oocyte maturation and
early embryo development. Therefore, the use and dosage of recombinant hormones in the
conventional IVM should be thoroughly evaluated.

Superovulation in mouse oocytes and early embryos alters DNA methylation [198]
and expression of methyltransferases [169] and impairs methylation of genes involved in
glucose metabolism, nervous system development, cell cycle, cell proliferation, and mRNA
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processing [172]. Disrupted DNA methylation of imprinted loci in mouse blastocysts
affected, for example, a body-weight-limiting H19 gene [173], and was more frequent at
higher hormonal superovulation dosages [171]. Superovulation caused imprinting defects
leading to embryonic abnormalities and higher mortality [174,199]. Detected epigenetic
differences in DNA methylation between superovulated and naturally ovulated oocytes
suggested that superovulation also recruits growing oocytes with incomplete epigenetic
maturation [172]

4.2. Oocyte In Vitro Maturation

When hormonal stimulation does not produce a satisfactory number of matured MII
oocytes, in vitro maturation (IVM) is considered. IVM is based on the retrieval of fully
grown cumulus enclosed GV oocyte complexes (COC) from ovarian follicles. COCs are
meiotically matured by the IVM in the presence of rFSH and LH (rLH) to produce MII
oocytes. The conventional IVM technology is understandably inferior to standard COS
with maturation in vivo.

As just mentioned, rFSH promoted a decrease of global proteosynthesis marker,
the radioactively labelled 35S methionine, in mouse, bovine, porcine, and human IVM
oocytes [197]. The use of recombinant hormones in the IVM media is one of the factors
affecting proper translational regulation and proteosynthesis during maturation.

A hypothesis was proposed that the resumption of meiosis upon COC ovarian punc-
ture (OPU) is premature and could also have a negative impact on IVM quality. In response
to that, an alternative approach called capacitation IVM (CAPA-IVM) was devised [200].
This experimental ART maintains high cAMP concentration within the in vitro cultured
human COC by stimulating cumulus cells with rFSH, insulin, estradiol, and C-natriuretic
peptide, thus indirectly inhibiting the NEBD in oocytes for about 24 h. The recent clinical
study resulted in a live birth rate after the first embryo transfer of 35.2% for CAPA-IVM
compared to 43.2% for standard IVF control [200]. It can be hypothesized that CAPA-IVM
has a direct downstream impact on translational regulation as it gives the oocytes more time
to equilibrate before meiotic maturation. These promising results from CAPA-IVM deserve
further investigation, particularly the clarification of underlying molecular mechanisms
and epigenetic regulation.

IVM quality is indeed determined by epigenetic m6A transcript methylation or hi-
stone deacetylations. Numerous histone modifications are employed in oocyte meiotic
maturation, ranging from most profound deacetylation to methylation, phosphorylation,
ubiquitination, and SUMOylation as reviewed by He et al., 2021 [41]. General histone
deacetylation was compromised throughout meiosis in aged human oocytes. The residual
acetylation correlated with chromosome misalignment linked to aneuploidy [181]. More-
over, human IVM oocytes with reduced HDAC1 expression also exhibited MII spindle
abnormalities. Comparatively, more HDAC1 transcripts were present in in vivo (IVO)
matured oocytes than IVM [201].

Improved IVM technology could also utilize the discussed sirtuin deacetylase family
as recently reviewed [53]. Authors of the review detected sirtuins application for the
management of aging and stress related syndromes, PCOS, diabetes, or endometriosis, and
concluded the beneficial improvement of the energy balance and ROS protection. Decreased
SIRT3 expression for example, correlated with lower developmental competence in human
in vitro cultured embryos, which was attributed to defective mitochondrial biogenesis [67].
Recently, basal human serum SIRT2 level was suggested as a novel biomarker of ART
outcome [202]. This kind of IVM therapy is promising, however further investigation is
needed to determine their best delivery, dosage, combination, and mode of action.

The IVM approach is most applied for the management of polycystic ovarian syndrome
(PCOS) which is the most common endocrine disorder in 6–20% of women of reproductive
age accompanied by oligoovulation and/or anovulation. PCOS is a multifactorial syndrome
with strong epigenetic inheritance, where external environmental, lifestyle, and dietary
factors play a significant role [203].
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PCOS infertility is managed through IVF centres. Recent evidence suggests intergener-
ational epigenetic inheritance of this syndrome [204]. The puzzling question arises whether
PCOS is trans-generationally inherited through offspring, who would again become clients
of IVF clinics (Figure 4). Instead, could PCOS be cured by managing mentioned external
epigenetic factors rather than just relayed onto the next generation by IVF?
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Figure 4. Transgenerational epigenetic inheritance and the therapy (the polycystic ovary syn-
drome (PCOS) case: Recent evidence showed that acquired epigenetic changes can be inherited
between generations. One such example is the PCOS, which presents the main cause of infertility
in humans. PCOS patients are usually managed by assisted reproduction techniques (ART), but
there is high probability of transmission from mother to daughter. DNA hypomethylation in PCOS
is also influenced by external factors such as nutrition, living environment, or lifestyle [205]. The
nutritional supplementation with one carbon metabolism (OCM) compound, the methyl donor
S-adenosylmethionine (SAM) could possibly have a therapeutic potential to mitigate or alleviate
PCOS in humans [206]. The image was created with BioRender.com.

4.3. Mitochondrial Therapy

Oocyte developmental competence is tightly connected with energy availability. Mei-
otic maturation, fertilization, and embryonic genome activation are all energetically de-
manding processes depending on essential mitochondrial ATP production through OX-
PHOS. Metabolic disorders and aging are coupled with oocytes of inferior quality, which is
largely attributable to energy production in the form of ATP by mitochondria as reviewed
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by [207]. mtDNA copy number in human oocytes range from 20,000–600,000 [79,208] and
was found to decline with increasing maternal age [209]. The ART solution to this trend
in our population is to apply cutting-edge mitochondrial therapies and take advantage
of enucleated donor oocytes in techniques such as Cytoplasmic Transfer (CT), Maternal
Spindle Transfer (MST), first Polar Body Transfer (PB1T), or in case of zygotes, Pronuclear
Transfer (PNT). Nuclear transfer in GVs has been described, but due to complete zygote
arrest of such maturated and fertilized mouse model oocytes, is not further considered for
clinical applications (reviewed by [210]).

CT of about 10–15% of donor oocyte cytoplasm into one of the two sibling oocytes of
an aged patient increased their developmental competence. Newborns from such treated
oocytes were considered being healthy [95].

The MST method is based on the removal of the MII spindle from a healthy donor
oocyte. In the same way, MII spindle is transferred from the patient’s affected oocyte into a
healthy enucleated donor oocyte [211,212]. The first MST in human oocytes had low zygote
survival ability, but with comparable blastocyst rates [211]. In 2017, MST was used for the
first time therapeutically in the management of Leigh syndrome, which affects mtDNA and
mitochondria [213]. Following a live birth, the load of mutated mtDNA was estimated to
be below 10%. Concerns about MST introducing new epigenetic changes in donor oocytes
were negligible as revealed by analysis of gene expression, which found no significant
differences [214].

Whole genome RNA-sequencing of PNT derived blastocysts also found no major
epigenetic differences [215]. An inferior method to MST, the PB1T method successfully
reconstituted spindle in about 67% of enucleated donor oocytes but following fertiliza-
tion only about half of the produced viable zygotes were capable of blastocyst develop-
ment [216,217]. First polar bodies (PB1) were shown to mirror the methylomes of the
oocytes they originated from, and therefore PB1s could have more of a diagnostic, rather
than therapeutic, role [218].

Another non-invasive strategy to enhance oocyte and early embryo competence is to
support mitochondrial functions in in vitro cultured oocytes by supplementing the culture
media with compounds upregulating the functions of histone deacetylases sirtuins. SIRT1
for instance stimulates mitochondrial activity, enhances its biosynthesis and regulates
degradation of mitochondria [219].

4.4. IVF & ICSI

New evidence from genome-wide sequencing of neonatal cord blood has shown that
epigenomes of ART newborns exhibit the loss of CpG methylation compared to those of
natural conception (NC). A total of 176 genes were differentially methylated including
genes employed in growth and neurodevelopment [195]. Similar findings were obtained
from 7–9 week old fetal human tissue after elective termination of pregnancy. A total of
164 differentially methylated genes were detected and associated with the development
of the skeletal system, body size, lipid, and steroid synthesis [220]. Moreover, a study
on histone modifications between IVF and ICSI found significant differences in global
H3K4me3. ICSI placentas had lower H3K4me3 levels than IVF placentas in line with
its lower transcription activity [221]. It is important to bear in mind that ART vs NC
comparison will always accompany epigenetic changes acquired during the in vitro embryo
culture so no clear epigenetic input of IVF and ICSI can be drawn.

4.5. Embryo In Vitro Culture

In the female reproductive tract, particularly the oviducts, developing early embryos
are under the influence of hormones, nutrients, growth factors, and cytokines [222]. The
epigenome of in vitro cultured mammalian embryos is vulnerable to exposed culture
conditions as aberrant DNA demethylation kinetics was detected in in vitro grown embryos
compared to embryos of in vivo origin [183].
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During in vitro culture, early embryos are exposed to limited nutrient availability and
furthermore, they are influenced by the end products of their metabolism [223]. A stress
response can be induced through the manipulation of embryos by pipetting, exposure to
thermal stress, and/or detrimental change in pH [224,225]. It is evident that embryo in vitro
culture conditions contribute to its epigenetic status. Embryo exposure to suboptimal
culture conditions or toxic substances in the medium can result in altered DNA methylation,
genetic reprogramming, developmental disruption, and consequently early embryo loss as
demonstrated in the mouse, rat, and rabbit [183,226].

In vivo early embryonic development takes place in the oviducts, but in vitro embryo
culture conditions are far from the oviductal environment, respective to nutrients, oxygen
concentration, or epigenetic messengers. One example for both, oviductal extracellular
vesicles (oEV) were shown to harbour miRNA that can downregulate specific mRNAs
or modify gene expression is other ways [185]. These oviduct–embryo interactions are
missing in vitro and would most likely play much more important roles in the regulation
of the embryonic epigenome that await their discovery [227–230].

Adequate oxygen supply is another crucial condition for the success of in vitro culture.
Concentrations of 5% oxygen and 20% oxygen are commonly used during in vitro culture
of oocytes and early embryos. DNA methylation and gene transcription of mouse oocytes
grown in in vitro conditions under 20% oxygen correlated more with the reality of in vivo
conditions, indicating that higher oxygen concentration is beneficial for mouse oocytes
matured in vitro [231]. In contrast, exposure of in vitro cultured bovine preimplantation
embryos to 20% oxygen was associated with an increase in global DNA methylation
indicating that in this case oxidative stress can alter the embryonic epigenome [178,179].
These findings suggest variations in the optimal oxygen concentration among different
species. In order to optimize the oxygen in in vitro culture of mammalian embryos, it was
suggested to reduce the concentration up to the physiological oxygen tension as the median
oxygen rate in the mammalian oviduct is around 8% [232,233]. The importance of oxygen
tension reduction during in vitro embryo culture was confirmed by systematic review and
meta-analysis of published human ART studies, revealing an increase in pregnancy and
live birth rates of embryos cultured at 5% oxygen concentration [234].

At 20% oxygen concentration in bovine embryo blastocyst culture, elevated ROS
were detected [178]. Although the ROS are important signalling molecules in certain
biological processes and are normal products of oocyte metabolism, they can interact with
biological molecules such as lipids, proteins, and nucleic acids, cause oxidative stress and
cellular damage leading to the impairment of oocyte quality [235]. Oxidative stress can
also increase the risk of aberrant DNA methylation in in vitro cultured preimplantation
embryos [236,237].

In order to compensate for the adverse conditions of in vitro culture and maintain
DNA methylation, a supply of methyl donors is needed, e.g., folates, which are often
absent in culture media [237]. Methionine, an important intermediate metabolite of the
one-carbon metabolism pathway (OCM) (Figure 5), contributes to epigenetic regulation by
providing methyl groups for DNA methylation via S-adenosyl methionine (SAM) [238].
The methionine level is an important factor influencing the quality of the early embryo
epigenome. Elevated concentrations of the methionine product homocysteine in the oocyte
and embryo environment is, however, harmful due to its toxicity and has to be converted
back to methionine. Limited remethylation of homocysteine to methionine leads to a
decrease of SAM causing DNA hypomethylation [238].

A high level of homocysteine was also detected in the serum of PCOS patients and in
the follicular fluid of polycystic ovaries and was linked with poor oocyte quality [242,243].
The aging process may be an indirect factor contributing to the decrease of embryo quality
and oocyte maturation through increasing homocysteine levels in follicular fluid; hence,
a decrease of homocysteine level in follicular fluid can significantly improve the oocyte
maturation rate and embryo quality [244]. Elevated homocysteine levels in follicular fluid
is also associated with hypermethylation of mitochondrial DNA accompanied with a mito-
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chondrial malfunction in oocytes retrieved from porcine polycystic ovaries [245]. In porcine
in vitro cultured oocytes, exposure to homocysteine significantly reduced the survival rate,
polar body extrusion rate, and cleavage rate; however, DNA methyltransferase inhibitor
5-AZA rescued the homocysteine-induced mitochondrial dysfunction and improved the
quality of oocytes and developmental competence [245]
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Figure 5. One-carbon metabolism (OCM)-associated pathways in nutrition and epigenetics:
Many OCM compounds are nutritional supplements (green) such as B vitamins; Riboflavin
(B2), Pyridoxine (B6), Folate (B9), or Cobalamin (B12). 5-methyl-tetrahydrofolate (5-mTHF) or
methionine and betaine are another currently introduced nutritional supplements. OCM path-
ways produce molecules for epigenetic modifications [239], antioxidant production [240], and
building compounds of nucleic acids, amino acids, or phospholipids (orange) [241], which are
all together influencing in utero fetal development (purple). Abbreviations: 5,10-mTHF, 5,10-
methenyl-tetrahydrofolate; 10-fTHF, 10-formyl-tetrahydrofolate; BHMT, betaine-homocysteine S-
methyltransferase; CBS, cystathionine β-synthase; DHF, dihydrofolate; DHFR, dihydrofolate reduc-
tase; DMG, dimethylglycine; DNMTs, de novo and maintenance DNA methyltransferases; dTMP, de-
oxythymidine monophosphate; dUMP, deoxyuridine monophosphate; FA, fatty acids; GSH, reduced
glutathione; MTHFR, 5,10-methylenetetrahydrofolate reductase; SAH, S-adenosylhomocysteine;
SAHH, S-adenosylhomocysteine hydrolase; SAM, S-adenosylmethionine; SHMT, serine hydrox-
ymethyltransferase; THF, tetrahydrofolate; VLDL, very-low density lipoprotein. The image was
created with BioRender.com.

In vitro oxidative stress can also affect mitochondrial function. Treatment of in vitro
cultured bovine oocytes with palmitic acid induced upregulation of peroxiredoxin 3, which
is a mitochondrion-specific H2O2-scavenging enzyme, and elevation of the mitochondrial
HADHB, UQCRB, and cytochrome C proteins suggesting that oxidative stress increased
electron transport in bovine oocytes [180]. Exposure of MII mouse oocytes to H2O2 led to a
decrease in mitochondria-derived ATP and disassembly of meiotic spindles [85].
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4.6. Cryopreservation

Two main methods of germ cell cryopreservation exist: slow freezing and vitrification,
both with the goal to eliminate ice crystal formation inside the cells. The slow freezing
method is based on the continuous and steady decrease of temperature by 1–2 ◦C/min in
the presence of cryoprotective agents and is conventionally applied for the preservation
of human fertilized zygotes [246]. The second approach, called vitrification, is now the
most widely used method for cryopreservation. It combines a rapid increase in media
viscosity and solute concentration with snap freezing in liquid nitrogen. Vitrification has
outperformed slow freezing in conventional ART human embryo cryopreservation by both
higher clinical pregnancy and live births [247].

However, from the epigenetics perspective cryopreservation is still questionable [186].
Vitrifcation significantly reduced the ATP content in oocytes of various mammalian species,
including humans [248,249]. Particularly changes in global DNA methylation, histone
modifications and genetic imprinting are to be scrutinized. Research performed on vit-
rified mouse embryos found a common pattern of decreased global [250] and imprinted
DNA [251] methylation. Vitrification of bovine oocytes was associated with a significant
reduction in the expression profile of three epigenetic-related genes DNMT1, DNMT3B, and
HDAC1 [252]. In vitrified porcine embryos, a greatly reduced expression of epigenetically
associated key genes SMYD3, TET2, and HDAC8 led to altered epigenetic reprogramming
and decreased blastocyst rates [253]. The cryoprotective agents present in IVF vitrification
media might negatively affect the epigenetic profile in embryos, as dimethylsulfoxide
(DMSO) was found to be responsible for the disruption of global DNA methylation and
significant decrease of ATP content in vitrified human cardiac tissue [254]. A detailed
analysis of molecular changes occurring in cryopreserved germ cells and embryos is
necessary to distinguish possible molecular targets that could contribute to improve the
cryopreservation procedures.

5. In Utero Epigenetics, beyond ART?

Exposure to unfavorable conditions before pregnancy and during intrauterine de-
velopment lead inevitably to epigenetic alterations of a newborn and can evolve into
pathogenesis of metabolic, cardiovascular, endocrine, and malignant disorders in adult-
hood [255]. As every ART-produced embryo has to be eventually planted into a mother’s
womb, these in vivo epigenetic factors deserve a closer look in order to understand the
full story.

5.1. Endometrial Receptivity & Placentation

Following ART embryo transfer, each embryo faces the selective process of nidation
and implantation into the endometrial tissue of the uterine wall. This in utero process
itself is highly complex and involves the cooperation of many signalling pathways. Many
epigenetical mechanisms are involved as well, such as DNA methylation [256], m6A methy-
lation [166], or interaction with ncRNAs secreted from exosomes [257]. It has even been
suggested that DNA methylation profiles of cervical secretion could serve in the future
as an alternative way for diagnosing endometrial receptivity [258]. Decidualization, the
process of endometrial preparation for blastocyst implantation, is suppressed in human en-
dometrial stromal cells by an ncRNA, the miR-542-3p. Overexpression of this miRNA also
downregulates VEGF, cyclooxygenase-2 (COX-2), and matrix metalloproteinase (MMP-9),
all linked with angiogenesis [259]. Most ncRNAs are able to exert their effects by trans-
portation as cargos in lipophilic exosomes. In this way, ncRNAs influence the embryonic
development in the oviduct and uterus [257]. So far, little is known about the scope of the
influence of these ncRNAs on the epigenome of a developing individual.

Following successful implantation, the embryo turns to cardiac and neural develop-
ment. These processes are energy-dependent and highly susceptible to proper dietary
intake and environmental conditions. Defective placentation is associated with impaired
mitochondrial function and associated low ATP production [82,83]. Incorrect DNA methy-
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lation on imprinted genomic regions dysregulates placental function [99,100]. Nutritional
and environmental status can influence the uterine and fetal epigenome to a large extent,
and therefore their effects have to be taken seriously into account.

5.2. Nutritional Epigenetics

Numerous studies describe the effects of nutrition on the epigenome during embryonic
development (reviewed in [238,260,261]). Particularly, the nutritional source of dietary
methyl donors in early development can influence the DNA methylation process [239].
Methyl groups or so called one-carbon groups are produced through OCM, which integrates
folate and methionine cycles and is a source for epigenetic DNA methylations, biosynthesis
of DNA, proteins, and lipids. Amino acids such as methionine, glycine, and serine and
appropriate levels of especially B class vitamins (B2, B6, B12) and folic acid (B9) are integral
inputs for the successful functioning of one-carbon metabolism (Figure 4). Epigenetic
changes in humans associated with OCM modifications affect pathways related to growth,
metabolic functions, neural development, and stress response [239].

The modulation of epigenetic modifications, including DNA methylation, is done by
the mTOR signalling through the OCM [262]. mTOR signalling is able to affect OCM by
increasing the de novo synthesis of serine, one of the major single carbon donors [263].
Elevation of placental mTOR observed in obese women increased birth weight [264]. As one
of the main functions of OCM is to produce S-adenosylmethionine (SAM) to ensure methyl-
group transfer reactions, mTOR signalling, by influencing the OCM, is able to influence
epigenetic modifications, including DNA methylation [262]. The epigenetic regulator
methyltransferase DNMT1 is one of the downstream targets of the mTOR pathway [265].
The experimental inhibition of mTOR induced the suppression of DNA methyltransferase
DNMT1 [260].

Microelements in the diet, e.g., Cu, Mn, Se, and Zn are often required for proper
enzymatic function, neutralizing ROS, and are also involved in epigenetic regulation. For
example, zinc is implicated in the correct functioning of methyltransferases and methyl-
binding proteins and its deficiency has been suggested to affect the activities of zinc-
dependent epigenetic enzymes, which are essential for DNA methylation [261]. Prolonged
dietary Se supplementation in rats affected global and specific DNA methylation in liver
and colon tissue [266]. Mn tends to accumulate in the placenta, and its supplementation
experiments in chick embryos counteracted hyperthermic stress effects by modulating
DNA methylation and histone acetylation [267]. A recent US study found a similar mode of
action in Cu metabolism, which may be employed in DNA methylation and the regulation
of human placentation [268].

Malnutrition can epigenetically induce in utero obesity in offspring, which usually
manifests in adulthood. Blood analysis of human adults revealed that periconceptional
exposure to famine altered the DNA methylation of genes implicated in growth and
metabolic regulation. Prenatal famine exposure resulted in changes of DNA methylation
patterns in genes associated with cell growth, metabolic health, mitochondrial function,
adipogenesis, and its deposition [269,270]. A preovulatory protein restriction diet in rats
induced abnormal mitochondrial ultrastructure in oocytes and negatively affected gene
expression related to mitochondrial biogenesis [271].

This demonstrates epigenome vulnerability by famine in the early stages of develop-
ment. There is strong evidence that maternal nutrition influences the development and
future health of offspring. Studies done on mice [272] and cattle [273] confirmed maternal
diet effects on oocyte DNA methylation. Postpartum cows exposed to negative energy
balance and metabolic stress had a number of maternally imprinted genes in their oocytes
hypomethylated [274].

Maternal obesity is another risk factor affecting offspring health epigenetically and has
been shown when together with excessive nutrition intake to have a positive correlation
with offspring obesity [275]. Causes of fetal overgrowth have been explored on the mouse
model. It was documented that obesity in pregnancy is linked to stimulation of placental
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insulin/IGF-1/mTOR and leptin signalling pathways [163]. The obesity mouse model
resembles the changes in placental mTOR signalling and amino acid transporters activity
observed in obese women giving birth to large babies [276]. DNA hypermethylation in
the placentas of obese pregnant women was associated with reduced expression of the
ten-eleven translocation (TET) methylcytosine dioxygenases, enzymes involved in DNA
demethylation [58]. Increased gestational weight in early pregnancy is related to the
enhanced CpG methylation of MMP7, KCNK4, TRPM5, and NFKB1 genes in offspring cord
blood DNA [277].

Maternal obesity and overnutrition affect mitochondria function and induce epigenetic
changes of mtDNA. The mtDNA copy number, elevated expression of nuclear genes
encoding mtDNA transcription factors Tfam and Nrf1 were detected in oocytes of obese
mice [278]. A maternal obesogenic diet (high fat/high sugar) was associated with elevated
mtDNA content and increased expression of mtDNA biogenesis regulators Tfam and Pgc-1α,
enhanced mitochondrial antioxidant defence, increased lipoxygenase expression, enhanced
expression of transcriptional regulator NF-κB, and depletion of ovarian follicular reserve
in young adult female mouse offspring [279]. The analysis of the newborn umbilical cord
indicated that promoter methylation of the mitochondrial biogenesis regulator PPARGC1A
in babies was positively correlated with maternal BMI [280]. It is evident that maternal
obesity may affect the offspring metabolism through epigenetic regulation of specific genes.

It is common knowledge that consuming alcohol in pregnancy affects embryo devel-
opment and can induce a variety of birth defects and neuronal disorders in offspring [281].
Alcohol intake interferes with normal folate metabolism (Figure 5) and decreases folate
bioavailability for methyl donors by inhibiting methionine synthase and methionine adeno-
syl transferase [282].

It has been shown that alcohol metabolites, such as acetaldehyde, modify DNA methy-
lation by inhibiting DNA methyltransferases [283].

The effect of alcohol abuse on the methylation of specific genes resulted in alterations of
gene expression and neural development as reported in numerous studies (reviewed in [284]).
In in vitro cultured fetal mouse neurons, the alcohol exposure induced a decrease of DNA
methylation detected in the vicinity of the NMDA receptor subunit NR2B gene, which plays an
important role in neural development and in learning and memory [285,286].

In human oocytes, alcohol-associated epigenetic changes were detected already in the
growth phase when genomic imprints are established and could possibly affect the health
of the child [287].The in vivo exposure of mice embryos to ethanol resulted in retardation
of embryo development and was accompanied by epigenetic alteration of the H19/Igf2
methylation in the placenta; the paternal allele of H19/Igf2 was less methylated while the
methylation of the maternal allele was elevated [288]. In mouse embryos exposed to alcohol,
in vitro changes in methylation on chromosomes 7, 10, and X related to neural tube defects
were detected [289].

6. Fetal Epigenetics Dependence on Maternal Lifestyle and Environment

In the present day, people live in a highly stressful world in compromised living
environments. As we have already mentioned, both undernutrition and overnutrition
can impact one’s epigenome irrespective to ART. Here, we emphasize that postponing
parenthood or living in physically and psychologically toxic environments can induce
changes to the new generation’s epigenome (Table 2).

Table 2. Summary of lifestyle, diet, and environment effect on epigenetic changes in oocytes, early
embryos, and their impact on offspring. “NE” indicates specific gene effects were not evaluated.

Stressor Species Genes Affected Main Findings Reference

Undernutrition

Periconceptional exposure
to famine human IGF2 IGF2 hypomethylation in adults 60

years later [290]
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Table 2. Cont.

Stressor Species Genes Affected Main Findings Reference

Periconceptional exposure
to famine human

IL10, INSIGF, LEP,
MEG3, ABCA1,

GNASAS

Altered DNA methylation of genes
implicated in growth and

metabolic regulation
[270]

Prenatal exposure
to famine human ABCG1, PFKFB3,

METTL8

Altered DNA methylation of genes
associated with lipid metabolism,

glycolysis, and adipogenesis in adults
[269]

Low levels of dietary
methyl donors during

embryonic development
human NE Affected DNA methylation process and

impact on postnatal long-term health [291]

Protein restriction
during pregnancy mouse Lep Increased Lep promoter methylation and

decreased leptin expression in offspring [292]

Preovulatory protein
restriction rat

Drp1, Opa1,
Mfn1/2, Parl,
Ndufb6, Hk2

Altered expression of genes involved in
mitochondrial biogenesis in

superovulated oocytes
[271]

Negative energy balance
and metabolic stress bovine NE

Hypomethylation of maternally inherited
imprinted genes in oocytes of

postpartum cows
[274]

Obesity

Obesity in pregnancy human TET1, TET2. TET3
DNA hypermethylation and reduced

expression of methylcytosine
dioxygenases in placenta

[58]

Gestational weight gain human MMP7,KCNK4,TRPM5
and NFKB1 Increased DNA methylation in offspring. [277]

Obesity in pregnancy mouse IGF-1, mTOR, LEP
Stimulation of placental

insulin/IGF-1/mTOR and leptin
signalling pathways

[163]

Alcohol,
smoking

Alcohol mouse,
human NE Birth defects and neuronal disorders

in offspring [281,284]

Alcohol mouse
Cyp4f13, Nlgn3, Elavl2,

Sox21, Sim1,
Igf2r, Hist1h3d

Decreased methylation of genes
associated with development, imprinting

and chromatin in embryos exposed to
ethanol in vitro

[289]

Alcohol mouse H19/Igf2
Retardation of embryo development
in vivo and alteration of the H19/Igf2

methylation in placenta
[288]

Maternal smoking human

BMP4, BMHT2,
DLGAP2, PRDM8,
NRP2, ESR1, IL32,

HOXB2

In newborns, changes in CpGs
methylation of genes involved in tooth

and neuronal development and in cancer
induction

[293]

Maternal age

Advanced maternal age
(more than 40 years) human

BUB1B, BUB3, MAD3,
BUB1, REC8, ATR,

CHEK1, NBS1,
RAD17, EIF4ENIF1

In oocytes, reduced expression of spindle
checkpoint and DNA damage

checkpoint-related genes, lowered mRNA
expression of the nuclear import mediator

of eIF4E

[294]

Advanced maternal age
(more than 40 years) human REC8, SMC1B

Decreased expression of the
meiosis-specific cohesins components,
REC8 proteins, and SMC1B in oocytes

[295]
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Table 2. Cont.

Stressor Species Genes Affected Main Findings Reference

Advanced maternal age
(41–44 years) human

PRDX1, PRDX2,
PRDX4, PRDX6
COX5A, COX7B,
COX8A, COX8C,

COX11, COX14, COX17

Down-regulation of the peroxiredoxin
gene family members and attenuated

expression of the cytochrome c oxidases
in oocytes

[296]

Advanced age mouse Dnmt3a, Dnmt3b, Tfam
Downregulation of maintenance DNA
methyltransferases and mitochondrial

transcription factor in oocytes
[297]

Advanced age mouse

Hook1, Tuba1, Tubd1,
Dncic2, Kif3,

Rnf19/Dorfin, Pcnt2,
Nin, Smc4l1, Dnmt1o,

Dmap1, Dnmt3L

Decrease of transcripts related to
microtubule cytoskeleton and

chromosome segregation, downregulation
of methyltransferases in oocytes

[298]

Other causes

Maternal stress
during pregnancy human HSD11B2, NR3C1,

FKBP5

Increased methylation and expression of
glucocorticoid pathway-related genes in

placenta and children blood.
[299,300]

Maternal gestational
diabetes human

PDE6A, PRKCZ, PVT1,
GALNT2, MS4A3,

IL1RN, BTD

In children, differentially methylated
genes associated with type 2 diabetes,

obesity, diabetic nephropathy, and
coronary heart disease.

[301]

Eleveted homocysteine
level porcine

mtDNA (12S, 16S rRNA
and ND4)

ND1, ND4L, ND5,
COX1, CYTB mRNA

Hypermethylation of mtDNA in oocytes
from PCOS ovaries [302]

Pollutants

Bisphenol A human MEST

Hypomethylation of the
obesity-associated

mesoderm-specific-transcript (MEST)
gene promoter and enhanced MEST

expression in children

[303]

Bisphenol A mouse Snrpn, Ube3a, Igf2,
Kcnq1ot1, Cdkn1c, Ascl2

Disruption of imprinted gene expression
in embryos and placentas. [304]

Polystyrene mouse NE

Negative effect on oocyte spindle
assembly and chromosome alignment,

increased oxidative stress, and
mitochondrial agregation

[305]

6.1. Lifestyle

Advanced maternal age negatively influences oocyte maturation, meiotic divisions,
and embryonic development [306,307]. Increasing maternal age raises the chances of mis-
carriage and adverse health issues in offspring, mainly due to chromosomal aneuploidies
such as Down’s syndrome [308]. Age-related decrease of ooplasm quality, mitochondrial
defects, and abnormalities in meiotic maturation mechanisms are possible causes of the ad-
vanced maternal age-related decline of oocyte competence [168,309,310] A higher incidence
of chromosomal abnormalities was reported in mammalian oocytes acquired from aged
females (reviewed in [311]), and an elevated occurrence of aneuploidy related diseases was
observed in babies born to mothers over 35 years of age [309]. The meiosis-specific cohesin
subunits, REC8 and SMC1B, were found to be decreased in oocytes of women aged 40
and over, suggesting that age-related decrease of meiotic cohesin subunits impair sister
chromatid cohesion and results in increased segregation errors [295]. The effect of maternal
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age on oocyte quality and associated epigenetic changes have been well-documented and
extensively reviewed in humans [310].

Oocytes of older women (41–44 years old) were more prone to oxidative damage
by the attenuated expression of cytochrome c oxidases (COX gene family) involved in
oxidative phosphorylation and energy production and down-regulation of members of the
peroxiredoxin gene family [296]. Similarly, gene expression analysis of ovaries in aged mice
revealed a decrease in mRNA expression of mitochondrial antioxidant genes, peroxiredoxin
3 (Prdx3), and thioredoxin 2 (Txn2) [92]. Gene transcriptome analysis of human oocytes
retrieved from patients older than 40 years revealed a decreased expression of spindle check-
point genes, DNA damage checkpoint-related genes, ADP ribosylation factors involved
in protein trafficking, and mRNA coding for the EIF4ENIF1 protein, which mediates the
nuclear import of eIF4E [294]. Closer analysis of MII aged mouse oocytes gene expression
(42–45 weeks old) revealed a downregulation of genes involved in mitochondrial functions,
antiapoptotic mechanisms, and those involved in the ubiquitin-proteasome degradation
pathway. Moreover, expression was reduced in transcripts related to microtubule cytoskele-
ton, chromosome segregation, and maintenance of the DNA methyltransferases Dnmt1o
and Dnmt1s [298]. Hence, reduced DNA methylation in MII oocytes and early embryos of
aged mice together with a low abundance of DNA methyltransferases clearly points to a
lower reproductive potential [297,312]. More recently, it was suggested that decreased DNA
methylation related to advanced maternal age may partially induce significant changes to
gene expression and alter developmental fitness (reviewed in [167,313]).

Maternal smoking in pregnancy remains a serious issue that gravely affects child
health. Fetal exposure to maternal smoking during pregnancy induces changes in DNA
methylation of different tissues. The impact of prenatal exposure to tobacco smoke on
DNA methylation was mostly analyzed in the cord blood and placenta of newborns—
reviewed in [314]. It was found that DNA methylation patterns associated with smoking
are relayed to a low birthweight [315] and schizophrenia induction in adulthood [316].
Moreover, the meta-analysis mapping association between maternal smoking in pregnancy
and newborn blood DNA methylation revealed that smoking whilst pregnant causes
changes in the CpGs methylation of numerous genes including those involved in teeth
and neurologic development as well as cancer induction [293]. AHRR and CYP1A1, genes
of aryl hydrocarbon receptor signalling, which is engaged in detoxification, were also
found to be differentially methylated in the cord blood of newborns exposed to maternal
smoking [317].

Lifestyle can also be a factor determining the occurrence of gestational diabetes melli-
tus (GDM) in women. GDM is associated with an increased risk of cardiometabolic diseases
and diabetes in the offspring [301]. DNA collected from venous blood of GDM women
offspring detected differentially methylated CpGs in genes associated with type 2 diabetes,
diabetic nephropathy, obesity, and coronary heart disease [301]. It has been shown that
pregestational hyperglycemia renders the offspring more vulnerable to glucose intoler-
ance. The expression of TET3 dioxygenase, responsible for 5-methylcytosine oxidation
and DNA demethylation in the zygote, is decreased in oocytes from a mouse model of
hyperglycaemia (HG mice) and in people with diabetes [318].

6.2. Environment

Endocrine Disrupting Chemicals (EDCs) cause serious defects in human health. EDCs
are chemicals of natural or man-made origin that interfere with the endocrine system.
Humans are exposed to EDCs from many sources, including diet, thermal receipt papers,
cosmetics, cleaning products, pesticides etc. [319]. Exposure to EDCs during development
can induce permanent alterations of physiology and increase predisposition to health issues
such as obesity, asthma, and cancer [320].

Bisphenol A (BPA) is a ubiquitous plasticizer, EDC with probable estrogen-like ac-
tivity. Newborn cord blood DNA studies revealed that prenatal exposure to BPA (but
not bisphenol F and bisphenol S) induces hypomethylation of gene promoters related to
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adipogenesis, growth and metabolism [321]. Hypomethylation of the obesity-associated
mesoderm-specific-transcript (MEST) gene promoter enhanced MEST expression, which
resulted in a significant increase of body mass index (BMI) in children [303]. Exposure
to BPA during the late stages of oocyte development and the early stages of embryonic
development disrupted the expression of imprinted genes in mouse embryos and placen-
tas [304]. Mouse BPA exposure at 9–16 day of pregnancy led to decreased methylation
and enhanced expression of the homeobox gene Hoxa10 in offspring, a key regulator of in
utero organ development [322]. Additionally, polystyrene nanoparticles inhibit meiotic
maturation by negatively affecting spindle assembly and chromosome alignment in mice
oocytes; moreover, exposure to polystyrene nanoparticles increased oxidative stress and
mitochondrial aggregation during meiotic maturation [305]

Stress is a widespread environmental factor affecting human reproduction. Precon-
ception and pregnancy time exposed to stress is associated with developmental problems
and new-born physical and psychological health. Maternal stress has been linked to infant
mortality, premature weight and low birth weight [323]. Increased DNA methylation of the
glucocorticoid receptor NR3C1 gene promoter, which is related to maternal stress via con-
trolling hypothalamic-pituitary-adrenal axis (HPA) has been reported in human cord and
new-born blood [324]. Chronic maternal distress in pregnancy was accompanied by altered
CpG methylation on glucocorticoid pathway genes in human placentas, which suggests
that the placenta can be the main mediator between maternal and fetal stress. [299]. Simi-
larly, differential DNA methylation of the HPA axis genes CRH and NR3C1 was detected in
cord blood of new-borns and CRH, CRHBP, NR3C1, and FKBP5 in their placentas [325].

7. Conclusions

Over the past years, an increasing research interest has been focussed on under-
standing the regulation of the animal and human epigenomes. Many publications have
demonstrated that DNA and RNA methylation, histone modifications, and non-coding
RNA regulation are integral to the normal embryo development and future health of a
newborn. However, our current understanding of these mechanisms is unsatisfactory. Here,
we endeavoured to emphasize the connection between assisted reproduction technology
and its epigenetic implications for oocyte and embryo development. We did not want to
overlook the fact that following an embryo transfer, the in utero development is epigeneti-
cally affected by the actual fitness and age of the reproductive system as well as by external
stimuli such as diet or nutrition. We want to show a complex picture of what is behind
ART live-birth rates and the resulting health implications from the epigenetic point of view.

ART is of enormous importance to infertile couples and our society in general. There-
fore, it is much needed to focus on improving ART and minimizing unnecessary negative
impacts by discussing and bringing in the latest knowledge of epigenetic mechanisms
involved in clinical infertility treatments. Many of the questions regarding epigenetics in-
fluencing in vitro oocyte and embryo culture protocols remain unanswered. Future studies
should search for epigenetic key points in the concerned developmental pathways and
investigate their clinical relevance as biomarkers or new treatments.
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