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Abstract
Studies examining phylogenetic community structure have become increasingly prevalent,

yet little attention has been given to the influence of the input phylogeny on metrics that

describe phylogenetic patterns of co-occurrence. Here, we examine the influence of branch

length, tree reconstruction method, and amount of sequence data on measures of phyloge-

netic community structure, as well as the phylogenetic signal (Pagel’s λ) in morphological

traits, using Trichoptera larval communities from Churchill, Manitoba, Canada. We find that

model-based tree reconstruction methods and the use of a backbone family-level phylog-

eny improve estimations of phylogenetic community structure. In addition, trees built using

the barcode region of cytochrome c oxidase subunit I (COI) alone accurately predict metrics

of phylogenetic community structure obtained from a multi-gene phylogeny. Input tree did

not alter overall conclusions drawn for phylogenetic signal, as significant phylogenetic struc-

ture was detected in two body size traits across input trees. As the discipline of community

phylogenetics continues to expand, it is important to investigate the best approaches to

accurately estimate patterns. Our results suggest that emerging large datasets of DNA bar-

code sequences provide a vast resource for studying the structure of biological

communities.

Introduction
The explicit application of phylogenetics to understanding community assembly was proposed
by Webb [1,2], and community phylogenetics has since become a rapidly expanding field in
ecology. The sorting of species is facilitated through environmental and biotic pressures, which
can act at various phylogenetic and spatial scales [3]. Given that these different pressures leave
distinct phylogenetic patterns between locally co-occurring species, we can distinguish between
different processes of community assembly. Assuming phylogenetic niche conservatism, com-
munities composed of closely related species (phylogenetically clustered) are typically inter-
preted as being primarily structured by an environmental filter, while communities containing
distantly related species (phylogenetically overdispersed) are generally considered as indicating
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that competitive interactions are stronger in community assembly [1,2]. Mayfield and Levine
[4] demonstrate how phylogenetic clustering may be caused by either environmental filtering
or competitive exclusion, while overdispersion tends only to be associated with competition.
Thus, while interpretation of patterns is not strictly dichotomous, phylogenetic community
patterns provide important insight into community assembly, and this research area continues
to grow [5].

Phylogenetic community studies determine the degree of phylogenetic clustering or overdis-
persion of co-occurring species. Metrics commonly applied that describe the phylogenetic
community pattern are the net relatedness index (NRI) and the nearest taxon index (NTI)
[1,2]. NRI refers to the standardized mean pairwise distance (MPD) between all pairings of co-
occurring taxa, while NTI is the standardized version of the mean nearest taxon distance
(MNTD) (i.e. the mean phylogenetic distance among just those pairings of co-occurring taxa
that are the most closely related). NRI and NTI are standardized using the mean and standard
deviation of null distributions of MPD and MNTD values, respectively, which are generated
via random draws from the source phylogeny, keeping species richness constant and set to be
equal to the richness in the observed community. This standardization enables NRI and NTI
values to be compared across communities differing in richness. Increasingly positive values
indicate phylogenetic clustering, and negative values indicate phylogenetic overdispersion.
Because NRI incorporates the entire phylogeny into the calculation, while NTI is focused at the
terminal branches [1], it is important to note that NRI and NTI can be informative of different
patterns of co-occurrence on a phylogeny. For instance, communities may be comprised of
multiple pairs or groups of closely related species, which would be indicated by a high NTI
value, but across the phylogeny these tip clusters may be randomly distributed, which would
lead to a NRI value nearer to zero.

The capabilities of these metrics to detect phylogenetic community structure and the factors
that influence their power have been tested with regard to optimal model settings, phylogenetic
scale, and geographic scale [3,6–9]. While these metrics have now become the standard for
phylogenetic community structure studies, there has been little investigation into how these
metrics are affected by the properties of the phylogenies used for generating them. Swenson
[10] identified three phylogenetic issues that could potentially affect the power of the phyloge-
netic community structure metrics: (1) uncertainty and error in branch length estimates, (2)
the assumption of correct topology, and finally (3) the presence of polytomies. Swenson [10]
investigated the last of these and found that polytomies reduced the power of NRI and NTI to
detect non-random communities (Type II error), and this was especially prevalent with deep
polytomies in comparison to more terminal polytomies.

There has been further investigation into the effect of polytomies on metrics of phylogenetic
community structure. More specifically, the use of plant DNA barcoding regions (rbcL, matK,
and trnH-psbA) has been compared with results using less-resolved phylogenies constructed
from Phylomatic [11]. Both studies found the Phylomatic phylogeny to have a higher incidence
of being unable to detect non-random communities (i.e. higher Type II error) than the more
resolved phylogenies [12,13]. These studies discuss the possibilities of using plant DNA bar-
code regions for phylogenetic community structure metrics; however, there has been no inves-
tigation of the applicability of animal DNA barcodes (the 5’ region of cytochrome c oxidase
subunit I, COI [14]) to this field. Mitochondrial genes are expected, on average, to reconstruct
less accurate relationships than nuclear genes at deeper nodes of a phylogeny due to higher
rates of molecular evolution and saturation. In insects, mitochondrial genes have been found to
have faster rates of evolution than nuclear genes, lower consistency index, higher base compo-
sition bias, higher transition:transversion ratios, and higher rate heterogeneity among sites,
which suggest homoplasy [15]. However, previous research has found that there is comparable
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phylogenetic signal for resolving relationships amongst genera using COI compared to nuclear
genes in Lepidoptera, but that the relative signal in COI declined at the sub-family and family
levels [16]. It is possible that COI-based phylogenies may be most appropriate for calculating
community structure metrics that focus along the tips of the phylogeny, at and below the genus
level (i.e. NTI). However, the suitability of COI for these metrics needs to be tested to establish
the power of using animal DNA barcode data for community phylogenetics studies.

As such, we currently have an inadequate understanding of: (1) how phylogenetic commu-
nity structure metrics vary with differing branch length reconstructions; and (2) whether
multi-gene data sets are significantly superior to single-gene phylogenies, specifically those
constructed using the animal barcode region. If the phylogeny is biologically inaccurate with
respect to branch length due to poor reconstruction methods (less input data, unrealistic sub-
stitution model), this may alter the community pattern detected. We hypothesize that COI has
greater phylogenetic information for resolving more recent divergence events (e.g. intragene-
ric) compared to deep nodes, and therefore we predict that NTI calculations will be more accu-
rate than NRI values when using a COI-based phylogeny. As well, with increased biological
accuracy incorporated into the phylogeny construction, i.e. by using model-based phylogenetic
methods, we would expect a better approximation of both the NRI and NTI values. Our study
addresses the question of how choice of input phylogeny affects conclusions about phyloge-
netic community structure in a real field study.

To determine the processes dominating community assembly, it is also informative to assess
the presence of phylogenetic signal in relevant trait data. For example, are related species signif-
icantly similar in traits such as body size, which are likely to be important for biological interac-
tions? We therefore also assess the impact of input tree upon the two metrics of phylogenetic
signal which are most commonly employed, Blomberg et al.’s K [17] and Pagel’s λ [18]. Blom-
berg et al.’s K< 1 suggests that traits display a lower phylogenetic signal than expected under
Brownian motion, while K> 1 implies that traits display a stronger phylogenetic signal than
expected (i.e. more strongly conserved) [17]. As with K, λ values near 0 imply no phylogenetic
signal in the trait, and values close to 1 (or higher) indicate strong phylogenetic dependence of
the trait [18].

To test these questions, we focused on real communities of Trichoptera larvae collected
from Churchill, Manitoba, Canada. Trichoptera (the caddisflies) is a diverse and well-studied
order of insects with well-supported phylogenies at the family level based on analysis of multi-
ple genes and morphological characters [19,20]. In addition, a nearly comprehensive DNA bar-
code reference library has been constructed for the Trichoptera of the Churchill area [21–23],
which has been made publically available on the Barcode of Life Data Systems (BOLD) [24].
This resource is a valuable aid for species-level identifications for the difficult-to-identify larvae
[23]. In this study, we show that estimations of phylogenetic community structure using COI
can be improved by using more phylogenetically robust reconstruction methods such as Bayes-
ian inference and by incorporating a family-level backbone topology.

Materials and Methods

Field collection
We collected Trichoptera larval specimens from the subarctic location of Churchill, MB, Can-
ada from June 5 to August 25, 2010. This research, which did not involve any human or other
vertebrate individuals, embryos, or tissues, was conducted under a permit (WB11245) issued
by the Manitoba Conservation Wildlife and Ecosystem Protection Branch fromWinnipeg, MB
to the Churchill Northern Studies Centre (CNSC) for conducting research in the Churchill
Wildlife Management Area. We sampled specimens from a variety of freshwater habitats,
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including 30 rocky coastal bluff ponds, 30 tundra ponds, seven creeks, five lakes, and three
points along the Churchill River (see Table A in S1 Table). Using a 250 μm dip net and hand
picking, we sampled each location on three dates, once per month in approximately the same
order. We defined a local community of potentially interacting individuals as the entire aquatic
habitat encompassing both the benthic and pelagic regions. We standardized sampling effort
across sites by the area sampled. For small ponds (<20 m of shoreline), we sampled the entire
shoreline using the same protocol as for large habitats, executed to the degree possible given
the nature of the habitat. If the habitat was large (i.e. a lake), then 20 m of shoreline was sam-
pled. For large habitats we sampled a 20 m transect parallel to the shore, collecting 1 m away
from the shore and then again 5 m from the shore or until a depth of 1.5 m. To ensure that all
the species occurring in the location were collected, we performed the sweep along the transect
twice in succession and retained a minimum of 10 individuals per field morphospecies at each
site on each sampling date. Field morphospecies were delimited on site as individuals with sim-
ilar size, colour, markings, and case material; these morphospecies were later validated through
microscopic and genetic analysis. A sub-set of sites was sampled three times during one
monthly visit; a comparison of genetically confirmed species accumulation curves for these
sites verified that two sweeps accurately captured the local biodiversity [25]. We preserved
specimens in 95% ethanol and upon return from the field stored them at -20o C.

Molecular analysis and species identification
We sequenced portions of one mitochondrial (COI) and three nuclear genes: cadherin (CAD),
elongation factor 1 alpha (EF1-α), and RNA polymerase II (POL-II). These genes are com-
monly used for phylogeny reconstruction in Trichoptera [20,26,27], and we found high poly-
merase chain reaction (PCR) success based upon a pilot study including 2 other candidate gene
regions (28S and Wingless). We sorted specimens to family based on Wiggins [28] and then,
when available, selected 10 individuals per morphospecies (delineated using a microscope in
the lab using the characters discussed in [23]) across all sites and samples for sequencing COI.
We removed one leg from each specimen that we selected for sequencing and extracted the
DNA using a standard, high-throughput invertebrate DNA extraction protocol [29]. We
increased the initial DNA elution volume of 50 μl for COI to 100 μl for the nuclear genes as
this increased amplification success.

To amplify the barcode region of COI, we performed PCR using standard DNA barcoding
methods and a Lep/Folmer primer cocktail [30] (see Table B in S1 Table [27,31–34]). For the
nuclear genes (CAD, EF1-α, and POL-II) (see specimen selection criteria below), we used a
25 μl reaction consisting of the same proportion of trehalose, 10x buffer, MgCl2, dNTP, and
Platinum Taq polymerase as used for COI, but we increased the amount of forward and reverse
primer to 1.25 μl of 10 μM and added 2 μl of DNA template. Successful PCR products were
bidirectionally sequenced using protocols outlined by the Canadian Centre for DNA Barcoding
[35] (see Table C in S1 Table).

Using Codon Code Aligner (Codon Code Corporation, v. 3.7.1), we edited and
concatenated the forward and reverse chromatograms. We then subsequently aligned
sequences using Clustal W and checked the amino acid sequences for all genes for stop codons
and indels in MEGA 5.0 [36]. We uploaded sequences to BOLD and identified the specimens
to the species level using only the expert-identified published database of COI sequences avail-
able on BOLD that had�98% sequence similarity to our sequences [21,23]. We employed a
2% threshold for sequence dissimilarity since previous work has found this cut-off to corre-
spond closely to morphological species limits, as determined using both adults and larvae, for
Trichoptera species of the Churchill region [21–23]. For completing the species presence/
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absence matrix, we performed additional COI sequencing to obtain species-level identifications
for those taxonomic groups where our prior morphospecies designations did not perfectly
match the COI genetic clusters.

After completing the COI work, we selected one specimen per species for the nuclear gene
sequencing; we randomly selected an individual among those having a high-quality COI
sequence (658 base pairs [bp], 0 ambiguous bases) that was closely related to the other speci-
mens of that same species (i.e. not an outlier for its species on the neighbour-joining pheno-
gram). Sequences of the nuclear genes were verified by using BLAST on GenBank and by
building single-gene phylogenies to screen for contaminants, in addition to inspecting the
amino acid alignment. All of our sequences are currently stored on BOLD in the public project
EBTCH, Trichoptera Larvae of Churchill 2010 and on GenBank (COI: JX681817—JX682383;
CAD: KR030383—KR030415; EF1-α: KR030340—KR030382; POL-II: KR271613-KR271655)
(see Table D in S1 Table).

As Lepidoptera is the well-supported sister group to Trichoptera [37], we rooted all trees
using sequences for Lepidoptera species downloaded from GenBank (GenBank IDs: Coleo-
phora serratella COI—GU828594.1, CAD—GU828096.1, and EF1-α - GU828929.1; Phalera
bucephala COI- GU828607.1, CAD—GU828108.1, and EF1-α - GU828941.1; Hypenodes
humidalis COI—GU828672.1). No lepidopteran sequences for POL-II were available at the
time of analysis for these species.

Phylogeny construction
To assess the influence of phylogenetic reconstruction on community structure metrics, we
built in total six species-level phylogenies based upon a single individual per species: (1) multi-
gene Bayesian; (2) COI Bayesian; (3) COI Bayesian phylogeny with a constrained backbone
topology at the family level based on Holzenthal et al. [19]; (4) COI Bayesian with no backbone
but with family-level branch lengths stretched 2x their original length and (5) 5x their original
length, to test whether a simplistic correction for transitional saturation may result in COI-
based trees yielding similar results as obtained using multi-gene nuclear phylogenies [16]; and
finally (6) COI Neighbour Joining. Finally, as a negative control to examine metric behaviour,
we also built a random tree by using the COI Bayesian phylogeny for the topology and branch
lengths and then randomly shuffling the taxa among the tips in Mesquite 2.75 [38].

For the construction of the Bayesian phylogenies, we selected the best model of nucleotide
substitution based upon the lowest Akaike information criterion (AIC) score for each gene
using MrModelTest 2.3 [39], in conjunction with PAUP 4.0 [40]. For all genes, MrModelTest
found the best model to be the generalized time reversible (GTR) with a gamma distribution
parameter describing among-site rate variation and a proportion of invariant sites parameter.
We built all Bayesian phylogenies in MrBayes 3.2 [41] using 4 chains with 10,000,000 genera-
tions, a sampling and diagnostic frequency of 1000, and a 25% burnin.

For the construction of the COI Neighbor Joining (NJ) tree, we used MEGA 5.0 to select the
best model of nucleotide substitution and build the tree. A Tamura-Nei model with a gamma
distribution was applied, and a bootstrap test with 1000 replicates was performed to assess the
support for the tree.

Congruence of distance matrices
Since all phylogenies are converted to species pairwise distance matrices for calculating the
phylogenetic community metrics, we first evaluated how different the input matrices were
from one another by calculating the congruence among distance matrices (CADM) metric in R
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using the package ape [42–44]. We performed a posteriori testing to assess which matrices are
the most incongruent.

Phylogenetic community structure metrics
For each of the 6 phylogenies, we calculated NRI and NTI. We calculated each metric using the
same observed species presence/absence matrix created for local communities determined for
Trichoptera larvae for the Churchill area from the DNA-barcode-validated morphospecies (see
Table E in S1 Table). Each timepoint (June, July, August) for which two or more species were
detected within a site was treated as a separate community, for a total sample size of 101 com-
munities analyzed (see Table E in S1 Table). As this study is investigating impact of molecular
dataset and phylogenetic analysis methods upon community phylogenetic metrics, no tempo-
ral analysis was performed here (but see [25]). In the Picante package in R, we calculated NRI
and NTI using a null model with 1000 randomizations and 1000 iterations using the indepen-
dent swap algorithm [45].

We used our multi-gene Bayesian phylogeny as the default against which to compare the
community structure metrics generated using the other phylogenies. Although our goal is to
assess the impact of input phylogeny upon conclusions from a real field study, not to assess
which phylogeny is most likely to represent the truth, we assumed for our purposes here that
the multi-gene Bayesian tree would be the strongest phylogenetic hypothesis, and therefore the
most accurate for estimating metrics of phylogenetic community structure. Increased phyloge-
netic accuracy is usually achieved by increasing the number of independent genes and by utiliz-
ing more complex models of evolution [46–48]. We therefore performed a linear regression of
the multi-gene Bayesian-calculated NRI and NTI values against those from all other phyloge-
netic hypotheses in sequence, with the origin forced through zero, as in Swenson [10], using R.
A slope close to 1 would indicate that the values estimated by the other phylogenies are very
similar to those estimated by the multi-gene Bayesian phylogeny, while a high r2 would suggest
that there is little variation between the values calculated by the other phylogenies vs. the
multi-gene Bayesian phylogeny.

Phylogenetic signal metrics for traits
To test the influence of phylogeny on phylogenetic signal metrics for traits, we calculated two
metrics prevalent in the literature, Blomberg et al.’s K statistic [17] and Pagel’s λ [18], for maxi-
mum body length and maximum case length (see Table F in S1 Table). Body size of Trichop-
tera larvae has been linked to habitat preferences [49,50] and is a commonly used ecological
trait to test for phylogenetic signal in a variety of taxonomic groups [51]. Using a Nikon
AZ100Mmicroscope and NIS elements BR 3.0, we measured body length (mm) from the tip of
the mandible to the end of the anal claw on specimens, while case length (mm) was the maxi-
mum distance spanned. After an initial visual sort of the largest specimens of each COI-identi-
fied species, microscopic measurements were taken on one to eight specimens, with the sample
size dependent on abundance, enabling the measurement of maximum size for each species
among the specimens we processed. Four species of Trichoptera (Hydropsyche alternans, Neur-
eclipsis crepuscularis, Polycentropus aureoles, and Rhyacophila angelita) were excluded from
the case length analysis, as they do not build portable cases, but either make fixed retreats or
are free living [28].

We utilized the maximum length measured for each species and calculated Blomberg et al.’s
[17] K statistic with 1000 replicates using the package Picante in R [45]. In addition, we calcu-
lated Pagel’s λ [18] using Geiger in R [52] and used a likelihood ratio test and a chi-squared
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distribution to compare the estimated λ to a tree with no phylogenetic signal (λ = 0), thus test-
ing for significant phylogenetic structure in the trait data.

Results
In total, we processed 570 Trichoptera larval specimens for the COI molecular analysis, of
which 99.5% produced a successful sequence. We found 46 species among our samples from
the Churchill region. Of these, we were able to recover sequences for 43 species for POL-II
(93%), 43 species for EF1-α (93%), and 33 species for CAD (72%). After trimming sequences
so that at least 50% of species were represented at the beginning and the end of the alignment,
COI consisted of 658 bp, POL-II 712 bp, EF1-α 483 bp, and CAD 730 bp. None of the align-
ments contained any stop codons or gaps. In general, our original morphospecies identifica-
tions, as defined using characters discussed in Ruiter et al. [23], were well supported by the
COI genetic clusters. Figs 1–4 present the multi-gene Bayesian phylogeny, COI Bayesian phy-
logeny, COI Bayesian + backbone phylogeny, and COI NJ tree, respectively.

Distance matrix similarity
The distance matrices from all of the phylogenies (exempting the random phylogeny) were
congruent. A posteriori testing showed that the mean of the Mantel correlations, computed on
rank-transformed distances, between the multi-gene Bayesian distance matrix and all others
were high (>0.9, p = 0.010 for all trees; Table 1). The trees with the highest to lowest congru-
ence score, as compared with the multi-gene Bayesian tree, were: COI Bayesian
+ backbone> COI Bayesian> COI Bayesian 2x> COI Bayesian 5x> COI NJ.

Estimation of phylogenetic community structure metrics
NRI and NTI values calculated using the multi-gene Bayesian phylogeny distance matrix were
well estimated using the other phylogenies, excluding the random phylogeny (Table 2). We
observed a strong association between the NRI and NTI values of the multi-gene phylogeny
and NRI and NTI values for all other phylogenetic hypotheses (r2>0.75), and the slopes were
slightly below 1.

Both the NRI and the NTI values were well estimated by the COI Bayesian + backbone phy-
logeny. The COI Bayesian + backbone phylogeny yielded NRI and NTI values that displayed
the highest r2 when regressed against the metrics as obtained using the multi-gene Bayesian
phylogeny (0.898 and 0.878, respectively); slopes were close to 1 (0.945 and 0.893, respectively).
The COI Bayesian 5x performed best in terms of the closest slope to 1 (NRI = 0.987,
NTI = 0.903); however, it had a lower r2 value than several other phylogenies (NRI = 0.848,
NTI = 0.787).

Presence of phylogenetic signal
For body length, K showed significant phylogenetic signal for all of the phylogenies except the
multi-gene Bayesian phylogeny (Table 3). Case length was shown to display phylogenetic signal
based on K for only the NJ tree (p = 0.018). By contrast, λ detected significant phylogenetic sig-
nal across all of the phylogenies for both body length and case length (p<0.05). For both traits,
the lowest λ values were calculated from the multi-gene Bayesian phylogeny (0.316 for body
length, 0.308 for case length), while λ was somewhat higher for the other phylogenies and high-
est using the NJ tree (0.532 for body length, 0.581 for case length).

DNA Barcodes and Community Phylogenetics

PLOS ONE | DOI:10.1371/journal.pone.0126662 June 25, 2015 7 / 18



Fig 1. Trichoptera Bayesian tree built with COI, CAD, EF1-α, and POL-II.Node values indicate estimated posterior probabilities from Bayesian analysis.

doi:10.1371/journal.pone.0126662.g001
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Fig 2. Trichoptera Bayesian tree built with COI. Node values indicate estimated posterior probabilities from Bayesian analysis.

doi:10.1371/journal.pone.0126662.g002
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Fig 3. Trichoptera Bayesian tree built with COI and a backbone phylogeny enforced, using family relationships from Holzenthal et al. [19]. Node
values indicate estimated posterior probabilities from Bayesian analysis.

doi:10.1371/journal.pone.0126662.g003
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Fig 4. Trichoptera Neighbour Joining tree built using COI. Node values indicate bootstrap values.

doi:10.1371/journal.pone.0126662.g004
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Discussion
While studies on phylogenetic community structure have provided exciting insight into com-
munity assembly, it is important to evaluate the methods applied. Although the power, taxo-
nomic scale, and spatial scale of phylogenetic community structure metrics and null models
have been investigated [3,6–9,53], both the theoretical underpinnings of this approach (e.g.
Mayfield and Levine [4]) as well as the behaviour of key test statistics require further study.
Our study has focused on examining several of the phylogenetic problems proposed by Swen-
son [10], which have received little attention to date in the literature.

Best approaches for estimating phylogenetic community structure
Our study investigated how different phylogenetic reconstruction methods applied to COI data
can approximate NRI and NTI calculated from a multi-gene tree, presumed here to provide
the more robust phylogenetic hypothesis and branch lengths across the entire depth of the phy-
logeny. We found that both NRI and NTI values calculated from COI Bayesian phylogenies
were generally concordant with those generated using the multi-gene tree, therefore not sup-
porting our original hypothesis. Since the COI distance matrices were congruent with the
multi-gene genetic distance matrix, and the phylogeny was generally well supported at the
deeper nodes, it is not surprising that NRI and NTI values were also well estimated. Therefore,
the rather surprising finding from our study was how well the COI data estimated the relative
genetic distances between pairs of co-occurring species. All COI Bayesian phylogenies and the
COI NJ tree had slopes slightly less than 1 for both NRI and NTI, indicating a slight bias
towards overestimating the probable true value, i.e. increased detection of non-random

Table 1. Mantel correlations and probabilities of genetic distance matrices of phylogenies in compari-
son to the multi-gene Bayesian phylogeny.

Phylogeny Correlation Probability

COI Bayesian 0.968 0.010*

+ backbone 0.970 0.010*

stretched 2x 0.964 0.010*

stretched 5x 0.957 0.010*

COI NJ 0.917 0.010*

Random -0.068 0.693

* Significant at p < 0.05; the null hypothesis of incongruence is rejected.

Probability values given for the congruence among distance matrix (CADM) test, which uses a null

hypothesis of incongruence.

doi:10.1371/journal.pone.0126662.t001

Table 2. Linear regression of phylogenetic community metrics using the multi-gene Bayesian phylogeny against those based on other phyloge-
netic hypotheses.

NRI NTI

Slope r2 Slope r2

COI Bayesian 0.937 0.874 0.898 0.862

+ backbone 0.945 0.898 0.893 0.878

stretched 2x 0.964 0.869 0.894 0.841

stretched 5x 0.987 0.848 0.903 0.787

COI NJ 0.897 0.894 0.817 0.838

doi:10.1371/journal.pone.0126662.t002

DNA Barcodes and Community Phylogenetics

PLOS ONE | DOI:10.1371/journal.pone.0126662 June 25, 2015 12 / 18



phylogenetic community structure (Type I error). It is also interesting to note that the esti-
mated NRI and NTI have a higher variance for values indicative of overdispersed phylogenetic
community structure than for clustered values (S1 Fig and S2 Fig). This variance may be the
result of the branch lengths being more poorly estimated for deeper nodes of the phylogeny for
COI.

In terms of which phylogenetic reconstruction method most accurately estimated the multi-
gene phylogenetic community structure metrics, we found that a Bayesian approach using COI
while enforcing a backbone for the deeper relationships in the phylogeny performed well. The
COI Bayesian + backbone phylogeny had the highest r2 values for both NRI and NTI when
comparing against the multi-gene Bayesian tree, indicating that this approach yielded values
that varied little from the multi-gene Bayesian NRI and NTI values. In addition, the COI
Bayesian + backbone phylogeny for NRI and NTI had slopes close to 1, suggesting that the val-
ues estimated using the COI Bayesian + backbone were very similar to the multi-gene Bayesian
phylogeny. It is intuitive that this approach produced the most accurate NRI and NTI values,
as it also produced the most congruent distance matrix with the multi-gene phylogeny. In addi-
tion, it was expected that a stronger phylogenetic reconstruction method including more bio-
logical information and a more realistic model of molecular evolution would produce a more
accurate phylogeny and thus estimates of phylogenetic community structure metrics. As such,
we would recommend that future community phylogenetic studies use realistic phylogeny
reconstruction methods, as well as include information about the supported relationships
among taxa from prior studies, particularly when using animal DNA barcode data for commu-
nity phylogenetics.

Discrepancy of metrics measuring phylogenetic signal
Our study revealed substantial variation between the two metrics measuring phylogenetic sig-
nal in trait data but limited variability in conclusions across the phylogenetic reconstruction
method employed. Similar to Münkemüller et al. [53], we found that Blomberg et al.’s K and
Pagel’s λ suggested different conclusions about the phylogenetic signal of traits in our phyloge-
nies. For instance, K suggested that both traits are not significantly conserved in the multi-gene
Bayesian phylogeny; however, λ implied that they are significantly conserved. For all of the
COI Bayesian phylogenies for case length, K found no support for phylogenetic signal, while λ
found significant phylogenetic signal.

Münkemüller et al. [53] used simulated data to investigate the sensitivity of these metrics to
phylogenetic structure and found that λ had similar values with repeated simulations, was less

Table 3. Phylogenetic signal metrics for Trichoptera maximum body length andmaximum case length, using Blomberg et al.’s Kmetric [17] and
Pagel’s λ [18].

Body Length Case Length

Phylogeny K p-value λ p-value K p-value λ p-value

Multi-gene Bayesian 0.116 0.142 0.316 0.013* 0.150 0.191 0.308 0.044*

COI Bayesian 0.344 0.026* 0.450 0.009* 0.455 0.061 0.516 0.004*

+ backbone 0.327 0.043* 0.438 0.010* 0.445 0.062 0.509 0.004*

stretched 2x 0.210 0.034* 0.469 0.005* 0.296 0.067 0.514 0.003*

stretched 5x 0.092 0.032* 0.510 0.004* 0.139 0.054 0.490 0.003*

COI NJ 0.809 0.007* 0.532 0.018* 0.923 0.018* 0.581 0.008*

* Significant at p < 0.05.

doi:10.1371/journal.pone.0126662.t003
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sensitive to variation in the number of species in the phylogeny, and was less prone to missing
branch length information than K. In addition, λ had a smaller Type I statistical error rate and
was able to detect phylogenetic signal in traits evolving under Brownian motion better than K,
which was prone to Type II error [53]. Freckleton et al. [51] also reported appropriate Type I
error rates for λ in simulated data and found that λ was able to detect phylogenetic signal in
>90% of simulations for trees with 20 species and close to 100% for trees with 40 species. In
addition, Freckleton et al. [51] found that 88% of published phylogenies display phylogenetic
signal for at least one morphological or ecological trait with λ, and overall, 60% of traits dis-
played phylogenetic signal.

In our study, the K metric is failing to detect phylogenetic signal in the traits we measured,
but λ suggests that phylogenetic dependence is present. Our phylogenies contain a reasonable
sample size of species for this type of study (n> 40), as indicated by simulations and a review
of λ values from empirical studies of morphological and ecological traits; therefore, our study
should have strong power to detect significant phylogenetic signal, if present, using λ [51].
Since we do not explicitly know the process of trait evolution for our Trichoptera phylogenies,
we cannot state which metric is superior to the other. However, we tend to favour Pagel’s λ for
assessing phylogenetic dependence of trait data due to prior evidence of this metric’s behaviour
[53], as well as the frequent finding of phylogenetic signal in body size measures across diverse
taxa [51]. Focusing on our λ results, conclusions about the significance of phylogenetic signal
did not vary across input trees; however, all of the COI phylogenies slightly overestimate phylo-
genetic signal when compared with the multi-gene tree. In sum, we conclude that choice of
input tree was of modest impact in our study, when using λ, but that the Bayesian COI trees
recovered λ values closer to those for the multi-gene phylogeny than did COI NJ trees.

Utility of COI
Our study has highlighted the utility of COI for estimating phylogenetic community structure
for local communities within a small regional source pool within the order Trichoptera. Of
course, when more genetic information is available, it is expected to be useful for better esti-
mating NRI and NTI; nonetheless, our results suggest that using only COI is a reasonable
approach at the taxonomic and geographic scale examined. We stress that for calculations of
phylogenetic community structure, branching order is not as important as relative branch
lengths within a dataset, as the tree is converted to a distance matrix for calculations. Short
internal branches may be associated with rapid successive diversification events; different phy-
logenetic reconstructions may yield different branching orders yet similar relative values for
the total sums of the branch lengths connecting pairs of tips. Therefore, the main consideration
for community phylogenetics is being able to accurately estimate the relative genetic distances
between species, which COI appears to do quite well at the geographic and taxonomic scale
examined. However, for phylogenies reconstructed using only COI, theoretically we expected
NTI to be more accurately estimated than NRI, since NTI focuses on the tips of the phylogeny
where there is expected to be more support for a COI phylogeny. By contrast, our results indi-
cated that NRI had higher r2 values and slopes closer to 1 (in comparison with NRI from the
the multi-gene tree) than NTI values. However, this finding may be an artefact of the commu-
nities in Churchill being principally phylogenetically clustered; the performance of NRI may be
reduced when the communities are predominantly overdispersed, and this is a subject requir-
ing further investigation. The Churchill area that we sampled is classified as a region according
to Webb et al. (10–1,000 km) [2], and while our study suggests that COI is suitable at this scale
for estimating NRI and NTI, difficulties may arise when examining larger geographic areas and
broader taxonomic groups. It might be expected that a wider geographic area would include
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more taxa (species-area relationship; [54]), which is expected to increase phylogenetic accu-
racy. However, at a broader geographic scale, more taxonomic families may be sampled, yield-
ing more deep branches requiring resolution, which could reduce the accuracy of a COI
phylogeny and thus the NRI and NTI of the community. Nevertheless, improved phylogeny
reconstruction methods are allowing researchers to build accurate phylogenies amongst insect
orders with mitochondrial genomes [55]; with improved analytical methods, together with the
availability of more backbone phylogenies, these problems may be alleviated. In addition, the
accuracy of specimen identifications using COI may be reduced at broad vs. local geographic
scales in some taxa [56]; hence, this should be another consideration for future studies. Despite
these challenges, the large quantities of geo-referenced DNA barcodes being generated from
initiatives such as the International Barcode of Life (iBOL) project (www.ibol.org) could be a
vast, largely untapped resource of community data at varying geographic scales.

Conclusions
Understanding the most robust approaches to addressing questions of community phyloge-
netics is critical to ensure that meaningful conclusions are drawn about the mechanisms driv-
ing community assembly. Our study has examined several different techniques of tree
reconstruction and identified the strongest methods and metrics for our study system, which
future researchers may consider in their study design. Since phylogenetic community ecology
is a rapidly expanding field that holds much potential for understanding community structure,
it is important to couple observational research with a broader understanding of the methods
employed in the field.
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