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Living in a pandemic: changes 
in mobility routines, social activity 
and adherence to COVID‑19 
protective measures
Lorenzo Lucchini1,4*, Simone Centellegher1,4, Luca Pappalardo  2, Riccardo Gallotti1, 
Filippo Privitera3, Bruno Lepri1 & Marco De Nadai1*

Non-Pharmaceutical Interventions (NPIs), aimed at reducing the diffusion of the COVID-19 pandemic, 
have dramatically influenced our everyday behaviour. In this work, we study how individuals adapted 
their daily movements and person-to-person contact patterns over time in response to the NPIs. 
We leverage longitudinal GPS mobility data of hundreds of thousands of anonymous individuals to 
empirically show and quantify the dramatic disruption in people’s mobility habits and social behaviour. 
We find that local interventions did not just impact the number of visits to different venues but also 
how people experience them. Individuals spend less time in venues, preferring simpler and more 
predictable routines, also reducing person-to-person contacts. Moreover, we find that the individual 
patterns of visits are influenced by the strength of the NPIs policies, the local severity of the pandemic 
and a risk adaptation factor, which increases the people’s mobility regardless of the stringency of 
interventions. Finally, despite the gradual recovery in visit patterns, we find that individuals continue 
to keep person-to-person contacts low. This apparent conflict hints that the evolution of policy 
adherence should be carefully addressed by policymakers, epidemiologists and mobility experts.

The COVID-19 pandemic has prompted many countries to implement a diverse set of Non-Pharmaceutical 
Interventions (NPIs) such as international travel restrictions, physical distancing mandates, closures of business 
venues, and stay-at-home orders to prevent the spread of the virus1–7. These policies have had a profound impact 
on numerous aspects of human life including employment8,9, economy10–13 and people’s social behaviour14–17.

In this context, mobile phone data offered unprecedented opportunities to capture the effects of the NPIs 
and to understand better their impact on the evolution of the epidemic18,19. Different technological and telecom-
munication companies have released analysis and data to help researchers estimate the epidemic spread16,20–25, 
mobility reduction16,26–29, physical distancing30,31, physical activity32, and informing on the efficacy of NPIs25,33–36. 
However, most of these works are based on aggregated data and focus their analysis on macro mobility indicators 
to inform epidemic models16,31,34.

While the short term behavioural adaptation to NPIs and their impact on epidemic models is of paramount 
importance to promptly respond to the pandemic threat, an in-depth understanding of how individual behaviour 
adapted over time is still lacking. Understanding the long term behaviour in a condition of sustained epidemic 
threat represents an essential factor in facilitating policy adherence.

This paper studies the changes in the daily routinary behaviour of people, focusing on how individuals adapted 
their pattern of visits and social contacts over time. We combine Point Of Interest (POI) information extracted 
from OpenStreetMap (OSM) with privacy-enhanced longitudinal GPS mobility traces of more than 837,000 
anonymous opted-in individuals, measured for nine months from 3 January 2020 to 1 September 2020. Our 
dataset has an average accuracy of 22 m and covers 16 hours of activity per day. This high precision and coverage 
allow us to examine human mobility at a fine spatial and temporal granularity while ensuring users’ privacy (see 
SI Section S2-A for additional details). We analyse, model, and compare individual’s mobility in four US states, 
including those with the highest and lowest values of daily COVID-19 death rate and NPIs stringency: Arizona 
(many deaths and low stringency), Oklahoma (few deaths and low stringency), Kentucky (few deaths and high 
stringency), and New York (many deaths and high stringency) (see SI Section S5 for details).
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Our results describe the disruption effect of the COVID-19 pandemic on human behaviour over time at an 
unprecedented level of detail. Overall, we find that people changed both how they visit places and how they 
experience them. They spend less time in venues, preferring simpler and more predictable routines. Individual 
patterns of visits to POIs are shaped by the strength of the NPIs policies, the pandemic’s local severity and a risk 
adaptation factor, which increases the people’s mobility regardless of the stringency of interventions. Finally, 
despite the gradual recovery in visit patterns, person-to-person contacts remained lower than expected given 
the increased time spent at venues.

Results
We explore and characterize human mobility from an individual’s set of stop locations, defined as places where 
a person stays for at least 5 minutes within a distance of 65 meters. From the original GPS data (see Fig. 1A), we 
detect the stop locations of each individual through a combination of the Lachesis37 and DBSCAN algorithms38 
(see “Methods” and Fig. 1B). As a result, stop locations are described as tuples (lat, lon, start-time, end-time), 
where an individual stays in a particular location with latitude (lat) and longitude (lon) from start-time to end-
time. lat and lon are the mean latitude and longitude values of the GPS points found within the specified distance 
of 65 meters (we refer to the “Methods” and SI Section S3 for the details). Then, we focus on the home and work 
locations of people. To preserve privacy, the data provider obfuscates users’ precise home and work locations by 
transforming it to the centroid of the corresponding Census Block Group. Thus, we identify the home census 
block group of users, from now on called Residential area, by looking at the most visited locations during the 
nights (from 8 pm to 4 am) with a moving time window of 28 days. Similarly, we also identify the Workplace, 
defined as the most visited census block group during the week (from 9 am to 5 pm), which is not marked Resi-
dential. We refer to SI Section S4 for additional details.

Finally, we add semantic meaning to individuals’ mobility trajectories associating each stop location to the 
nearest Point of Interest (POI), extracted from OpenStreetMap (OSM)39, whenever a POI lies within 65 m from 
the stop location (see Fig. 1C). POIs are commonly described as public locations that people may find interest-
ing, for example, for business or recreational activities40. Since the OSM POIs taxonomy is not hierarchically 
organized, we create a human-curated mapping from the OSM tagging system41 to the Foursquare venue category 
hierarchy42 (see “Methods” and SI Section S7 for details). SI Section S7-B shows the popularity of POIs in dif-
ferent states, highlighting the variety of the visiting behaviour in the US.

To validate the data provided by Cuebiq and our pre-processing, we compute the correlation of the time-series 
of visits to POIs, residential areas and workplace areas between our data, Google data26, and Foursquare data43. 
We report an average Pearson correlation in New York state of 0.91 and an average Pearson correlation of 0.84 
in all four selected states (see SI Section S8).

Starting from the visits of each individual we analyse how people’s lifestyle adapted during the pandemic.

Changes in POIs visit patterns.  We begin our analysis by describing the impact of the COVID-19 pan-
demic on the visits to POIs over time. Overall, we observe that NPIs are associated with fewer visits to POIs, 
confirming previous results obtained with similar datasets26,32,34.

Figure 2 shows how the number of visits (panel A) to POIs and the duration of those visits change over time 
in the four selected US states. It also highlights the differences across states in which the epidemiological situ-
ation and the stringency of the enacted policies differed most (see Section S5 for more details). For example, 
the state of New York experienced the most significant drop in the number of visits to all types of POIs (for 

Figure 1.   (A) From an individual’s original GPS trajectory, we detect a stop whenever the individual spends 
at least 5 minutes within a distance of 65 meters from a given trajectory point. (B) We detect stop locations 
through a combination of the Lachesis37 and DBSCAN algorithms38. (C) If present, we associate each stop 
location to the nearest Point Of Interest (POI) within a distance of 65 m.
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details on POIs refer to SI Section S7) with a reduction of 69% . The other states experienced smaller but similar 
reductions in POIs visits in a range between 55% and 60% (see SI Section S7-E for a more detailed analysis on 
single POI categories). Noteworthy differences are present also in the recovery phases due to the different re-
opening measures. As an example, due to early re-opening phases and the absence of restrictions after the end 
of the stay-at-home order on 15 May 2020, the state of Arizona experienced a smaller drop in the number of 
visits to POIs with respect to New York state (Fig. 2A). However, in the long run, the state of New York recov-
ers better since Arizona was forced to introduce new closures due to rising COVID-19 cases. Interestingly, we 
observe that individuals allocate the everyday time spent similarly across states (Fig. 2B), regardless of the NPIs 
implemented, but again we find some differences potentially due to the different NPI strategies. We refer to SI 
Section S9 for a set of additional metrics (i.e. individuals’ unique stop locations, diversity of visits, and radius of 
gyration) supporting our findings.

A similar change in mobility behaviour is also found at a more fine-grained level, by focusing on the differ-
ent POI categories. As shown in Fig. 3, in the state of New York, POIs belonging to the Food (e.g., restaurants) 
and Shop & Service (e.g., book stores and supermarkets) categories experienced low points of −75% and −56% 
in the number of visits, respectively. The duration of visits is also severely impacted by COVID-19 reaching low 
points of −53% and −27.3% for Food and Shop & Service, respectively. These reductions in the number of visits 
are heterogeneous. For example, essential shops such as supermarkets faced a lower reduction in the number 
of visits than the non-essential shops (with low points of −38.3% vs −67% shortly after the stay-at-home order) 
and even increased the number of visits before the stay-at-home order (see SI Section S7-F).

Since two weeks after the stay-at-home order, we observe an increase in the number of visits, which comes 
after the government’s decision of expanding the list of the essential businesses and the progressive relaxation of 
government restrictions (see Fig. 3A,B) throughout the various re-opening phases, conveniently named phase-
one, phase-two, and phase-three (see the “Methods” Section). Interestingly, while the number of visits gradually 
recover in the period between 25 March 2020 and 20 May 2020 (see Fig. 3A), the duration of visits recover much 
slowly. At the end of the period of study, the duration of visits increases by 60% and 51% for Food and Shop & 
Service respectively from the pre-pandemic period, while visits recover by 69% and 67% for Food and Shop & 
Service respectively from the pre-pandemic period. Thus, individuals changes how they experience POIs. We note 
that the number of visits to Food and Shop & Service starts increasing between the stay-at-home order and phase-
one (see Fig. 3A), despite the absence of significant changes in the restrictions. We will later analyse this finding.

Figure 3C shows the distribution of time spent by individuals over time in the state of New York. We group 
the time spent into five categories: Residential, Workplace, POI, Other (i.e. stop locations not matched with a POI 
and not detected neither as Residential or Workplace), and Moving (i.e. time spent moving from place to place). 
After the stay-at-home order, we find that the percentage of time spent in residential areas increases significantly 
to the expense of the time spent at Workplace, POI, Other, and Moving. After phase three, we find that the time 
spent in residential areas gradually reduces while other categories increase. The time spent in each category, 
however, does not return to the pre-pandemic period.

Figure 3D shows the percentage of time spent by people in the venues of the eight first-level categories of 
POIs. The time spent at Shop & Service increases at the expense of the other POIs. Then, after phase three, people 
significantly increase the time spent in some categories such as Outdoors & Recreation and Travel & Transport, 
probably also due to seasonal effects, but other categories such as Arts & Entertainment do not recover to pre-
pandemic levels. We refer the readers to SI Section S1 for a more complete example of the reduction of visits in 
New York City.

Figure 2.   Changes in number and duration of visits to all POIs in the states of Arizona, Kentucky, New York 
and Oklahoma. (A) Percentage change over time in the number of visits with respect to the baseline period (3 
January 2020–28 February 2020) for all types of venues. (B) Change in percentage of the duration of visits over 
time with respect to the baseline period of the median duration of visits to all POIs. For visualization purposes, 
the original curves are smoothed using a rolling average of seven days.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24452  | https://doi.org/10.1038/s41598-021-04139-1

www.nature.com/scientificreports/

Disruption of individual mobility routines.  By looking at the aggregated mobility, we only have a par-
tial view of the disruption in people’s lives due to COVID-19. Individual’s behaviour exhibit mobility motifs and 
routines that characterize the chronological sequence of where they go, spend money and meet people44. For 
this reason, we now focus on the chronological sequences of visits, which help us understand the complexity of 
changes in mobility.

We transform the individual’s chronological sequence of visits to places into a sequence of symbols (e.g., 
Food, Residential, Workplace). Then, we apply the Sequitur algorithm44–46 to generate a hierarchical representa-
tion of the original sequence, compressing repeated occurrences. Due to computational constraints, we focus on 
two 4-week periods, before (from 1 February 2020 to 28 February 2020) and during pandemic (from 21 March 
2020 to 17 April 2020) and focus on significant routines of each user. To detect the significant routines, we 
generate 1000 randomized sequences with the same number of visits as the original sequence. Then, we define 
an individual’s sequence as significant if it has a z-score < 2 between the occurrence of the real routines with 
respect to the randomized ones. Finally, we filter out all the non-significant routines. We refer to the “Methods” 
for additional details.

The significant routines represent meaningful sub-sequences of an individual’s mobility and allow to better 
understand, at a micro-level, how human mobility preferences changed with COVID-19. To that end, we model 
the ordered sequences of visits to POIs as a weighted undirected network in which the nodes represent the 
POI categories, and a link between category c1 and category c2 exists if there is at least a chronological sequence 

Figure 3.   Changes in number and duration of visits to POIs in the state of New York. (A) Percentage change 
over time in the number of visits with respect to the baseline period (3 January 2020–28 February 2020) for 
venues in the Food and Shop & Service categories. (B) Change in percentage of the duration of visits over 
time with respect to the baseline period of the median duration of visits to Food and Shop & Service POIs. For 
visualization purposes, the original curves are smoothed using a rolling average of seven days. Vertical dashed 
lines indicate the date of restrictions and orders imposed by the state of New York government. (C) Percentage 
of time spent by people at Residential, Work, POIs, Other, and Moving (i.e. people in movement). (D) Percentage 
of time spent by people in venues under the eight first-level categories of POIs.
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where c1 immediately follows c2 or vice-versa. The weight of the link represents the daily average proportion of 
sequences containing [c1, c2] or [c2, c1] . Figure 4A,B shows the weighted network of the POI categories in the 
state of New York, where the size of the links is proportional to the intensity of the relationship between the two 
POI categories. We observe that all links reduce their intensity (on average − 79%) with the exception of the 
Residential  ↔ Residential, which increased by 5%.

Figure 4C and D shows the distributions of the network weights in the pre-pandemic (from 1 February 2020 
to 28 February 2020) and during pandemic (from 21 March 2020 to 17 April 2020) periods in New York state, 
from which we excluded all self-loops (e.g., Residential ↔ Residential, Food ↔ Food connections). We observe 
the mildest reduction for Shop & Service ↔ Residential (− 40% visits), Shop & Service ↔ Workplace (− 61%), 
and Outdoors & Recreation  ↔ Residential (− 63%), which might be interpreted as essential routines. Higher 
levels of reduction are found in those POIs connections which include sectors strongly afflicted by NPIs: Arts & 

Figure 4.   Changes in routine behaviour before and during the pandemic periods. (A, B) Network of the 
subsequent movements between POI categories for all users in the state of New York before and during the 
pandemic. The thickness of the links is proportional to the square root of the number of movements between 
the two POI categories. For visualization purposes we are showing only links for which the average number of 
daily movements is greater than 1/10 000 . Pre-pandemic (C) and during-pandemic (D) distributions of these 
intensities excluding self-loops (e.g., Residential ↔ Residential, Food ↔ Food connections). Jaccard similarity 
matrix between individuals’ routines before the pandemic (E) and during the pandemic (F).
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Entertainment ↔ College & University (− 95%), College & University ↔ Nightlife Spot (− 95%), College & Univer-
sity  ↔ Residential (− 93%), and Arts & Entertainment  ↔ Food (− 92%) (for further details refer to SI Fig. S20).

The dramatic change of people’s behaviour also emerges from the similarity between the characteristic routine 
of different individuals. We represent each individual’s significant routine behaviour regarding the presence or 
absence of two-elements sequences between POI categories. Then, we compute the Jaccard similarity between 
a randomly selected sample of 10,000 individuals. Finally, we apply agglomerative hierarchical clustering47 to 
find relevant groups of individuals with similar routine behaviour. By comparing Fig. 4E and F, we observe that 
Fig. 4F contains larger clusters, which means that mobility routines simplify and people’s behaviour gets more 
homogeneous. This result is also quantitatively confirmed by the larger silhouette score48 of all individuals during-
pandemic period compared with the pre-pandemic period (see SI Section S10-D for details). By inspecting the 
everyday routines in the two biggest clusters, which include almost 34% of users, we observe that individuals 
limit their mobility to Residential ↔ Residential, Residential ↔Shops & Services and Shops & Services ↔ Shops & 
Services routines. We refer to SI Section S10-E for a comparison between the six biggest clusters.

During the pandemic period, we also find that individuals tend to favour simpler and more redundant 
sequences. We measure the compression ratio44 defined as the length of the original sequence divided by the 
length of the Sequitur compressed sequence. On average, in the state of New York, the individual’s sequences 
before the pandemic have a compression ratio of 2.75, while during the COVID-19 pandemic, the compres-
sion ratio increases by 40%, reaching 3.79 (see SI Fig. S16). Similar results apply in all the other states (see SI 
Fig. S10B).

Evolution of policy adherence and risk adaptation in visit patterns.  In Fig. 3A, we observe that 
the number of visits starts increasing between the stay-at-home order and phase-one, despite the absence of 
significant changes in the restrictions. To explain this behaviour, we hypothesise the presence of progressive 
behavioural relaxation and adaptation to the epidemic risk, also observed by previous literature30,49 (and some-
times called “pandemic fatigue"50).

We use a multivariate Bayesian linear mixed model to examine the daily number of visits to POIs in each 
state through the strength of the NPIs, daily death ratio, and weather conditions (i.e. daily max temperature and 
precipitations). NPIs’ strength and daily death ratio are used as proxies to capture the local socio-epidemiological 
condition. More precisely, the first include information about the intensity of restrictions, such as closures and 
gathering restrictions, while the second quantify the severity of the condition and the local burden of the disease 
over time. Similarly, weather conditions account for environmental confounding variables which might have an 
impact in human mobility behaviour. We complement the model by adding a factor that tests the risk adaptation 
hypothesis by means of a time-dependent sigmoid function.

We account for the different mobility behaviour of people across states and day of the week, by including a 
random effect for the state and a random effect for the day of the week. More information on the data sources and 
models is provided in “Methods”. Alternative model specifications, including different risk adaptation functional 
forms, are provided in the SI Section S12.

We select, as a baseline, a model that includes as fixed effects only the NPIs stringency and the death ratio 
over the state population. We evaluate the model through the well-established Bayesian R251 and the PSIS-LOO 
information criterion52. Table 1 shows that this simple model achieves R2 = 0.67 and PSIS-LOO = 610.60 and, 
as expected, shows that the NPIs stringency correlates negatively with the mobility of people. Interestingly, we 
also find that the death ratio influences the number of visits to POIs.

Then, we account for local weather conditions that might influence the visits to POIs. The Weather model 
adds the daily precipitations and maximum temperature to the baseline model. Table 1 shows that these two 
variables significantly increase the model’s performance ( R2 = 0.72 , PSIS-LOO = 747.44 ) that grow by 7.46% 
and 22.41%, respectively.

Table 1 shows that the inclusion of the risk adaptation factor (see Full model) achieve the highest performance 
( R2 = 0.78 , PSIS-LOO = 846.76 ). We observe that in this model, the risk adaptation factor represents the sec-
ond most important factor for understanding the daily visits to POIs. This result holds even when we model the 
time spent outside the home and when we hypothesise that the risk adaptation depends on the cumulative NPIs 
stringency, which varies from state to state (see SI Section S12).

Table 1.   Quantitative results of the Bayesian multivariate linear mixed model to explain the daily number of 
visits to POIs. We report the mean and 95% confidence intervals of all the β coefficients. We report the mean 
and standard deviation for R2 and PSIS-LOO.

Baseline Weather Full

NPIs stringency −0.148± 0.004 −0.204± 0.004 −0.242± 0.009

Death ratio −0.072± 0.004 −0.053± 0.003 −0.040± 0.007

Max temperature – 0.009± 0.004 −0.001± 0.099

Precipitations – −0.002± 0.003 0.001± 0.100

Risk adaptation – – 0.118± 0.004

R
2 0.67± 0.02 0.72± 0.02 0.78± 0.02

PSIS-LOO 610.60± 31.94 747.44± 28.78 846.76± 29.59
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Protective behaviour in co‑location events.  The risk adaptation factor can be interpreted as a change 
in adherence to COVID-19 protective behaviours and policies. However, it is not clear whether this adaptation 
only affect people’s tendency to visit more venues or if it is also reflected on the physical distancing patterns.

As a proxy to understand how much people engage in physical and social activities, we empirically define a 
co-location event as when two individuals stop for at least fifteen minutes and are at most 50 m apart from each 
other. These events include, among others, people going to the same grocery store, residential area and work-
place. We note that our definition of co-location is more robust than previous literature30,31 since we represent a 
social contact from stop locations, thus reporting a co-location event between two people when they share the 
same stationary point.

We aggregate co-location events in four different categories depending on where the possible social contact 
took place: (i) Residential, a co-location event where only one of the two individuals have the stop marked as 
Residential location; (ii) Workplace, a co-location event that happened in a venue labeled as a workplace for both 
the individuals; (iii) POI, a co-location event where both the individuals are in the same POI; and (iv) Other, 
a co-location event in which the two individuals meet in a place that it is neither a Residential nor a Workplace 
nor a POI (see SI Section S11 for additional details). We here note that Residential and Workplace co-locations 
are defined at a coarse level, due to the anonymisation process performed by Cuebiq.

Figure 5A shows the abrupt change of the co-location events in the New York state, starting at the school 
closure day on 15 March and reaching low points of −95% , −88% and −90% for POI, Workplace and Other 
co-location events respectively. Interestingly, we observe that Residential co-location events, namely between 
people who do not live together, experience the smallest reduction, decreasing at most by 53% from the pre-
pandemic levels. During the strictest measures put in place in New York state, we notice that people maintain 
their co-location events inside other’s people residential areas and in places which are not marked as POIs (see 
Residential and Other in Fig. 5A). This presumably happens because of the impossibility of having co-location 
events in venues such as pubs and restaurants (see Food and Nightlife Spot categories in SI Section S11-A) due 
to the NPI interventions including physical distancing measures and closures of POIs such as Arts & Entertain-
ment and College & University.

We obtain similar results in the other states (see SI Section S11), although with some differences. For example, 
in Oklahoma, Kentucky and Arizona, the Residential co-locations events experience a lower reduction, with a 
low point around −33% in Arizona and around −40% in both Oklahoma and Kentucky. Notably, we observe a 
decrease in co-locations events from the partial reversal of the reopening from 29 June 2020 in Arizona.

Again, we find some differences between the number and the duration of co-location events. First, the dura-
tion decrease less than the number of co-location events, reaching low points of around −10% , −48% , −10% , 
−30% for Residential, POI, Workplace and Other co-location events respectively (see SI Section S11-B).

Overall, we find a strong negative Spearman correlation between the daily number of co-location events 
and the NPIs stringency in each state ( −0.83 with p-value p < 0.001 ). Similarly, we find that the daily number 
of co-location events is also negatively correlated with the daily number of new cases and deceased ( −0.58 and 
−0.67 respectively, with p-values p < 0.001).

The co-location events and the visits to places are inherently connected. Therefore, as soon as the number 
and the duration of visits decrease, it becomes less probable to have co-location events. Thus, we estimate the 
daily expected number of co-location events through a null model and compare it with the observed co-locations. 
The number of co-location events ei,d occurring at a POI i on a specific day d can be estimated from both the 

Figure 5.   Co-location events. (A) Percentage change of co-location events from the baseline (until 29 February 
2020) in New York state. We measure the change in co-location events for Residential areas (only one of the 
two individuals is in proximity of their residential area), POI (both individuals are at the same POI), Workplace 
(both individuals have the same work location) and Other co-location events. (B, C) We compare the difference 
between the expected and observed number and duration of co-location events. During the pandemic, 
individuals tend to have fewer and shorter co-locations than expected.
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number of individuals visiting the POI ni,d , and the median duration of their stops there d̄i,d . We can then have 

an estimate of the co-location events following ei,d =

(

ni,d
2

)

pi,d , where pi,d is the probability of having a co-

location event given two individuals visiting POI i on day d and pi,d is computed assuming a uniform distribution 
for the time-interval of visit of two individuals potentially having a co-location event (see SI Section S11-C for 
additional details). We follow a similar reasoning to model the expected duration of the individual’s co-location 
events.

Figure 5B shows that, during the pandemic, the observed number of co-location events at POIs are lower 
than expected. Similarly, Fig. 5C shows that the duration of co-location events is slightly lower than expected.

We investigate the deviation between the expected and observed number of co-location events and find a high 
correlation with the daily new cases and deaths (0.66 p < 0.001 and 0.48 p < 0.001 , respectively), and a lower 
correlation with the NPIs stringency (0.28 p < 0.001 ). Thus, individuals’ discrepancy between the theoretical 
and observed number of co-location events appear to be largely driven by the epidemic burden (i.e. daily new 
cases and deaths).

Discussion
This paper investigates the changes in human mobility behaviour induced by the COVID-19 pandemic in four 
US states. We exploit a privacy-enhanced longitudinal GPS dataset, counting more than 837,000 anonymous 
opted-in individuals, to show how individuals changed their patterns of visits, their routinary behaviour and 
their person-to-person contact activity over time.

We show that, in line with precious research18,26,32, the COVID-19 pandemic dramatically reduced the number 
of visits to POIs, which only partially recovered the pre-pandemic levels ( −28% in the state of New York at the 
end of the period of study). Additionally, while the duration of visits to POIs decreases less than the number of 
visits ( −23% at the end of the period), its recovery after the reopening phases is slower. This finding suggests that 
people are less willing to spend time in POIs, reasonably to minimise social contacts in public venues. This result 
is strengthened by the analysis of co-location events used as a proxy of social contacts. Since the number of co-
location events depends on the number and duration of visits to places, we expect that it becomes less probable 
to have social contact as soon as these quantities decrease. Nevertheless, we find that individuals have fewer and 
shorter contacts even after the reopening phases. Despite increasing the number of visits to POIs, individuals 
display persistent protective behaviours, limiting unnecessary social contacts.

We also find that changes in co-location events are often place-dependent. For example, on average, co-
locations events at other’s people residential areas, namely between people who do not live together, reduced 
by 42%, while co-locations in POIs and workplaces reduce on average by 94% and 73% after the stay-at-home 
order. While individuals limit unnecessary social contacts, this behaviour shows a limited impact on in-house 
gatherings. Here, our results reveal a potentially unsafe behaviour, as the literature reports in-house contacts 
among the ones with a higher risk of infection53,54, highlighting the importance of considering all co-location 
places when modelling optimal intervention strategies.

Overall, human routines during the COVID-19 pandemic got shorter and more predictable. The statis-
tical patterns that characterise these new routines (e.g., distribution of travel distance, typical predictability 
of an individual’s whereabouts) may differ significantly from those observed ubiquitously for pre-pandemic 
mobility55,56,56–65. Further research is needed to understand these differences.

Finally, taking into account the stringency of the NPIs, the local severity of the pandemic, local weather condi-
tions, and a risk adaptation factor, people adapt to the pandemic risk over time, showing an increased tendency 
in visiting POIs and spending time outside their home.

Multiple reasons may explain the risk adaptation effect. One hypothesis is that risk adaptation arises from 
a change in the risk assessment of individuals. As the pandemic unfolds, people become less influenced by 
the number of cases and deaths, therefore paying less attention to protective behaviours. A similar hypothesis 
sees the risk adaptation as a consequence of the psychological burden, which reduces the ability or motivation 
to perform self-protective behaviour66,67. Another hypothesis considers the sustained economic burden as an 
important factor, which may force people to decrease policy adherence to go back to work. In all cases, our 
results well align with previous self-reported evidence49 and warn that adherence should not be dismissed and 
ignored. Long and sustained restrictions to human activities might build up the so-called pandemic fatigue and 
make NPIs less effective49.

Analysing everyday activities from GPS data does not come without limitations. First, the analysis from 
smartphone data might be biased towards younger adults and fail to capture the mobility of those who do not 
carry their phones while visiting places. Second, our Residential and Workplace are just an estimate of the actual 
home and work locations, which are obfuscated for privacy reasons by the data provider. Third, we acknowledge 
that our co-location events are a loose proxy of social interactions, and people might share the same location 
even without knowing each other (i.e., familiar strangers68).

COVID-19 disrupted the lives of millions of people. Our work shows that the pandemic-induced changes 
are not just about how much people stay at home and visit POIs. Instead, the COVID-19 risk and policy inter-
ventions reshaped people’s routines and habits, changing how individuals experience POIs, places and social 
interactions during the pandemic.

Future work might clarify how people adapt to the epidemic risk and the medium- and long-term effects of 
the COVID-19 pandemic and restriction measures on human behaviour.
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Methods
Selection of the important dates.  We identify several important dates that help readers with the inter-
pretation of our results. In the state of New York, on March 1, the first positive cases were broadly discussed by 
public opinion. On March 15, Governor Andrew Cuomo announced that New York City schools would have 
closed from the following day69. On March 22, Andrew Cuomo announced the statewide stay-at-home order, 
also known as the NYS on Pause Program, with a mandate that all non-essential workers work from home begin-
ning at 8 p.m. and that only businesses declared as essential were allowed to remain open70,71.

On May 15, Andrew Cuomo announced a gradual plan of reopening, also called Phase I. From May 28, the 
New York State Department of Health released the guidelines for the reopenings of Phase II, which included 
the reopening of professional services including finance and insurance, retail, administrative support, and real 
estate/rental leasing72. We note that New York City met the criteria on June 22. On June 15, Andrew Cuomo 
announced that regions upon entry of Phase 3 will be allowed non-essential gatherings of up to 25 people and 
that on-location restaurants would open73. New York City entered this phase on July 6. We highlight some of 
these dates in the plots, and we describe the important days for all the states in SI Section S5-A.

Stop location detection.  We use GPS location data provided by Cuebiq, a location intelligence company 
that shared a dataset consisting of anonymised GPS locations from users that opted-in to share the data anony-
mously for research purposes through a CCPA (California Consumer Privacy Act) compliant framework. To 
further preserve privacy, the data provider obfuscates users’ precise home and work locations by transforming it 
to the centroid of the corresponding Census Block Group.

The dataset span a period of 9 months, from January 2020 to September 2020 (details in SI Section S2). The 
data is provided through the Cuebiq Data for Good COVID-19 Collaborative program, which provides access 
to de-identified and privacy-enhanced mobility data for academic research and humanitarian initiatives only.

To ensure the data describes people’s mobility throughout the pandemic, we filter out all users with less than 
one month of data before declaring a national emergency (March 13, 2020) and less than four months after it. 
We also require users have 5 hours per day covered by at least one GPS location. The resulting dataset includes 
more than 837,000 anonymous, opted-in individuals.

For all users, we extract their stop events with an algorithm based on Hariharan and Toyama37. A stop event 
is defined as a temporal sequence of GPS coordinates in a radius of �s meters where a user stayed for at least �t 
minutes. The algorithm, its optimisation, and its computational complexity are explained in detail in SI Section 
S3. To define a stop event, we used �s = 65 meters and �t = 5 minutes due to the distribution of accuracy of 
the underlying data (see SI Section S3).

For each user, we then define their stop locations as the sequences of stop events that can be considered 
as part of the same place. To determine a stop location from a sequence of stop events we use the DBSCAN 
algorithm38. With DBSCAN, we group points within a distance of ε = �s − 5 meters to form a cluster with at 
least minPoints = 1 stop event (see SI Section S3 for more details).

Point of Interest (POIs) association.  We extract all POIs from OpenStreetMap (OSM) (https://​www.​
opens​treet​map.​org/) and then, due to the lack of structure in OSM POIs, we map each OSM POI to the cor-
responding Foursquare Venue Category Hierarchy (https://​devel​oper.​fours​quare.​com/​docs/​build-​with-​fours​
quare/​categ​ories/). After the association, each OSM POI is mapped to the Foursquare categorisation with 8 first-
level categories and 178 second-level categories. Further details are described in the SI Section S7.

Then, we associate each stop location to its nearest POI for all users whenever the Haversine distance is less 
or equal to 65 meters. Since in OpenStreetMap POIs can be represented as Points or Polygons, sometimes nested, 
we assign POIs to stop locations with the heuristic described in SI Section S7.

Percentage change.  Throughout the analysis we compute the change with the same methodology of the 
Google mobility reports26. Specifically, we compute the percentage change as:

where vi is the original value at day i and bw is the median value at day of the week w(i), going from 0 to 6, com-
puted during the baseline period (i.e. before the pandemic).

Sequitur, significant routine patterns, and user‑user similarity.  Sequitur is a compression algo-
rithm that reduces a sequence size by introducing new symbols/words when in the original sequence appear 
repetitions of short sub-sequences and motifs45. We represent an individual’s mobility through a sequence of 
symbols that maps a stop location into a category (e.g., Residential, Workplace, Food). From these sequences 
of symbols we extracted recurrent patterns of visits consisting of sub-sequences of length l ≥ 2 following Di 
Clemente et al.44.

We focus our attention on two 4-week periods. The first one starts on February 1, 2020 and excludes January, 
which might display unusual patterns due to seasonal effects (e.g., the end of the holiday period). The second one 
starts at the beginning of each state emergency response orders, i.e. the “stay-at-home” order (in Kentucky, we 
selected the “healthy-at-home” order since no “stay-at-home” was ever issued). This period terminates before the 
first reopenings to include the most stringent early regulatory phase for each state (for more details on relevant 
dates see SI Table S1).

Pi =
vi − bw(i)

bw(i)
∗ 100

https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://developer.foursquare.com/docs/build-with-foursquare/categories/
https://developer.foursquare.com/docs/build-with-foursquare/categories/
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For each individual sequence of visits, we randomly shuffle the sequence 1000 times and apply the sequi-
tur algorithm on each one of them45. For each symbol s (a visit in our case), we compute the mean number of 
occurrences, µs and its standard deviation, σs , across all random synthetic sequences. We use this quantity to 
compute the standard score, zs = os−µs

σs
 , where os is the number of occurrences of each symbol s within the 

original sequences. Significant routines are selected from all the sub-sequences if zs is greater than 2. We refer 
to significantly recurrent sub-sequences as “routines”.

Modeling expected number and duration of co‑location events.  The expected number of co-loca-
tion events is assumed to depend on both the number of individuals visiting a POI, i on day d, and the average 
duration of their stop there, di,d . The first quantity is used to compute the combinations of possible co-location 
between different individuals. The second is used to estimate the probability pi,d of having two temporal interval 
of duration d̄i,d overlapping by at least 15 minutes over the entire time span of a day. Combined together, our 

estimate of the number of co-location events, ei,d , can be written as: ei,d =

(

ni,d
2

)

pi,d.

Following similar reasoning, the average duration of co-location events is estimated conditioning on the 
occurrence of the event and assuming that the temporal overlap of two individuals, oi,d , depends on their average 
permanence at POI i, d̂i,d . Thus, the average overlap area can be straightforwardly computed as: oi,d =

d̂i,d−15
2  . 

More information about the formulation and computations in support of these models can be found in SI 
Section S11-C.

Modeling visits to Points of Interest.  We model the daily average number of visits to POIs Y with a 
Bayesian linear regression formulated for each day of year d, state s and weekday w as:

where ε is the residual error, αs is the state-specific intercept, βpolicy , βdeaths , βtemp , βprec and βadapt are the β 
coefficients for each independent variable in the regression, while ρw is the week-day random effect controlled 
by the variable w, the day of the week of (from 0 to 6 where 5 is Saturday and 6 is Sunday). Sd is the value of the 
Stringency Index, measuring local enacted regulations and preventive and informative campaigns (see74 for 
more details), Dd−1 is the death ratio at the previous day (measured over a population of 100k people), Td is the 
maximum temperature in Celsius degrees and Pd represents the millimeters of precipitations. Td and Pd account 
for the seasonal effects of POI visits. Then, 1

1+e−γs (d−φs)
 is a standard sigmoid function that models the collective 

behavioural adaptation of people to the perceived epidemic risk. The sigmoid function depends on time where 
φs and γs model the location and the sharpness of the sigmoid, respectively. All the independent variables are 
z-score standardised.

We extract the daily temperature and precipitation from the PRISM Climate Group75, which provides the 
maximum temperature and precipitations with a 4km grid. Then, we compute the average maximum temperature 
and precipitations for each state. Finally, the average is weighted with the population of each county to account 
for the number of people exposed to the measured temperature and precipitations.

We assess the out of sample predictive accuracy through the Pareto-smoothed importance sampling Leave-
One-Out cross-validation (PSIS-LOO)52. This metric overcome the issues of the Deviance Information Criterion 
(DIC)76 such as its lack of consistency and the fact that is not a proper predictive criterion52,77, and it has rapidly 
become state of the art for evaluating Bayesian models. The PSIS-LOO is defined in the log score as:

where n is the number of data points, θ s are draws from the full posterior p(θ |y) , s = 1, . . . , S represent the S 
draws, and ws

i  is a vector of weights that are the Pareto Smoothed importance ratios built through an algorithm 
described in the PSIS-LOO original paper52. The best model is associated with the highest PSIS-LOO value. We 
also report Bayesian R251 as an additional and easy-to-interpret measure of goodness of fit.

Data availability
Replication code is available on GitHub at https://​github.​com/​denad​ai2/​living-​the-​pande​mic. All the data sources 
are freely available on the Internet while the mobility data from Cuebiq can be accessed only through the Data 
for Good initiative of the company (https://​www.​cuebiq.​com/​about/​data-​for-​good/). Limitations apply to the 
availability of this data, due to the rigorous anonymity constraints.
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