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Global neural encoding of behavioral strategies
in mice during perceptual decision-making task
with two different sensory patterns

Shuo Wang,1,2 Huayi Gao,1,2 Yutaro Ueoka,1 Kotaro Ishizu,1 and Akihiro Funamizu1,2,3,*
SUMMARY

When a simple model-free strategy does not provide sufficient outcomes, an inference-based strategy
estimating a hidden task structure becomes essential for optimizing choices. However, the neural circuitry
involved in inference-based strategies is still unclear. We developed a tone frequency discrimination task
in head-fixed mice in which the tone category of the current trial depended on the category of
the previous trial. When the tone category was repeated, the mice continued using the default model-
free strategy, as well as when the tone was randomly presented, to bias choices. In contrast, when the
tone was alternated, the default strategy gradually shifted to a hybrid of model-free and inference-based
strategies, although we did not observe distinct strategy changes. Brain-wide electrophysiological
recording suggested that the neural activity of the frontal and sensory cortices, hippocampus, and stria-
tumwas correlatedwith the reward expectation in different task conditions, suggesting the global encod-
ing of multiple strategies in the brain.

INTRODUCTION

Perceptual decision-making requires estimating a hidden context from the observation of sensory inputs. Signal detection theory (SDT) shows

that to optimize behavior, subjects also need to infer expected outcomes in each context (value) and how the context changes over time

(context transition probability).1,2

One simple strategy for optimizing behavior by estimating the expected outcome (value) is to estimate and update the value of each

choice through trial and error from past direct experiences. This is accomplished by model-free reinforcement learning (RL).3–5 Model-free

RL does not estimate the transition of context when making choices.3 However, as noted in previous theoretical6 and experimental

research,7–9 model-free RL is not always the best strategy for optimizing choices. For example, when contexts have certain dependencies

or structures, a simple RL model involving only value estimation fails to optimize choices.10–12 In such complex environments, a behavioral

strategy in which the hidden structure of context relationships is inferred becomes important.13 This is also supported by the SDT, as both

value and context estimations are essential for optimizing behavior.2 A strategy using an internal model of context-transition probability is

named the abstract state-based model7 or inference-based strategy.8 Recent study shows that, in the early phase of training, mice use

model-free RL as a default strategy. Mice then change to an inference-based strategy at the late phase of training when the simple default

strategy does not provide sufficient outcomes in a foraging task.8 Other studies show that mice can switch several behavioral strategies even

within a session to optimize choices.14,15 In this study, we try to investigate how various brain regions, including the frontal and sensory cortices

and subcortical regions, represent the different behavioral strategies.

Previous experiments in rodents, monkeys, and humans have shown that the cortico-basal ganglia circuit, which includes the striatum

(STR), motor cortex, prefrontal cortex, and sensory cortex, is involved in model-free RL.4,16–22 In contrast with the model-free strategy, the

neural circuit of the inference-based strategy is still under investigation. Early human studies utilizing sophisticated behavioral tasks have iden-

tified parallel pathways for model-free and inference- or model-based strategies in the brain,23,24 while others have shown overlapping

involvement of brain regions in these two strategies.25 These studies revealed that the prefrontal cortex is involved in inference-based stra-

tegies.23–25 Recently, rodent studies have shown that the orbitofrontal cortex (OFC) and hippocampus (HPC) are necessary for the inference

strategy,8,26 while there are a series of studies showing the distributed encoding of task variables across brain areas.27–29 There is also a report

that different behavioral strategies aremultiplexed in themotor cortex.15 Although the neural circuits involved in the inference-based strategy

are gradually being identified in some brain regions in animal experiments, it is unclear whether various regions in the brain represent the

different behavioral strategies in a distributed manner15,25,27 or distinct parallel pathways.6,24
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Here, we updated our previous tone frequency discrimination task1,30–32 to test the neural representations of different behavioral strate-

gies. The task probabilistically alternated the tone category of the current trial based on the category in the previous trial with a transition

probability of p.33,34 We first trained all the mice in the neutral condition (p = 0.5), where there was no bias of tone presentation in the

task. We found that although the optimal behavior was an unbiased selection of the left or right choice, mouse behavior was already biased

by the outcome in previous trials, suggesting that the default strategy of mice was value-based model-free RL. We then divided the mice into

two groups: one group repeated one tone category (repeating condition: p= 0.2), while the other group alternated the tone category in every

trial (alternating condition: p = 0.9). Interestingly, the acquisition of proper choice biases was faster in the repeating condition than in the

alternating condition. Biased behavior in the repeating condition was achieved from the first session, suggesting that the default model-

free strategy was used to optimize choices. In contrast, the acquisition of choice biases in the alternating condition took 3 sessions to achieve,

and the behavior was gradually fit to a hybrid model combining model-free and state-based models, with increasing reliance on the state-

based model, although we did not find clear separation of behavioral strategies between the task conditions. Value updating was observed

even at the overtrained phase in the repeating condition, while the choice was stable in the alternating condition.

We obtained brain-wide electrophysiological recordings from the OFC, HPC, STR, primary motor cortex (M1), posterior parietal cortex

(PPC), and auditory cortex (AC) during the overtrained phase of the task. We found that, in both conditions, the neurons in all the recorded

regions showed increased activity when the choice was expected to have a high reward probability.29 In contrast, at the outcome timing, the

neurons increased the activity with unexpected outcomes mainly in the repeating condition, possibly because the behavior in the alternating

condition was already stable during electrophysiology and did not need to update the choices based on outcomes. These results suggest the

global encoding of multiple strategies in the brain.

RESULTS
Mouse choices depend on the transition of tone category in a tone frequency discrimination task

In our tone frequency discrimination task, mice were head-fixed and placed on a treadmill1,28,30 (Figure 1A, top). Each trial began with retract-

ing the spouts away from themouse. After a random interval of 1.0–2.0 s, a tone stimulus with a duration of 0.6 s was presented from a speaker

placed to the right front of the mouse (Figure 1A, bottom left). The tone stimuli were tone clouds, which were mixtures of low-frequency

(5–10 kHz) and high-frequency (20–40 kHz) pure tones (Figure 1A, bottom right).1,30–32 Depending on the dominant frequency, tone clouds

were categorized as low or high. In addition, the tone clouds were namedeasy (0% and 100%of high-frequency tones),moderate (20%/80%or

25%/75% of high-frequency tones), or difficult (35%/65% or 45%/55% of high-frequency tones). The association between the tone category

(low or high) and the correct choice was determined for each mouse. A correct or incorrect choice resulted in the provision of 10% sucrose

water (2.4 mL) or a noise burst (0.2 s), respectively.

In our task, the tone category of the current trial was probabilistically alternated based on the tone category in the previous trial with a

transition probability of p (Figure 1B).33,34 We first exposed all the mice to the neutral condition (p = 0.5), in which the tone categories

were randomly presented. We then divided the mice into two groups. In the repeating condition (p = 0.2), tone categories frequently

repeated across trials, while in the alternating condition (p = 0.9), tone categories alternated across trials. Both in the repeating and alter-

nating conditions, the first 40 trials only contained 100% low- or high-tone clouds with fixed tone sequences (STAR Methods). We did not

use the first 40 trials for analyses.

In the neutral condition, although the tone categorywas randomly selected in each trial, the choice behavior of themicewas biased toward

the side that was rewarded in the previous trial (Figures 1C and S1A), suggesting that the mice had a default strategy to repeat the previously

rewarded choice. We then analyzed the choices of mice in the repeating and alternating conditions (repeating condition, 113 sessions in

8 mice; alternating condition, 141 sessions in 11 mice). In the example repeating condition, the mouse chose the right side more frequently

after trials in which right-side rewarded tones were used than after trials in which the left-side rewarded tones were used, indicating repeating

choice biases (Figure 1F). On the other hand, in the alternating condition, the mouse tended to switch choices. To quantify choice bias, we

analyzed how the choice in the current trial depended on the tone category in the previous trial. When the task condition switched from the

neutral to the repeating condition, the mice immediately showed repeating choice bias from the first session. In contrast, mice in the alter-

nating condition required 3 sessions on average to acquire the alternating biased behavior (Figures 1G, S1D, and S1E). Since mice had

repeating choice biases in the neutral condition, these results suggest that mice continuously used the same default strategy to optimize

choices in the repeating condition, while mice required some sessions to switch the choice biases in the alternating condition. In the neutral,

repeating, and alternating conditions, a logistic regression analyzed how the correct and error choices in the past trials affected the choice in

the current trial34 (STARMethods).We found that the previous correct trials had the largest influence on the choice in the current trials in all the

conditions (Figures 1D, 1E, 1H–1J, and S1C). We also found that the previous correct trials had a larger influence than the previous error trials

in the repeating condition (Wilcoxon signed-rank test, p = 0.0078 and 0.32 in the repeating and alternating conditions) (Figure S1F).

Mice have different strategies between repeating and alternating conditions

We investigated the behavioral strategies of mice under the repeating and alternating conditions. As the first 40 trials only contained the easy

tone clouds, we did not include the first 40 trials in the analyses (STAR Methods). We first proposed two models to analyze mouse choices

based on the SDT, which predicted that estimations of expected outcomes and hidden-context probabilities are essential for optimizing

behavior.1,2 Model-free RL estimated the expected choice outcome in the low- and high-tone-category states, while the belief probabilities

of right- and left-rewarded states were constant. The state-based model estimated the probability of the current context as the prior belief
2 iScience 27, 111182, November 15, 2024
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Figure 1. Tone frequency discrimination task in head-fixed mice with repeating and alternating conditions

(A) Task scheme. Each trial started bymoving the spouts away from themouse. After a random interval of 1–2 s, a sound stimulus (tone cloud) was presented from

the speaker positioned in the right front of themouse. The spouts immediately approached themice after the end of the sound.Mice licked either the left or right

spout to receive sucrose water. The right panels show example tone clouds. During the overtrained electrophysiological phase, the spouts weremoved 0.5 s after

the end of the sound.

(B) Task conditions. The task included neutral, repeating, and alternating conditions. After the neutral condition with a transition probability of p = 0.5, mice were

exposed to either the repeating condition (p = 0.2) or the alternating condition (p = 0.9).

(C) Psychometric function in the neutral condition (p = 0.5) (28 sessions in 16 mice). Data are represented as mean G SD. (right) Mice significantly biased their

choices to the previously rewarded side (linear mixed-effects model) (central mark in the box: median, edges of the box: first quartile (Q1) and third quartile (Q3);

bars: most extreme data points without outliers, here and hereafter).

(D) Logistic regression analyzed how the past events affected the choices in the current trial in the neutral condition. The likelihood ratio test examined whether

the additional events from 1- to 5-back trials improved the prediction accuracy of the current choice (D log likelihood). Average model fitting is shown. Black and

gray lines show the mean D log likelihood in all the mice and in each mouse, respectively.

(E) Regression coefficients in the analysis of (D) for the correct choices. *p < 0.01 in the Wilcoxon signed rank test. Data are represented as mean G SEM (left).

Comparisons of absolute regression coefficients for the 1-back and 2-back correct trials in the neutral condition (right). p value in theWilcoxon signed rank test. 28

sessions of 16 mice in the neutral condition. Boxplots are the same as C.

(F) Example psychometric function of choice behavior in the repeating (left) and alternating conditions (right). Data are represented asmeans and 95% confidence

intervals.

(G) Comparison of the number of sessions required to achieve the proper choice biases in the repeating and alternating conditions after switching from the

neutral condition. (top) Rightward D fraction was the difference in the average fraction of right-side choice after the right- and left-rewarded trials. Data are

represented as mean G SEM (repeating condition: 56 sessions in 8 mice; alternating condition: 77 sessions in 11 mice, *p < 0.01 in the Wilcoxon signed rank

test). (bottom) The number of sessions required to achieve the proper choice biases (STAR Methods) (8 and 11 mice; Mann‒Whitney U test).

(H) Past events affected the current choices in the repeating and alternating conditions. Averagemodel fitting is shown. The colored and gray lines show themean

D log likelihood in all the mice and in each mouse, respectively.

(I) Regression coefficients in the analysis of (H) for the correct choices. *p < 0.01 in theWilcoxon signed rank test. Data are represented as meanG SEM. 8 and 11

sessions in the repeating and alternating conditions.

(J) Comparisons of absolute regression coefficients for the 1-back and 2-back correct trials in (H). p value in theWilcoxon signed rank test. Boxplots are same as C.
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state (Figure 2A). The prior belief state was estimated from the previous state and the state-transition probability, which was updated by a

state prediction error in each trial (STAR Methods).35 We also proposed a hybrid model which had a weighted combination of the model-

free RL and state-basedmodel (Figure 2B).14,15 In example sessions, the simulated choices generated by themodel-free RL, and state-based,

hybrid, f-memory models captured the repeating and alternating choice biases in the repeating and alternating conditions, respectively

(Figures 2C, 2D, and S1K).

We first analyzed the choices in the neutral condition.We found that the RLmodelmatched themouse choices better than the state-based

model did, suggesting that themice used amodel-free strategy as the default strategy (Figures 2E and S1B). To robustly assess the strategy of

mice, we also introduced a memory-based model-free RL model (memory strategy) reported in a previous study34 with small changes for our

study (STAR Methods). We found that the RL model and the hybrid model fit the mice choices better than the memory strategy in the

repeating and alternating conditions, respectively (Figure 2F). We then updated the memory strategy34 by introducing a forgetting value up-

dating,17,28 named the forgetting memory strategy (f-memory strategy) (STAR Methods).

In the repeating condition, the RLmodel fit the choice behavior better than all the othermodels, suggesting that mice continuously used a

simple model-free strategy, as well as in the neutral condition (Figure 2F). The RLmodel was a more consistent fit for choice behavior than the

hybrid model beginning from the first session (Figure 2I). In contrast, in the alternating condition, the hybrid and f-memory models equally

matched the mice choices better than the RL model did (Figure 2F, bottom and 2G). The hybrid model gradually fit the choices, and the

weight of the state-based model increased by experiencing more sessions (Figures 2H and 2I). Also, the state-based model gradually fits

the mice choices compared to the RL model (Figure S1G). In addition, simulated choices by the f-memory model captured the effects of

past events in the neutral and repeating conditions, while the hybrid model captured the effects in both the repeating and alternating con-

ditions but not in the neutral condition (Figures 2J, 2K, S1L, and S1M). These results suggest that while the default model-free strategy was

used to optimize choices in the repeating condition, in the alternating condition, mice gradually increased their reliance on the inference-

based strategy.

We analyzed behavior in the overtrained phase, in which we electrophysiologically recorded the neural activity of the mice. We analyzed

178 sessions in 14 mice during the overtrained phase. In the repeating condition (51 sessions in 5 mice), when the number of correct repeated

choices increased, the choice biases increased (Figures 3A and 3B, top). This finding suggested that the reward expectation was updated

even during the overtrained phase. In contrast, in the alternating condition (127 sessions in 9 mice), the alternating choice biases did not

depend on the number of alternated correct choices (Figures 3A and 3B, bottom). Similar to the learning phase, logistic regression showed

that the previous correct trials had the largest influence on the choice in the current trial in both conditions (Figures 3C, 3D, S1H, and S1I). The

events in the 2-back trial slightly differently affected the current choice between the two task conditions (Figure S1H, likelihood ratio test, p =

0.046 and 0.12 in the repeating and alternating conditions). These differences potentially contributed to the difference in choice biases across

conditions (Figure 3A).

In the repeating condition, the RL model fits the mice choices than all the other models (Figure 3E, top). In contrast, in the alternating con-

dition, the state-based, hybrid, and f-memory models fit the choices more than the RL model (linear-mixed effects model, p = 8.1e-7–7.1e-4)

(Figure 3E, bottom and S1J). The hybrid and f-memory models similarly fit the mice’s choices in the alternating condition. The direct compar-

ison of model fitting (Figure 3F), the model fitting in individual sessions (Figure 3G), and the effects of past events in simulated choices in the

hybrid model (Figures 3H and S1N) suggested that mice relatively used the inference strategy in the alternating condition compared in the

repeating condition.
Choice and reward are widely encoded in the brain, and only the auditory cortex encodes sound

To compare the neural encoding of different strategies in the repeating and alternating conditions, we used a Neuropixels 1.0 probe to elec-

trophysiologically record neural activity at the overtrained phase of the task (Figure 4A). The transition probability of the tone category was set

to p= 0.2 and p= 0.8 in the repeating and alternating conditions, respectively.We targeted theOFC, PPC, HPC, andAC in both the repeating

and alternating conditions and additionally recorded the activity of M1 and STR in the alternating condition (Figures 4A and S2). We used one

Neuropixels probe in each session and analyzed the activity of 14mice in 178 sessions. After spike sorting, we identified 27668 neurons in total

(STAR Methods).

We first detected 12749 task-relevant neurons that exhibited significantly increased activity compared to the baseline activity in one of the

70 timewindows during the task (p< 1.0e-10 in the one-sidedWilcoxon signed rank test; 46.08%of all recorded neurons; repeating condition,

3599 out of 9514 neurons (37.83%); alternating condition, 9150 out of 18154 neurons (50.40%)) (Figures 4B, S3A, and S3B). The duration of each

window was 0.1 s between �1.5 and 2.5 s from sound onset (40 windows). The time windows were also set between �0.5 and 2.5 s from the

choice timing (30 windows; 40 + 30 = 70windows in total). The baseline for sound-onset activity was defined as the activity at�0.2–0 s from the

start of the trial, i.e., spout removal. The baseline for choice activity was defined as the activity at�0.2–0 s from the time the spout approached,

i.e., between the end of the sound and the choice. Among the task-relevant neurons, we targeted the neurons that showed increased activity

(1) before the sound (�0.6–0 s from the sound onset), (2) during the sound (0–0.6 s from the sound onset), and (3) during the choice and

outcome (0–1.0 s from the choice) (STAR Methods). The maximum false discovery rate of all the task-relevant neurons in all the brain regions

was 4.1e-10 (MATLAB, mafdr) (Figure S3C). To confirm the temporal sequence of task-relevant neurons, we randomly split the trials in each

session into half and averaged the activity of each neuron in each half of the trials.We then analyzed themaximum activity timing of neurons in

each half of the trials and analyzed the Spearman correlation between the timings.28 We repeated this procedure 100 times to reduce noise
4 iScience 27, 111182, November 15, 2024



E

H
1

0

∆ 
BI

C
(S

ta
te

-R
L

m
od

el
)

Number of sessions

120

-20
0

0 mouse06(20210813)

100 200

3

1 7

B C

D

Alternate (11)

mouse02(20210520)

0

0

0
0.5

0.5

1

1

1

R
ig

ht
w

ar
d

fra
ct

io
n

Tone associated
with left

with right

mouse06(20210813)

Repeating condition,
RL model

Repeating condition, RL model

Alternating condition,
state-based model

Neutral (16)

Neutral
condition (16)

∆ 
BI

C
(H

yb
rid

-R
L

m
od

el
) 10

-25

0

Repeat (8) Alternate (11)

p = 0.0025

G Learning phase

in previous trial
Tone associated

in previous trial

State-based

RL

PL PR

P L P RQ L,l QR,rTone-RTone-L

QL,l QR,r

Prior belief state

Prior value

(softmax)

Pr
ob

ab
ilit

y

0 10

.025

0.5

Sound

Decision
threshold Choice

State
Outcome

model

model

Transition probability / State prediction error

Reward prediction error

Pr
io

r
va

lu
e

Choice-R
Choice-L

100 200
0

1

mouse02(20210520)

Alternating condition, state-based model

Trials

Pr
io

r
be

lie
f

st
at

e

Choice-R
Choice-L

p = 0.024

I

J K

Repeat (8)

-60

60

0

-60

60

0

Number of sessions

Number of sessions

p = 0.0098

p = 0.64

1 7

71

Alternate (11)

Learning phase

Stat
e

State-based modelA

Pmix

1-Pmix

60

-20

0

25

-25

0

15

-15

0

15

-15

0

30

-30

0

60

-20

0

∆ 
BI

C
 fr

om
 R

L 
m

od
el

∆ 
BI

C
 fr

om
 R

L 
m

od
el

p =
0.0078

0.0078

0.0078

0.016

Hyb
rid

Mem
ory

F-M
em

ory

Stat
e

Hyb
rid

Mem
ory

F-M
em

ory

9.8e-4

p = 0.64

∆
BI

C
(H

yb
rid

-R
L

m
od

el
)

∆
BI

C
(H

yb
rid

-R
L

m
od

el
)

Pm
ix

 (h
yb

rid
 m

od
el

) p = 0.0049

Proportion of tones
associated with right side

0

1

R
ig

ht
w

ar
d

fra
ct

io
n

F Learning phase
Repeat (8)

Alternate (11)

Likelihood

0
0 1

2
Pr

ob
ab

ilit
y

Posterior

00 1

1

1

Pr
ob

ab
ilit

y
0

left right

Prior
Choice

Decision
threshold

Bayes

Sound

belief state1

0
L R

P(
st

at
e)

Proportion of
tones for right side

P(
ch

oi
ce

)
Update

de
ns

ity

0.55

L R

R
eg

re
ss

io
n 

co
ef

fic
ie

nt

R
eg

re
ss

io
n 

co
ef

fic
ie

nt

Number of back trialsNumber of back trialsNumber of back trials

Hybrid model F-Memory modelHybrid model F-Memory model

1 2 3 4 5 1 2 3 4 5
Number of back trials

1 2 3 4 5 1 2 3 4 5

Repeat (8)

Alternate (11)

Netural (16)

Figure 2. Mice used different strategies in the repeating and alternating conditions

(A) Scheme of the state-basedmodel. Bayesian inference computed the decision threshold of choice based on the prior belief state and the sensory distributions.

(B) Scheme of the hybrid model. The hybrid model integrated the model-free and state-based models with a weight parameter Pmix to decide choices.

(C) Left and right prior values (QL,l andQR,r) were estimated from the RLmodel in an example session of the repeating condition (top). Prior belief states (PL and PR)

were estimated from the state-based model in the alternating condition (bottom).

(D) Example sessions with simulated choices with the RL model in the repeating condition (top) and with the state-based model in the alternating condition

(bottom). We simulated the mice choices 100 times based on the fitted parameters in the RL and state-based models. Data are represented as mean G SD.

(E) Model fitting in the neutral condition.D BIC (Bayesian information criterion) was the difference in fitting between the state-based and RLmodels (28 sessions in

16 mice, linear mixed-effects model). Boxplots are the same as Figure 1C.

(F) Model fitting of the state-based, hybrid, memory, and f-memory models compared to that in the RLmodel during the learning phase (8 and 11mice, p value in

the Wilcoxon signed rank test). Boxplots are the same as E.

(G) Comparison of D BIC between the repeating and alternating conditions during the learning phase. D BIC was the difference in model fitting between the

hybrid and RL models (8 and 11 mice, p value in the Mann‒Whitney U test). Boxplots are same as E.

(H) Ratio of using the state-based model in the hybrid model (Pmix) in sessions 1 to 7. We tested whether the slope of Pmix was significantly negative or positive

(p value in the Wilcoxon signed rank test, 11 mice). Gray line shows the mean Pmix in each mouse. Magenta line shows the slope of regression analysis.

(I) Difference in model fitting between the hybrid and RL models (D BIC) in sessions 1 to 7. We tested whether the slope of D BIC was significantly negative or

positive (p value in the Wilcoxon signed rank test, 8 and 11 mice in the repeating and alternating conditions). Gray line shows the mean D BIC in each mouse.

Colored line shows the slope of the regression analysis.

(J) Regression analysis with simulated choices with the hybrid and f-memory model in the neutral condition. We simulated the mice choices 100 times based on

the fitted parameters. Regression coefficients of 1- to 5-back trials are shown. Data are represented as mean G SEM. 28 sessions in 16 mice.

(K) Regression coefficients of 1- to 5-back trials simulated by the hybrid and f-memory model in the repeating and alternating condition. Data are represented as

mean G SEM. (8 and 11 mice).
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Figure 3. Choice behavior at the overtrained phase during electrophysiology

(A) Mean psychometric functions of choice behavior in the repeating (51 sessions in 5 mice) and alternating conditions (127 sessions in 9 mice) at the overtrained

phase. The transition probability of the tone category in the alternating condition was set to p = 0.8.

(B) Rightward D fractions increased when the number of repeated correct choices increased in the repeating condition. Rightward D fractions remained stable in

the alternating condition (178 sessions in 14 mice in total, p value in the linear mixed effects model). Data are represented as mean G SEM.

(C) Regression coefficients of the logistic regression analysis investigating the effects of previous correct trials on the current choice. Data are represented as

mean G SEM. *p < 0.01 in the linear-mixed effects model (51 and 127 sessions from 5 to 9 mice in the repeating and alternating conditions, respectively).

(D) Comparison of the absolute regression coefficients in (C) for the 1-back and 2-back correct trials in the repeating (left) and alternating conditions (right).

p value in the linear mixed effects model. Boxplots are the same as Figure 1C.

(E) Model fitting of the state-based, hybrid, memory, and f-memory models compared to that in the RL model during the overtrained phase (p value in the linear

mixed effects model). Boxplots are the same as D.

(F) Comparison of D BIC (Bayesian information criterion) between the repeating and alternating conditions (5 and 9 mice, p value in the Mann‒Whitney U test).

Boxplots are the same as D.

(G) Comparison of model fitting between the RL and hybrid models in each session (51 and 127 sessions from 5 to 9mice in repeating and alternating conditions,

p value in the linear-mixed effects model).

(H) Regression analysis with simulated choices with the hybrid and f-memory model in the repeating and alternating condition. Regression coefficients of 1- to

5-back trials are shown. Data are represented as mean G SEM (51 and 127 sessions from 5 to 9 mice in the repeating and alternating conditions).
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from the random grouping of trials. We found that the average Spearman correlations of maximum activity timings ranged between r = 0.56

and 0.82 in all the recorded regions (Figures 4B, S3A, and S3B).

Here, we analyzed the neurons with increasing activity during the task as the uniform criterion across regions, similar to our previous

studies.28,36 In the prefrontal cortex, a previous study showed that the increasing neurons were modulated by task variables than the

decreasing neurons.37 Sensory modulations were analyzed only with the neurons with increasing neurons.38,39 In this study, we confirmed

that the proportion of decreasing neurons in all the recorded brain regions was smaller than that of increasing neurons (Figure S3D:

decreasing and increasing neurons in repeating condition: 6.36–11.30% and 26.12–40.06%; alternating condition: 6.08–15.71% and 33.54–

62.34%). We also confirmed using the regression analysis that the number of decreasing neurons representing task variables was smaller

than those of increasing neurons (Figures S3E and S3F).

We used a generalized linear model (GLM) with 10-fold cross-validation to investigate the neural encoding of task variables,

including choices, sounds, and outcomes, in the current or previous trials in addition to running speed (Figure 4C) (STAR Methods).

As the previous choices had the largest influence on the current choices in the overtrained phase (Figure 3D), we included the previous

events in the analysis. We first validated whether our GLM captured the neural encoding of task variables by comparing the deviance of

GLM fitting between the recorded and shuffled neural activity (Figure 4D). We found that our GLM in the recorded neural activity had
6 iScience 27, 111182, November 15, 2024
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Figure 4. Choice, sound, and outcome representations in the OFC, M1, STR, PPC, HPC, and AC

(A) Neuropixels 1.0 probe traces for the OFC, M1, STR, PPC, HPC, and AC in example mice. The red color shows the location of the Neuropixels 1.0 probe.

(B) Cross-validated average activity of task-relevant neurons in the OFC in the repeating (top) and alternating conditions (bottom) (p < 1.0e-10 in the one-sided

Wilcoxon signed rank test). (left) Activity of each task-relevant neuron in half of the trials was normalized between 0 and 1, sorted by the maximum activity timing

based on the other half of the trials. The parentheses show the number of all the recorded neurons. (right) Validation of temporal sequence of task-relevant

neurons with cross validation. Black dot and gray bar show the mean G SD of the maximum activity timings in each task-relevant neuron (Spearman

correlation, r = 0.76 and 0.76).

(C) Schematic of the generalized linear model (GLM) for testing neural encoding.

(D) Validation of GLM. The deviance of GLM with recorded neural activity was compared with the distribution of deviance in GLM in the shuffled activity. The

deviance of GLM in shuffled activity was analyzed 200 times. The inset shows the percentage of task-relevant neurons that had a significantly lower deviance

than that in the distribution of shuffled GLM (p < 0.025).

(E and F) Proportion of neurons representing the sounds, choices, and outcomes at previous and current trials. We analyzed the proportion of neurons with GLM

with 10-fold cross validation. Numbers in the parentheses show the number of the subset of task-relevant neurons that showed a significant increase in activity

during each time window.
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smaller deviance than that in the shuffled activity in many task-relevant neurons (p < 0.025) (repeating condition: 57–88%, alternating

condition: 65–91%).

We then investigated the proportion of neurons representing each task variable (Figures 4E and 4F). In this analysis, when the deviance of

full-parameter GLM was lower than the mean – 1.96 times the standard deviation of deviance in the one-parameter-removed GLM, we

defined that the neuron represented the removed task variable (STAR Methods).40 Before sound onset, the proportions of neurons in
iScience 27, 111182, November 15, 2024 7
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each brain region representing the choice in the previous trial were 6.07–13.33% and 8.47–22.82% in the repeating and alternating conditions,

respectively. The proportions of neurons representing previous outcomes were 21.7–75.0% and 6.78–20.1%. The previous choice and

outcome were similarly represented in some brain regions (chi-square test: repeating condition: OFC, AC, p = 0.0072–7.4e-6; HPC, STR,

p = 0.083–0.48; alternating condition in all the brain regions: p = 0.027–0.76), consistent with the behavioral findings that the previous correct

choices affected the choice in current trial (Figures 3C and 3D). During the sound, the proportion of sound-representing neurons in theACwas

greater than that in the other regions (AC: 42.69 and 42.87% in the repeating and alternating conditions; OFC, PPC, HPC, M1, STR: 0–14.29%;

p = 1.7e-44–7.6e-8 in the chi-square test). At the time of choice, all 6 brain regions were more likely to represent the outcome than the choice

or sound (chi-square test; outcome vs. choice: all 6 regions: p = 1.9e-61–0.012; outcome vs. sound: all 6 regions: p = 1.7e-99–5.0e-16). These

results suggest that the neurons in the AC represent choices, sounds, and outcomes, whereas the neurons in the other brain regions represent

choices and outcomes.

Previous studies report that facial movements are represented in neurons as well as the task variables.41–43 Among the 178 sessions, we

recorded the facial movements in 88 sessions from 6 mice (repeating and alternating conditions: 11 and 77 sessions in 1 and 5 mice). We

captured the mice’s faces with one camera in front of the mice with a sampling rate of 140 Hz (STAR Methods) (Figures S4A and S4B).

From the movie data, we extracted the 9 facial features with DeepLabCut (DLC)44 and computed the motion strength by summing the ab-

solute velocities of 9 features. We found that, before and during the sounds, facial motion strengths were mainly correlated with previous

outcomes, while they were correlated to the events in a current trial at the outcome timing (Figure S4C).

We therefore compared the proportion of neurons representing task variables between the GLMwith and without facial motion strengths

(STARMethods) (Figure S4D). In the GLM with facial movements, the proportion of neurons representing task variables decreased (Wilcoxon

signed rank test in the 6 brain regions and 7 task variables (6 x 7 = 42 in total in each timewindow): before sound: p= 2.0e-4; during sound: p=

0.016; during outcome: p = 1.1e-4), although the overall distribution of neural encoding was similar (Figure S4D). These data suggest that the

facial movements are represented in the task-relevant neurons.
Neurons in wide brain regionsmodulate activity according to previous choices, but the auditory cortex represents previous

sounds and choices in the alternating condition before the sound onset

We first analyzed neural activity before sound onset (Figure 5A). We identified 2259 neurons that exhibited a significant increase in activity

between �0.6 and 0 s from sound onset (451 and 1883 neurons in the repeating and alternating conditions, respectively; 12.53% and

20.58% of the task-relevant neurons). In the repeating condition, the example neuron in theOFC showed increased activity when the previous

trial was a left-rewarded choice followed by a left choice in the current trial (Figure 5B, top). In the alternating condition, an OFC neuron

showed increasing activity in the previous right-rewarded trials and the current left-choice trials (Figure 5B, bottom). Thus, example neurons

in the OFC showed increased activity in response to the correct choice in previous trials before sound onset (Figure 5B).

To confirm the neural representations of previous choices, we compared the choice indices between the previous and current trials (STAR

Methods). The choice index compared activity during low- and high-category sound trials and ranged between�1 and 1.28,45 By comparing

the absolute choice indices for the previous correct and current trials, we quantified whether the neurons encoded the previous or current

choice (Figure 5C). We found that the previous choice indices in correct trials in all the brain regions were greater than the choice indices

in the current trial, suggesting that the neurons in multiple brain regions represented the previous choice (Figures 5C and S5A).

To simultaneously analyze the activity of previous left- and right-choice representing neurons, we defined the preferred side of each

neuron based on the choice index (STAR Methods) (Figure 5A). For the neural activity before sound, the choice index was analyzed based

on the choice in the previous trial. In the repeating condition, left-side preferred neurons had a larger activity in the previous left- than pre-

vious-right-correct trials, whereas right-side preferred neurons had a large activity in previous right-correct trials. In contrast, in the alternating

condition, asmicewere required to switch choices in 80% of trials, we reversed the definition of neurons from the repeating condition: the left-

and right-side preferred neurons had a large activity in the previous-right- and previous-left-correct trials, respectively. These neurons had

significantly different activities between the previous left- and right-correct choice trials (p < 0.01 in the Mann‒Whitney U test).

In the alternating condition, we could not clearly separate whether mice used the f-memory model or hybrid model for choices (Figure 3).

The f-memorymodel requiredmemorizing the previous choice to compute the values, while the inference-based strategy in the hybridmodel

required memorizing the previous sound category as the hallmark of the true state (STAR Methods). We, therefore, investigated whether the

neural activity represented the previous choice or sound by comparing the choice indices before sound presentation, following previous cor-

rect and incorrect trials. When neurons represented sound categories, the correlations of the choice indices between correct and incorrect

trials were negative. Conversely, when neurons represented choices, the correlations were positive.28,45 In the repeating condition, the choice

indices of neurons in the OFC and AC were positively correlated between after previous correct and incorrect trials, suggesting the previous

choice representations (Figures 5D and 5E, top). In contrast, in the alternating condition, although the neurons in OFC represented the pre-

vious choice, the neurons in AC showed a negative correlation in a linear regression analysis (b = �0.027) (Figures 5D and 5E, bottom). To

confirm whether the AC changed the representation between the repeating and alternating conditions, we investigated whether the choice

indices between the two conditions weremodeledwith either one identical linear regression or twodifferent regressions. Although the choice

index in theOFCfit to the one regression (Bayesian information criterion (BIC) in one and two regressions:�1465 and�1459), the choice index

in the AC fit to the two independent regressions (BIC: �828 and �839).

The hybrid model parameterized the ratio of model-free and inference-based strategies (STAR Methods, Figure 2B). We found that the

ratio of the inference-based model varied across sessions (Figure 5F). We thus divided the sessions into half by the median ratio (0.36) and
8 iScience 27, 111182, November 15, 2024
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Figure 5. Neural activity before sound onset depends on previous events

(A) Analysis of neural activity between �0.6 and 0 s from sound onset. Right panels show the definition of left- and right-preferred neurons before sound.

(B) Average activity of example neurons from OFC before sound onset.

(C) Scatterplot comparing the absolute value of choice indices for previous and current trials in the OFC (STAR Methods). The previous choice indices in correct

trials were higher than the current choice indices, suggesting that the neurons represented previous choices (blue and red dots: left- and right-side preferred

task-relevant neurons, p < 0.01 in the Mann‒Whitney U test; black dots: non-side-preferred task-relevant neurons; p value in the Wilcoxon signed rank test).

(D) Choice indices of task-relevant neurons in theOFC. The choice indices of OFC neurons had positive correlations between the correct and incorrect trials in the

previous trials, suggesting the previous choice representation. p values show the significance of regression coefficients. One linear regressionwas fit to the choice

indices in both the repeating and alternating conditions (Bayesian information criterion (BIC) in one and two regressions: �1465 and �1459). The activity of left-

and right-side preferred task-relevant neurons is shown. Black lines show the slope of regression analysis.

(E) Choice indices of task-relevant neurons in the AC. Two independent linear regressions were fit to the choice indices in the repeating and alternating conditions

(BIC in one and two regressions: �828 and �839). Colored lines show the slope of regression analysis.

(F) Ratio of the inference-based strategy in the hybrid model at the overtrained phase in each session of the alternating condition. Boxplot is the same as

Figure 1C.

(G) Comparison of the choice-index slope between the sessions with high and low ratios of the inference-based strategy. The sessions were categorized based on

the median ratio (0.36). The number of sessions was different from (F), as we only analyzed the sessions with AC recordings. The inset shows the regression

coefficients, number of neurons, and number of sessions. Magenta and black lines show the slopes of the regression analysis for sessions with high and low

ratios of inference-based strategy, respectively.
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independently analyzed the regression coefficients in the choice index (Figure 5G). The regression coefficient was significantly negative in the

sessions with the high ratio of inference-based strategy (b=�0.14,p= 0.031). These results suggest that theAC is a candidate brain region for

representing inference-based strategy.

Neurons in wide brain regions modulate activity according to upcoming choices before sound onset

Next, we investigated whether the neural encoding of previous choices wasmodulated by the upcoming choice in the current trial (Figure 6A). In

the repeating condition, when the previous choice was the preferred choice, the OFC neurons significantly increased the activity in current trials

whenmice repeated the choice rather thanwhen they switched their choice even before the soundwas presented (Figure 6A, top left; Figure 6B).

Conversely, in the alternating condition, the OFC neurons increased the activity when the mice switched from the previous choice (Figure 6A,

bottom left). When the previous choice was the nonpreferred side, neurons in both the repeating and alternating conditions showed opposite

activity compared to the preferred previous choice (Figure 6A, right). The neurons in theAC, PPC, STR, andM1 showed activity patterns similar to

those of the OFC (Figures 6C, 6D, S5B, and S5C). These global neural modulations, which depending on the choice sequence, were similarly

observed for the current upcoming correct or incorrect choices (Figures S5D and S5E), and the modulations were larger in the incorrect trials.

In the PPC in repeating condition, we observed only 4 neurons which had significantly different activities between the left- and right-correct

choice in previous trials (p < 0.01 according to the two-sided Mann‒Whitney U test). We thus did not show the result in the PPC (Figure 6C).

As the facial movements were represented in the task-relevant neurons (Figure S4D), we used a GLM to quantify whether the neural mod-

ulations depending on current choices (Figures 6C and 6D) were independent of the facial motion strengths (STARMethods). The GLM inves-

tigated whether the neural activity before sound was correlated to the choices and facial motion strengths. We found that the facial motion

strengths did not affect the overall results of neural modulations in the alternating condition (Figure 6E). These results suggest that the neu-

rons in multiple brain regions not only represented the previous choice but also modulated the activity according to the upcoming choice.
iScience 27, 111182, November 15, 2024 9
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Figure 6. Neural activity before sound onset depends on upcoming choices

(A) Average activity during repeated choices (x axis) and switched choices (y axis) between �0.6 and 0 s from sound onset (p value in the Wilcoxon signed rank

test). The activity of left- and right-side preferred task-relevant neurons is shown. The definition of left- and right-preferred neurons was same as Figure 5A.

(B) Average traces of neurons in the OFC in a current trial before sound onset. Neurons were identical to (A). The traces were categorized based on the definition

of preferred neurons in Figure 5A. Data are represented as mean.

(C and D) The difference in average activity between the repeated and switched choices before sound onset. Because we only detected 4 side-preferred task-

relevant neurons from the PPC in the repeating condition, we did not show the data from the PPC. Boxplots are the same as Figure 1C, but outliers, defined as

values beyond 1.5 times the interquartile range, were excluded from the plots. The numbers in parentheses show the number of left- and right-side-preferred

neurons. *p < 0.05 in the Wilcoxon signed rank test.

(E) Correlation between the neural activity and choice sequences in alternating sessions with the facial-movement recording (77 sessions in 5 mice). Regression

analysis investigated how the neural activity correlated to the preferred and non-preferred choices and the facial motion strengths. D regression coefficient in y

axis shows the difference in regression coefficients between the repeated and switched choices. The parentheses show the number of left- and right-side-

preferred neurons. *p < 0.05 in the Wilcoxon signed rank test. Boxplots are the same as C and D.
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The activity of neurons during sound presentation depends on the choice sequence

During the sound presentation, we identified 785 and 2535 neurons in the repeating and alternating conditions, respectively, that exhibited a

significant increase in activity (21.81% and 27.79%, respectively, of the task-relevant neurons) (Figure 7A). In the repeating condition, the ac-

tivity of the example neuron in the OFC gradually increased when the previous trial was right-rewarded, followed by a right choice in the cur-

rent trial (Figure 7B, top). In the alternating condition, an exampleOFCneuron increased the activity when the choicewas switched from left to

right (Figure 7B, bottom). For the neural activity during sound, we defined the preferences of neurons based on the choice in the current trial

(Figure 7A). The choice indices of neurons in the OFC, PPC, STR, HPC, and M1 were positively correlated between the correct and incorrect

trials, suggesting the choice encoding (Figures 7C and S6A). In contrast, the choice indices of AC neurons were negatively correlated with

each other, suggesting that they were involved in sound encoding (Figure S6A).

We investigated whether the activity of neurons was changed by the choice sequence (Figure 7D). In the repeating condition, the OFC

neurons showed increased activity when the preferred choice was repeated compared with when the choice was switched to the preferred

side (Figure 7D, top left; Figure 7E). In contrast, in the alternating condition, the OFC neurons increased the activity when the choice was

switched to the preferred side (Figure 7D, bottom left). In the nonpreferred choice, the OFC neurons showed opposite activity than in the

preferred choice condition in both the repeating and alternating conditions (Figure 7D, right). Similar to the OFC, the other recorded brain

regions exhibited choice-sequence-dependent activity (Figures 7F, 7G, S6B, and S6C), independent of the facial motions (Figure 7H), similarly

between the correct and incorrect choices (Figures S6D and S6E). Given that repeated and switched choices had high reward expectations in

the repeating and alternating conditions, respectively, these results suggest that the neurons in various brain regions encode reward expec-

tations in different behavioral strategies.

Global neural encoding of unexpected outcomes in the repeating but not in the alternating condition

At the time of the outcome (Figure 8A), we identified 1895 and 4491 task-relevant neurons in the repeating and alternating conditions, respec-

tively (52.56% and 49.08% of the task-relevant neurons). The preferences of neurons were defined based on the choice in the current trial. An

example OFC neuron in the repeating condition showed increased activity when the mouse switched its choice from right to left rather than

when it repeated the left choice (Figure 8B, top). In contrast, in the alternating condition, the OFC neuron did not show choice sequence-

dependent activity (Figure 8B, bottom). The choice index during the outcome timing suggested that all the recorded regions had choice en-

coding (Figures 8C and S7A).

We analyzed whether the change in activity of the neurons depended on the previous choice (Figure 8D). In the correct trials in the

repeating condition, the OFC neurons exhibited increased activity for the preferred choice when the choice was switched compared with
10 iScience 27, 111182, November 15, 2024
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Figure 7. Neural activity during sound presentation

(A) Analysis of neural activity during 0.6 s of sound. Right panels show the definition of left- and right-preferred neurons during sound.

(B) Average activity of example neurons in the OFC during sound.

(C) Choice indices of task-relevant neurons. The choice indices of OFC neurons had positive correlations between the correct and incorrect trials, suggesting

choice representation. Data plots are the same as Figure 5.

(D) Average activity of each neuron during the repeated (x axis) and switched choices (y axis) (p value in the Wilcoxon signed rank test).

(E) Average activity of neurons in the OFC. Data are represented as mean.

(F andG) The difference in average neural activity between the repeated and switched choices during sound. The parentheses show the number of left- and right-

side-preferred neurons. *p < 0.05 in the Wilcoxon signed rank test. Boxplots are the same as Figures 6C and 6D.

(H) Correlation between the neural activity and choice sequences during sounds in the alternating condition with facial-movement recording (77 sessions in 5

mice). Data plots and analyses are the same as Figure 6E. *p < 0.05 in the Wilcoxon signed rank test. Boxplots are the same as Figure 6E.
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when it was repeated (Figure 8D top left, 8E, 8F). In contrast, in the incorrect trials, OFC neurons exhibited greater activity when choices were

repeated than when choices were switched (Figure S8). Given that reward expectations were lower in switched choices than in repeated

choices, these results suggest that the neurons in the OFC encode unexpected outcomes. We found similar activity patterns in the AC

and PPC (Figures 8F, S7, and S8), suggesting that multiple brain regions globally represented unexpected outcomes for the model-free

strategy.

In contrast, in the alternating condition, none of the recorded brain regions except the HPC showed choice sequence-dependent activity

in the correct trials (Figures 8G and S7), irrespective of the facial motions (Figure 8H). In the incorrect trials, only the HPC and PPC neurons

exhibited a change in activity based on the reward expectation (Figure S8). During the overtrained phase of electrophysiological neural

recording, the mice exhibited experience-dependent choice updates in the repeating condition, while their behavior was stable in the alter-

nating condition (Figures 3A and 3B). These results were consistent with the activity at the outcome time, in which the activity was modulated

by the reward expectation mainly in the repeating condition.

DISCUSSION

To investigate the neural representation of model-free and inference-based strategies in multiple brain regions, we used a tone frequency

discrimination task in head-fixed mice with different transition probabilities in the tone category. We found that mice tended to repeat pre-

viously rewarded choices even when the tone category was randomly selected in the neutral condition (Figure 1C). This default strategy was

continuously used in the repeating condition to properly bias the choices. In contrast, mice took several sessions to reverse the choice biases

in the alternating condition (Figure 1G).
iScience 27, 111182, November 15, 2024 11
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Figure 8. Neural activity at outcome timing

(A) Analysis of neural activity between 0 and 1.0 s from choice and outcome. Data presentations are consistent with those in Figures 5, 6, and 7.

(B) Average activity of example neurons during the outcome including both correct and incorrect trials.

(C) Choice indices of task-relevant neurons. The choice indices of OFC neurons suggested the choice representation (blue, red, and black dots: left-, right-, and

non-side-preferred neurons, respectively).

(D) Comparison of activity between the repeated and switched choices (p value in the Wilcoxon signed rank test).

(E) Average activity of neurons in the OFC. Data are represented as mean.

(F and G) The difference in average activity between the repeated and switched choices in the current correct trials. Outliers are not shown in the plots. The

parentheses show the number of left- and right-side-preferred neurons. *p < 0.05 in the Wilcoxon signed rank test. Boxplots are the same as Figures 6C and 6D.

(H) Correlation between the neural activity and choice sequences in current correct trials in the alternating condition with the facial-movement recording

(77 sessions in 5 mice). *p < 0.05 in the Wilcoxon signed rank test. Boxplots are the same as Figure 6E.
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An RL model estimating the expected outcome of each choice fit the mice’s choices in the neutral and repeating conditions, suggesting

that the default model-free strategy was used in the repeating condition. In the alternating condition, the mixed strategy of model-free and

inference-based, as well as the strategy of model-free memory-based model (f-memory model), fit the mice choices. The mixed ratio grad-

ually shifted from the model-free to inference-based strategy which determined a hidden context by estimating the transition probability of

tone category (Figure 2). During the overtrained phase with an electrophysiological recording with Neuropixels, the behavior of the mice was

fit to the model-free strategy under the repeating condition (Figure 3E). In contrast, the hybrid strategy and the f-memorymodel equally fit to

the mice choices in the alternating condition. Thus, it was difficult to identify the strategy of mice in the alternating conditions by only

observing the behavior.

The inference-based strategy requiredmemorizing the previous sound category, or the true rewarded condition, to decide choices, while

the f-memory model memorized the previous choice for value computing (STAR Methods). We therefore investigated whether any brain re-

gion represented the previous sound category in the alternating condition, while it represented the previous choice in the repeating condition

for model-free RL. We found that, before sound presentations, neurons in the AC, but not in the OFC, shifted the representations from pre-

vious choices to previous sounds from the repeating to the alternating condition (Figures 5D and 5E). These results show that the AC is sur-

prisingly a candidate brain region for representing the inference-based strategy.

In general, the neurons in all the recorded regions, including the OFC, PPC, HPC, STR, M1, and AC exhibited increased activity when the

preferred choices or tones expected a large reward probability, suggesting that brain-wide encoding of reward expectations occurredboth in

the repeating and alternating conditions (Figures 6, 7, and 8). In contrast, at the time of the outcome, the neurons exhibited increased activity
12 iScience 27, 111182, November 15, 2024
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with unexpected outcomes only in the repeating condition (Figure 8). This was consistent with the behavioral data: during the overtrained

electrophysiological phase, the choices of the mice were stable under the alternating condition, while the choices were updated by past ex-

periences in the repeating condition (Figure 3). Our results suggest the global neural encoding of reward expectations in different behavioral

strategies.

The behavioral strategy of repeating a previously rewarded choice, such as the ‘‘win-stay lose-switch strategy,’’ has been observed in pre-

vious studies with humans,46 primates,47 and rodents.33 We found that mice tended to repeat rewarded choices even when the sound stimuli

were randomly presented in the neural condition (Figure 1C). This default strategy was continued to optimize choices in the repeating con-

dition, resulting in the rapid acquisition of proper choice biases. In contrast, mice required several sessions to achieve alternating choice

biases in the alternating condition (Figures 1G and S1). A previous study involving a probabilistic foraging task showed that mice used a stim-

ulus-bound model-free strategy in the early phase of training and gradually shifted this strategy to an inference-based strategy.8 This was

consistent with our results in the alternating condition in which the state-based model gradually fit the mouse behavior better than

model-free RL, although there was another important possibility that the mice added memory-based states to optimize the choices in alter-

nating conditionwithmodel-free strategy (Figure 2H).34 Similar to our behavioral task, previous studies in free-moving rodents used a percep-

tual decision-making task with a transition probability in the sensory category8,33. These studies trained one animal both in the repeating and

alternating conditions and observed the use of a task-specific inference-based strategy in both conditions. In contrast, we trained separate

head-fixed mice in either the repeating or alternating condition and found differences in learning speed and strategy between the two task

conditions (Figures 1G and 2). Although there were two candidate behavioral strategies in the alternating condition, we verified that mice had

different strategies between the repeating and alternating conditions (Figures 2 and 3).

The electrophysiological recordings showed that the choices and outcomes were globally represented in the cortical and subcortical re-

gions, while the sound stimuli were selectively represented in the auditory cortex during sound presentation, irrespective of the task condition

(Figures 4E and 4F). We also found that the modulation of neural activity based on reward expectations was globally observed in the cortical

and subcortical regions for both the repeating and alternating conditions (Figures 6, 7, and 8). Previous studies have shown that theOFCplays

an essential role in both model-free48 and inference-based flexible behavior.8 The AC neurons encode task rules and reward expecta-

tions.18,49,50 The HPC, PPC, and STR are involved in either themodel-free or model-based strategy.26,51,52 These studies led to the hypothesis

that behavioral strategies are multiplexed and globally encoded in the brain.15,27,29 However, as many studies have targeted a specific brain

region for a specific behavioral strategy, it was unclear whether the neural representations of model-free and inference-based strategies were

widely distributed in the brain. Our study suggested that, at least in the overtrained phase, the reward expectations in both the repeating and

alternating conditions were globally represented in the brain.

At the outcome timing, in the repeating condition, we found that the neural activity of OFC, PPC, HPC, and AC increased when the mice

switched the choice and were rewarded (Figure 8). Switching behavior was uncommon in the repeating condition; thus, reward expectations

for switching were lower than those for repetition. These neural representations of unexpected outcomes are important for computing a

reward prediction error for value updating in the model-free strategy.5,53,54 In the alternating condition, we did not observe neural encoding

of unexpected outcomes, possibly because of stablemouse behavior (Figure 3B). Additional studies are required to investigate how the infer-

ence-based strategy is computed in the brain. Additionally, it is important to investigate neural representation during the learning phase to

determine how the different strategies are learned and acquired in the brain.

In summary, we found thatmice used the default model-free strategy to bias choice in both the neutral and repeating conditions, while the

choice behavior of mice changed to an inference-based strategy in the alternating condition. In the overtrained phase, the neural activity of

the frontal and sensory cortices, hippocampus, and striatum was correlated with the reward expectation of both the model-free and infer-

ence-based strategies. Neurons in multiple brain regions exhibited increased activity with unexpected outcomes in the repeating condition.

These results propose the global encoding of different behavioral strategies in the brain.
Limitations of the study

We did not find clear behavioral evidence of using inference-based strategy in the alternating condition (Figure 3), although the simulated

choice behaviors in the hybridmodel captured the effects of past events on current choices in the alternating condition (Figure 3H). We found

that the AC tended to represent the sound categories of previous trials, which might be required for the inference-based strategy (Figure 5).

Further experiments with neural recording andmanipulation in sensory cortices with different behavioral tasks are essential to investigate the

neural circuit of inference-based strategy. In each session, we found that the behavioral strategies in the repeating and alternating conditions

were clearly separated (Figure 3G). However, detailed analyses are required to test whether the behavioral strategy changed trial-by-trial

within a session, as reported in previous studies.14,15 In addition to using computational models to analyze different behavioral strategies

in repeating and alternating conditions, further study is required to investigate the neural adaptation to the stimulus sequences in both con-

ditions. Additional experiments with detailed recording of facial and body movements are also important to investigate the neural encoding

of different behavioral strategies (Figure S4).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Behavioral and electrophysiology data This paper, Mendeley Data https://doi.org/10.17632/vf4b4bmzjp.1

Experimental models: Organisms/strains

CBA/J mouse Jackson Laboratory Jax stock 000656; RRID: IMSR_JAX: 000656

Software and algorithms

MATLAB 2022b Mathworks https://jp.mathworks.com

Code This paper, Github https://github.com/funamizu-lab/

Wang_et_al_2024.git

KiloSort-3 Cortex lab https://github.com/cortex-lab/KiloSort

Phy Cortex lab https://github.com/cortex-lab/phy

Affinity Designer 2.1 Serif https://affinity.serif.com

Other

Bpod framework (control for behavioral task) Sanworks r0.5

Microphone for sound calibration Brüel and Kjaer Type 4939

Speaker Avisoft Bioacoustics #60108
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All animal procedures were approvedby theAnimal Care andUseCommittee at the Institute forQuantitative Biosciences (IQB), the University

of Tokyo. Mice were housed in a temperature-controlled room with a 12 h/12 h light/dark cycle. All the experiments were performed during

the dark cycle.

Male CBA/Jmice (n = 26, Strain #000656; The Jackson Laboratory), aged 8 to 15 weeks at the start of behavioral training, were used for the

experiments. 26 mice were allocated for behavioral experiments. 14 out of the 26mice were subjected to electrophysiological recording after

the behavioral experiments. Before surgery, 3 mice were housed in one cage. Mice were allowed ad libitum access to food, while water intake

was restricted to 1.5 mL per day. On weekends, the mice were given 3 mL of extra water and free access to 1.5% citric acid water to prevent

dehydration. Mice were caged in isolation after craniotomy.
METHOD DETAILS

Surgeries

The surgical procedures were described in our previous research.1,28 In summary, the surgery had two steps. First, a custom-designed head

bar was implanted for behavioral training. Second, a craniotomy was performed for electrophysiological recording.

For head bar implantation, the mice were anesthetized via intraperitoneal injection of a mixture of medetomidine (0.3 mg/kg), midazolam

(4.0 mg/kg), and butorphanol (5.0 mg/kg). Meloxicam (2.5 mg/kg) and eye ointment were also used. Mice were placed in a stereotaxic appa-

ratus. The scalp was removed above the entire cortical area. We cleaned the skull with povidone iodine and hydrogen peroxide.We attached

the head bar to the skull with Superbond adhesive (Sun Medical or Parkell S380) and cyanoacrylate glue (Zap-A-Gap, PT03).43

For craniotomy, the mice were anesthetized with isoflurane (2% for induction, 1.5% for maintenance). We targeted 6 brain regions: the

OFC, STR, M1, PPC, HPC, and AC. The OFC sites were +2.6 mm anterior-posterior (AP) and G1.4 mm medio-lateral (ML) from bregma.

The STR and M1 sites were +0.8 mm AP and G1.5 mm ML. The PPC and HPC sites were �2.0 mm AP and G1.7 mm ML. The AC sites

were �3.0 mm AP and G3.8 mm ML (Figure S2). We drilled a small hole (0.5–0.8 mm in diameter) through cyanoacrylate glue and the skull

to expose the brain surface and removed the duramater. We covered the brain surface with agar dissolved in PBS followed by silicone oil and

Kwik-Sil (World Precision Instruments) to prevent drying.
Behavior training

Behavioral apparatus

We performed behavioral experiments inside a custom-made training box or a sound-attenuating booth (O’hara, Inc.). After recovering from

the head bar implantation, the mice were head-fixed and placed on a custom cylinder treadmill. We presented sound stimuli pre-calibrated

with a Brüel and Kjaer microphone (Type 4939) from an Avisoft Bioacoustics speaker (#60108) positioned to the right front of the mice. Two
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spouts were placed in front of the mice to deliver sucrose water. The licking behavior of the mice was detected using electrical or infrared

sensors.30 We used custom-made MATLAB (MathWorks) programs on Bpod r0.5 (https://sanworks.io) on Windows OS.

Tone frequency discrimination task with probabilistic alternation of tone category with transition probabilities

Like in our previous studies,1,28 each trial began by retracting the two spouts away from the mice. After a random interval of 1–2 s, a sound

stimulus in the form of a tone cloud was presented.30–32 The intensity of the tone cloud in each trial remained constant but was sampled from

60, 65, or 70 dB SPL (the sound pressure level in decibels with respect to 20 mPa). The duration of the tone cloudwas held constant at 0.6 s. The

tone cloud was a mixture of low-frequency (5–10 kHz) and high-frequency (20–40 kHz) tones.

After the sound ended, the two spouts were immediately displayed to the mice. Mice selected either the left or right spout depending on

the dominant tone frequency. The association between the tone category and rewarded choice was determined for each mouse. A correct

choice provided 2.4 mL of 10% sucrose water. An incorrect choice triggered a 0.2-s noise burst from the speaker. If themouse failed to select a

spout within 15 s, a new trial started.

Our behavioral task had 4 steps.

1) The initial step involved training the mice to discriminate between the 90% low-frequency and 90% high-frequency tone clouds. We

trained 26 mice in the initial step.

2) After the mice were able to discriminate the sounds, the neutral condition started. We used 6 tone clouds (0, 20, 35, 65, 80, and 100%

high-frequency tones) with presentation probabilities of 25%, 12.5%, 12.5%, 12.5%, 12.5%, and 25%, respectively. The neutral condition

had a transition probability ’p’, which controlled how often the tone category of the previous trial alternated in the current trial. We set

‘p = 0.5’ to randomly present the tone category in each trial. 7 out of the 26 mice skipped step 2 and directly completed step 3.

3) After the mouse experienced at least one training session in the neutral condition or when the percentages of correct responses for

tone clouds that were 90% high tones and 90% low tones were both greater than 80% in the initial step, we assigned the mouse to

either the repeating or alternating condition (22 out of 26 mice). In both conditions, we used 6 tone clouds (0, 25, 45, 55, 75, and

100% high-frequency tones) with presentation probabilities of 25%, 12.5%, 12.5%, 12.5%, 12.5%, and 25%, respectively. The repeating

condition had a transition probability of ‘p = 0.2’, in which the same tone category was frequently presented. In contrast, in the alter-

nating condition, we set the transition probability as ‘p= 0.9’, where the tone category was alternated every trial in 90% of trials. In both

the repeating and alternating conditions, each session started with 40 trials of only 100% low- or high-tone clouds. The repeating con-

dition switched the tone category in every 10 trials, while the alternating condition switched the category every trial. After the first 40

trials, the above conditions for the 6 tone clouds and transition probabilities started. 3 mice did not show transition probability-depen-

dent choice biases, as analyzed with a psychometric function (STAR Methods, Behavioral analysis),1 in the alternating condition after

more than 11 sessions and were not used for the analyses.

4) After the mice experienced at least 9 sessions of either the repeating or alternating condition, we started the prerecording step. This

step gradually increased the interval between the end of the sound and the spout approaching until the interval reached 0.5 s. The

transition probability of the alternating condition was set to ‘p = 0.8’. 14 mice completed the prerecording step.
Electrophysiological recording and histology

The electrophysiological recording performed with Neuropixels 1.0 (IMEC), and the histological analysis were described in detail in our pre-

vious study.28 In summary, we inserted the Neuropixels probe 1 to 3 times in each hole in both the left and right hemispheres of the brain. For

theOFC recordings, the probewas tilted 5� in themedial direction. For theAC recordings, the probewas tilted 18� in the lateral direction. The
angle was 0� for the PPC, HPC, STR, and M1 recordings. To identify the probe location in the post hoc fixed brain, the probe was soaked in a

diluted solution of CM-DiA or DiI (Thermo Fisher Product #D3883 or #V22888). The probewasmanually lowered to the brain surface through a

mixture of agar and PBS at a speed of 120 mm/min (MPC-200 Controller and ROE, Sutter Instrument).55 The brain surface was defined based

on the depth at which spikes were initially observed at the recording electrodes. The 384 electrodes from the tip of the Neuropixels probe

were used for recording. TheOpen-Ephys GUI acquired the neural data at a sampling rate of 30 kHz with a gain of 500 (PXIe acquisition mod-

ule, IMEC). The task events, including treadmill rotations, were sampled at 2.5 kHz (BNC-2110, National Instruments). After the recording was

complete, the probe was slowly extracted, and the hole was covered with Kwik-Sil.

After the electrophysiological recording, themice were deeply anesthetized with isoflurane (5%) and further anesthetized with amixture of

1.5 mg/kg medetomidine, 20 mg/kg midazolam, and 25 mg/kg butorphanol. Mice were perfused with 10% formalin solution. Brain sections

were sliced with a vibratome to a thickness of 100 mm (VT1000S; Leica Biosystems) and mounted with DAPI mounting medium (Vector Lab-

oratories, Cat. No. H-1200). The probe locations were captured with a confocal laser scanning microscope (FV3000, Olympus) at 43 magni-

fication (Figure 4).

Data analysis

Number of mice and sessions in behavioral tasks

We used the sessions for analyses for which (i) the correct response rate of the mouse for both the 100% low and 100% high tones exceeded

75% and (ii) the total reward amount in one session was above 600 mL. Under neutral conditions, we analyzed 28 sessions from 16 out of
18 iScience 27, 111182, November 15, 2024
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19 mice (Figure 1); the sessions in 3 mice did not exceed the accuracy rate of 75%. Under the repeating and alternating conditions, we

analyzed 113 and 141 sessions, respectively, from 8 to 11 mice (Figure 1). The behavioral results of (i) all the sessions (neutral condition: 35

sessions in 19 mice; repeating and alternating conditions: 139 and 165 sessions from 8 to 11 mice) and (ii) the sessions with correct rates

over 80% (108 and 117 sessions from 8 to 10 mice) are shown in Figure S1.

Behavioral analysis

We analyzed the choice behavior of mice with a psychometric function based on our previous study.1 The psychometric function models the

perceptual uncertainty of mice with a truncated Gaussian ranging between 0 and 1.56 Our model investigated whether the choice biases of

mice depended on the rewarded side in the previous trial. We tested whether the psychometric function with a choice-bias parameter better

fit themouse choices than that without the parameter (p< 0.01 in the likelihood ratio test).We investigatedwhen themouse started to bias the

choices in the repeating and alternating conditions (Figure 1G).

We also investigated how the events in past trials affected the choice in current trial with a logistic regression (MATLAB: fitglm) (Figures 1E,

1I, and 3C):34

Pðright; tÞ =
1

1+e� yðtÞ
yðtÞ = b0 + b1ErightðtÞ +
Xn
i = 1

fb2;iCðt � iÞ + b3;i Iðt � iÞg (Equation 1)

Pðright; tÞwas the probability of choosing right at trial t. ErightðtÞwas the proportion of tone frequency associatedwith a rightward choice in

a tone cloud.Cðt � iÞ and Iðt � iÞ represent the correct and incorrect choices at the trial t � i.C was�1 and 1 for the previous correct left- and

right-choices, respectively, while 0 for the incorrect choices. I was �1 and 1 for the previous incorrect left- and right-choices, while 0 for the

correct choices. b0;b1; b2;i; b3;i were the regression coefficients. We analyzed the likelihood in each session L with Equations 14 and 15 (STAR

Methods, Model Comparison). We used the likelihood ratio test to quantify whether the additional past trials from 1- to 5-back (i.e., from n= 1

to n = 5) improved the choice prediction (Figures 1H and S1I).28 We also investigated the regression coefficients of model with 5-back trials

(Figure 1I).

Behavioral model

The behavioral models were based on signal detection theory (SDT). The behavioral task required the mice to estimate the hidden

state (S) of left-rewarded (S = L) or right-rewarded (S = R) based on the sensory evidence of the tone cloud. SDT shows that

both the expected outcome in each state and the belief state probability are essential for optimizing choices.1,2 The following

model-free reinforcement learning (RL) model and state-based model estimated the expected outcome and state probability,

respectively.

Model-free reinforcement learning (RL) model. The RL model updated the expected outcome of left and right choice in each stateQa;S ,

defined as the prior value,1,28,57 while the belief state probability was fixed.We denoted the choice as a. We assumed that there were only left-

rewarded and right-rewarded states; the prior values satisfied the criteriaQleft;R = Qright;L = 0. We simplifiedQleft;L andQright;R asQleft and

Qright , respectively. The model used prior values to compute the decision threshold x0 in each trial (t) with a softmax function and an inverse

temperature parameter b:

x0ðtÞ =
expðbQleftðtÞÞ

expðbQleftðtÞÞ+exp
�
bQrightðtÞ

� (Equation 2)

The softmax equation modeled a perceived reward size that might be different from the actual amount of water. The right-choice prob-

ability at trial t, Pðright; tÞ, was estimated from a perceptual uncertainty s and a bias parameter d:

Pðright; tÞ =

Z 1

x0ðtÞ+d
ZN
�
x
��ErightðtÞ;s2

�
dx (Equation 3)

Eright(t) was the proportion of tone frequency associated with a rightward choice in a tone cloud. Z truncated the Gaussian distribution

between 0 and 1, here and hereafter. We updated the prior value with forgetting Q-learning17:

Qaðt + 1Þ =
�
QaðtÞ+aðrðtÞ � QaðtÞ Þ if a = aðtÞ
ð1 � aÞQaðtÞ if asaðtÞ (Equation 4)

where a was the learning rate. rðtÞ was the outcome at trial t. The initial prior value for each choice was the amount of reward (i.e., 2.4).
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State-based model. The state-based model had the belief of state probability PðSÞ in each trial by estimating and updating the transition

of state Ptransition in every trial.7 The prior values were fixed. Bayesian inference provided the decision threshold of choice based on PðSÞ. First,
the likelihood of a sensory stimulus x in state Si, P(x|Si), was defined as follows:

PðxjSiÞ =

Z 1

0

P
�
Ej

��Si

�
ZN
�
x
��Ej ;s

2
�
dEj (Equation 5)

PðEj

��SiÞ was the probability of tone cloud Ej in a given state Si. swas a free parameter for perceptual uncertainty. The posterior probability

P(Si|x) was calculated with the Bayes rule:

PðSijxÞfPðxjSiÞPðSiÞ (Equation 6)

The decision threshold x0 satisfied PðSLjx0Þ = PðSR jx0Þ. We used a softmax equation to add flexibility to the threshold x0 with an inverse

temperature parameter b:

x0 =
x0

expðbx0Þ+expðbð1 � x0ÞÞ (Equation 7)

Based on x0 and the bias choice parameter d, the model estimated the choice in each trial with Equation 3.

After the model received the outcome at trial t, the state transition Ptransiton was updated based on the true state of trial t and t-1:

Ptransitionðt + 1Þ =
�

PtransitionðtÞ+að1 � PtransitionðtÞ Þ if SiðtÞsSiðt � 1Þ
PtransitionðtÞ+að0 � PtransitionðtÞ Þ if SiðtÞ = Siðt � 1Þ (Equation 8)

where a was the learning rate. The model computed the belief state of trial t+1 based on the transition probability and the true state at t. The

initial prior belief of left- and right-rewarded states was 0.5. The initial transition probability was 0.5 for the learning phase of the repeating and

alternating conditions, while it was the true transition probability for the overtrained phase.

Hybrid model. The hybrid model computed the hybrid value Hybrida by combining the prior value Qa in the RL model and the belief of

state probability PðSÞ at trial t.

Hybridleft;t = ð1 � PmixÞQleft;t

.�
Qleft;t + Qright;t

�
+ PmixPðLÞt
Hybridright;t = ð1 � PmixÞQright;t

.�
Qleft;t + Qright;t

�
+PmixPðRÞt (Equation 9)

Pmix was the mixed ratio of state probability in the hybrid value.

The hybrid model used the hybrid value, instead ofQa, to compute the decision threshold x0 with the softmax function of Equation 2 and

estimated the right-choice probability with Equation 3. The prior value was updated with forgetting Q-learning with Equation 4, while the

transition probability was updated with Equation 8 for the belief-state computation.

Memory-based model-free RL model (memory model and forgetting memory model). Wemodeled themice choices with a memory-

based model-free RL model (memory model) based on a previous study.34 The memory model computed the decision threshold x0 and the

right-choice probability at trial t, Pðright;tÞ, in the same way as the RL model did (Equations 2 and 3). However, the prior values depended on

the current choice and the memory of the choice in previous trial34:

Qa = qa +
X

j˛ fleft;rightg
Mj$qa;Mj

(Equation 10)

whereqa was the prior value based on the current choice a. qa;Mj
was the value based on the choice in the current (a) and the previous trial (Mj ).

Mleft and Mright were the memory strength for the previous correct trial:

Mleft =

�
l if prev: choice was left and rewarded
0 otherwise
Mright =

�
l if prev: choice was right and rewarded
0 otherwise

(Equation 11)

lwas bounded between 0 and 1 (no use and perfect knowledge of the previous rewarded choice). We updated the values with a standard

value updating in the RL model34:

qaðt + 1Þ =
�
qaðtÞ+aðrðtÞ � QaðtÞ Þ if a = aðtÞ
qaðtÞ if asaðtÞ
20 iScience 27, 111182, November 15, 2024
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qa;Mleft
ðt + 1Þ =

�
qa;Mleft

ðtÞ+a$Mleft$ðrðtÞ � QaðtÞ Þ if a = aðtÞ
qa;Mleft

ðtÞ if asaðtÞ (Equation 12)
qa;Mright
ðt + 1Þ =

(
qa;Mright

ðtÞ+a$Mright$ðrðtÞ � QaðtÞ Þ if a = aðtÞ
qa;Mright

ðtÞ if asaðtÞ

Wequantified that our version of memorymodel better fit to the mice choices in our study compared to the original model in the previous

study34 (average Bayesian information criterion (BIC) of modified and original models: repeating condition with 51 sessions, 369.7 and 436.1,

p = 9.1e-9 in the Wilcoxon signed rank test; alternating condition with 127 sessions, 477.0 and 530.8, p = 2.5e-22).

We also developed a forgetting-memory model (f-memory model) by updating the values with forgetting Q-learning instead of

Equation 12:

qaðt + 1Þ =
�
qaðtÞ+aðrðtÞ � QaðtÞ Þ if a = aðtÞ
ð1 � aÞqaðtÞ if asaðtÞ
qa;Mleft
ðt + 1Þ =

�
qa;Mleft

ðtÞ+a$Mleft$ðrðtÞ � QaðtÞ Þ if a = aðtÞ
ð1 � aÞqa;Mleft

ðtÞ if asaðtÞ (Equation 13)
qa;Mright
ðt + 1Þ =

(
qa;Mright

ðtÞ+a$Mright$ðrðtÞ � QaðtÞ Þ if a = aðtÞ
ð1 � aÞqa;Mright

ðtÞ if asaðtÞ

Previous studies show that the choice behavior of rodents fit to a forgetting Q-learning than a standard Q-learning model.16,58,59

Model comparison

We defined the likelihood l(t) from the estimated choice probability Pðright; tÞ in each trial:

lðtÞ =
�
Pðright; tÞ if aðtÞ = right
1 � Pðright; tÞ if aðtÞ = left

(Equation 14)

We then analyzed the likelihood in each session L using the trials without the first 40 trials in each session:

L =
YT
t = 1

lðtÞ (Equation 15)

where T was the number of trials. The model parameters were fit to achieve the maximum likelihood. We first used the Bayesian information

criterion (BIC) to identify the necessary parameters in the RL, state-based, hybrid, memory, or f-memory model. We also used the BIC to

compare the performance across models (Figure 2):

BIC = � 2logðLÞ+ klogðTÞ (Equation 16)

where k was the number of free parameters.

Number of mice and sessions of electrophysiological neural recording

Same as the behavioral data analyses, we used the sessions for analyses when (i) the percentage of correct responses for both the 100% low

tones and 100% high tones stimuli were greater than 75% and (ii) the total reward amount in one session was at least 600 mL.We analyzedOFC

neurons from 17 to 30 sessions from 5 to 7mice in the repeating and alternating conditions, respectively; PPC and HPC neurons from 18 to 39

sessions from 4 to 9mice; andAC neurons from 16 to 31 sessions from 4 to 8mice. The STR andM1 neurons from 39 sessions from 7mice were

analyzed only in the alternating condition. 13 and 36 sessions in the repeating and alternating conditions, respectively, were excluded from

the analyses.

Electrophysiology data analysis

Spike sorting and manual curation were performed with KiloSort-3 on MATLAB (https://github.com/cortex-lab/KiloSort) and Phy on Python

(https://github.com/cortex-lab/phy). KiloSort-3 spike sorting tracked the approximate depth of spikes from each unit during a session. We

defined the depth of each unit from the approximate location of the probe and the electrode position, which measured the maximum ampli-

tude of spikes on average.

For a Neuropixels probe for the OFC, we used the units for analyses when the estimated spike depth from the brain surface was less than

1.9mm. For the PPC recording probe, we used units for analyses when the estimated spike depth was less than 1.0mm. For the STR recording

probe, we analyzed the units when the estimated spike depth was greater than 1.5 mm. For the M1 probe, we used units when the estimated
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spike depthwas less than 1.5mm. For the HPC, we used the units for analyses when the estimated spike depthwas between 1 and 2.3mm.We

analyzed all the units recorded by the AC probe.

We identified task-relevant neurons that exhibited increased activity during the task (p < 1.0e-10 in the one-sided Wilcoxon signed rank

test) compared to baseline activity. For sound-aligned activity, task-relevant neurons exhibited increased activity in at least one time window

(0.1 s) between�1.5 s and 2.5 s from sound onset (40 windows). For choice-aligned activity, task-relevant neurons exhibited increased activity

in at least one time window between�0.5 and 2.5 s from the choice (30 windows, in total 40 + 30 = 70 windows). The baseline for the sound-

aligned activity was�0.2 to 0 s from spout removal, i.e., before trial initiation. The baseline for the choice-aligned activity was�0.2 to 0 s from

the time the spout approached, i.e., between the end of the sound and making a choice.

Among the task-relevant neurons, we focused on the neurons that exhibited significantly increased activity (1) between�0.6 and 0 s from

sound onset (before sound), (2) between 0 and 0.6 s from sound onset (during sound), and (3) between 0 and 1.0 s from choice (during

outcome).

We analyzed the choice index of each neuron based on the left- and right-choice trials:

Choice Index =
mean

�
spike ðright choice trialsÞ� � mean

�
spike ðleft choice trialsÞ�

mean
�
spike ðright choice trialsÞ�+mean

�
spike ðleft choice trialsÞ� (Equation 17)

The choice index ranged between �1 and 1 and was independently analyzed for correct and incorrect trials (Figures 7 and 8). In the an-

alyses of neural activity before sound presentation (Figure 5C), we analyzed the choice indices of the previous and current trials to determine

whether the neurons represented previous or current choices: with respect to the choice indices in previous correct trials, we independently

analyzed the choice indices in the current left- or right-choice trials and averaged the values (previous choice indices). For the current choice

index, we independently analyzed the choice index in the previous left or right correct choice trials and averaged the values.

We defined the preferred side of the task-relevant neurons based on (i) the choice index in the correct trials and (ii) the activity difference

between the left and right correct choice trials. For the neural activity before sound, we defined the preferences of neurons based on the

choice index in previous choice (Figures 5 and 6). For the neural activity during sound and outcome, the preference was defined based on

the choice index in current choice (Figures 7 and 8). Second, the activity on the preferred side was greater than that on the nonpreferred

side (Mann‒Whitney U test, p < 0.01). For example, during sound, when the choice index of a neuron was less than 0 and the activity in

the correct left-choice trials was greater than that in the correct right-choice trials, the preferred side was defined as the left side. If neurons

did not show a significant difference in activity between the left and right correct choice trials (p > 0.01), we defined them as non-side-

preferred neurons (Figures 5, 6, 7, 8, S5–S8).

Facial motion analysis

During the electrophysiological neural recording, we recorded the facial movements of mice in 11 and 77 sessions from 1 to 5 mice in the

repeating and alternating conditions, respectively, out of 51 and 127 sessions from 5 to 9 mice. The sessions in the repeating condition

were excluded from the regression analyses in Figures 6E, 7H, and 8H due to the limited number of mice and sessions. In the alternating con-

dition, we analyzed the OFC neurons in 18 sessions from 4 mice; the PPC and HPC neurons in 22 sessions from 5 mice; the AC neurons in 22

sessions from 5 mice; the STR and M1 neurons in 15 sessions from 4 mice.

We captured the facial movements of mice with one camera with a sampling rate of 140 Hz. We extracted the 9 facial features (left/right

eyes, left/right whiskers, root/tip of tongue, right/left/tip of nose) and the spouts movement by DeepLabCut (DLC).44 The spouts movement

was used to temporally align the movie and task parameters in 55 sessions. In the other 33 sessions, the movie captured a 660-nm LED stim-

ulus at the trial start for the temporal alignment. In each of 9 facial features, we first detected the frame-by-frame changes in the xy coordi-

nates. The velocity of each facial feature was defined as the square root of the sum of the squared changes. We defined the facial motion

strengths as the sum of velocities in all the 9 facial features, and standardized the strengths between 0 and 1 in each session.

We investigated whether the facial motion strength Ft in a specific time window at trial t correlated to the previous and current choices (C),

sounds (S), and outcomes (O) (Figure S4C):

Ft = b0 + b1Ct + b2St + b3Ot + b4Ct� 1 + b5St� 1 + b6Ot� 1 (Equation 18)

b0� 6 were regression coefficients.

Regression analysis

A generalized linear model (GLM) was used to analyze whether the activity of a specific time window in the task represented the choice (C),

sound (S), or outcome (O) in both the current and previous trials, in addition to the running speed (R) (MATLAB, glmfit with Poisson distribu-

tion, p < 0.01) (Figure 4C):

Spiket = exp ðb0 + b1Ct + b2St + b3Ot + b4Ct� 1 + b5St� 1 + b6Ot� 1 + b7RtÞ (Equation 19)

Spiket was the number of spikes at trial t in the time windows of either before sound presentation, during the sound, or during the

outcome. b0� 7 were the regression coefficients. We used the MATLAB software package glmnet with Poisson distribution and L1 regulariza-

tion (https://glmnet.stanford.edu/index.html).60 The deviance of GLM was validated with 10-fold cross validation (CV). The CV was repeated
22 iScience 27, 111182, November 15, 2024

https://glmnet.stanford.edu/index.html


ll
OPEN ACCESS

iScience
Article
100 times and investigated the average deviance to reduce noise from random grouping of trials, defined as the GLM performance. To test

whether the GLM analysis captured the neural encoding of task variables, we shuffled the neural activity in each trial and performed the GLM

analysis. The CV with shuffled activity was repeated 200 times. We analyzed the proportion of task-relevant neurons in which the GLM per-

formance was lower than the distribution of deviances in the 200 CVs in shuffled activity (p < 0.025) (Figure 4D).

We then analyzedwhether the task-relevant neurons represented each task variable. In the regression analysis of Equation 19, we removed

one of the six task variables (i.e., Ct , St ,Ot , Ct� 1, St� 1,Ot� 1) and analyzed the deviance of GLM with 10-fold CV.40 The CV was repeated 100

times to investigate the mean and standard deviation of 100 deviances. When the GLM performance of full parameters was lower than the

mean - 1.96 3 standard deviation of deviances in the one-parameter-removed GLM, we defined that the neuron represented the removed

task variable (Figures 4E and 4F).

In the sessions with face capturing (i.e., 11 and 77 sessions in the repeating and alternating conditions), we additionally investigated

whether the neurons represented the task variables and the facial motion strengths (Figure S4D):

Spiket = exp ðb0 + b1Ct + b2St + b3Ot + b4Ct� 1 + b5St� 1 + b6Ot� 1 + b7Rt + b8FtÞ (Equation 20)

The analyses were same as for Equation 19.

As the facial movements affected the neural encoding (Figure S4D), we used a regression analysis and investigated whether the choice-

sequence dependent modulations of neural activity were affected by the facial motion strengths (MATLAB, glmfit with Poisson distribution)

(Figures 6E, 7H, and 8H):

Spiket = exp

 
b0 + b1Ft +

X
a˛ fleft;rightg

X
j˛ fleft;rightg

ba;Mj
$Ca;Mj ;t

!
(Equation 21)

Ca;Mj ;t was the combination of previous (Mj) and current (a) choices at trial t. For example, when a mouse selected the left and left for the pre-

vious and current choices, Cleft;left;t was 1 and the other 3 Ca;Mj ;t were 0. We investigated the regression coefficients for the repeated and

switched choices for the preferred and nonpreferred sides in each neuron.
QUANTIFICATION AND STATISTICAL ANALYSIS

WeusedMATLAB 2022b for all the analyses except for spike sorting, which was performedwith KiloSort 3 on Python. The statistical details are

shown in the Results section, the figures, and the figure legends. Solid lines and shaded areas are represented as means G standard devi-

ations (SD) or standard errors (SEM), respectively. In the analyses of psychometric function, we used the likelihood ratio test to investigate

whether the additional parameter of choice bias significantly improved the fit to mouse choices. Model fitting of the RL, state-based, hybrid,

memory and f-memorymodels were performed with the Bayesian information criterion (BIC). For the behavioral analyses of multiple sessions

in eachmouse, we employed the linear mixed-effects model (MATLAB: fitlme). In other analyses, we used two-sided nonparametric statistical

tests. We used the MATLAB glmfit function to analyze the proportion of neurons representing each task variable (Figure 4). We used the chi-

square test to compare the proportion of neurons representing task variables.
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