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A B S T R A C T   

Response inhibition refers to the cancelling of planned (or restraining of ongoing) actions and is required in much 
of our everyday life. Response inhibition appears to improve dramatically in early development and plateau in 
adolescence. The fronto-basal-ganglia network has long been shown to predict individual differences in the 
ability to enact response inhibition. In the current study, we examined whether developmental trajectories of 
fiber-specific white matter properties of the fronto-basal-ganglia network was predictive of parallel develop-
mental trajectories of response inhibition. 138 children aged 9–14 completed the stop-signal task (SST). A 
subsample of 73 children underwent high-angular resolution diffusion MRI data for up to three time points. 
Performance on the SST was assessed using a parametric race modelling approach. White matter organization of 
the fronto-basal-ganglia circuit was estimated using fixel-based analysis. Contrary to predictions, we did not find 
any significant associations between maturational trajectories of fronto-basal-ganglia white matter and devel-
opmental improvements in SST performance. Findings suggest that the development of white matter organiza-
tion of the fronto-basal-ganglia and development of stopping performance follow distinct maturational 
trajectories.   

1. Introduction 

The cancelling of planned or ongoing actions, known as response 
inhibition, has long been recognized as critical for efficient behavioral 
regulation in an ever-changing world (Bari and Robbins, 2013; Lipszyc 
and Schachar, 2010). Difficulties with response inhibition are often also 
observed in individuals with developmental disorders such as 
attention-deficit hyperactivity disorder (ADHD; Anzman-Frasca et al., 
2015; Schachar et al., 2007). Despite this, the behavioral and neural 
mechanisms underlying the development of response inhibition during 
childhood and adolescence remain unclear. 

In experimental settings, response inhibition is commonly assessed 
using the Stop-signal Task (SST), a paradigm in which participants make 
speeded responses to a series of forced-choice discrimination trials (go 
trials) whilst inhibiting their prepotent responses on a subset of trials 
(stop trials) when prompted by a stop-signal (Matzke et al., 2018; Ver-
bruggen and Logan, 2008). The prominent horse-race model (Logan and 
Cowan, 1984; Verbruggen and Logan, 2009) conceptualizes SST per-
formance as a race between two processes: (1) a go process that is 
triggered by the onset of a go stimulus, and (2) a stop process triggered 
by the stop-signal. Inhibitory control during stop trials is ultimately 
determined as the outcome of this race. If the stop process is adequately 
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engaged at the onset of the stop-signal, it has enough time to ‘overtake’ 
the go process, resulting in successful inhibition of the prepotent 
response (Logan and Cowan, 1984). The horse-race model thus oper-
ationalizes response inhibition as a stop-signal reaction time (SSRT), 
reflecting the otherwise unobservable latency of the stop process 
(Matzke et al., 2018). SSRTs are traditionally indexed as single measures 
(i.e., mean), with lower values indicative of better response inhibition 
efficiency (Verbruggen and Logan, 2008). 

Response inhibition has been demonstrated to undergo continuous 
improvement throughout early childhood and adolescence (Bedard 
et al., 2002; Curley et al., 2018; Dupuis et al., 2019; Madsen, 2010; 
Madsen et al., 2020; Williams et al., 1999). Prior developmental work in 
healthy children has shown rapid decreases in SSRT during early 
childhood, reaching a peak in adolescence before plateauing (Curley 
et al., 2018; Madsen et al., 2020). However, the use of single estimates of 
inhibitory ability (i.e., mean SSRT) has been criticized as being limited 
at capturing interindividual differences in performance variability 
(Matzke et al., 2013; Verbruggen et al., 2013). Recent neurophysiolog-
ical models of response inhibition posit that successful stopping is 
concomitant on a range of peripheral cognitive mechanisms, such as 
stimulus detection and attentional monitoring (Diesburg and Wessel, 
2021; Jana et al., 2020; Skippen, 2019). Performance differences in 
SSRTs may reflect a general variability in the recruitment of these other 
broader cognitive processes, rather than inhibition more specifically. 
The predominant use of SSRTs, especially in the developmental litera-
ture, may conceal these crucial features of the data, resulting in inac-
curate interpretations about the nature of inhibitory improvements in 
childhood. 

A large body of neuroimaging work has linked response inhibition in 
the SST to white matter properties of the fronto-basal-ganglia circuit, a 
triad of tracts connecting the inferior frontal gyrus (IFG), presupple-
mentary motor area (preSMA) and the subthalamic nucleus (STN) (Aron 
et al., 2016, 2007; Hannah and Aron, 2021). Indeed, studies employing 
Diffusion Tensor Imaging (DTI), a popular method of quantifying the 
direction of water diffusion across white matter axons (O’Donnell and 
Westin, 2011), have demonstrated significant associations between 
reduced SSRT in children and greater white matter coherence (indexed 
as increased fractional anisotropy; FA and lower mean diffusivity; MD) 
within the fronto-basal-ganglia circuit (Madsen, 2010). Nevertheless, 
much of the above work has been conducted in cross-sectional samples 
and hence are unable to fully characterize the direction of the rela-
tionship between brain structure and behavioral function. To our 
knowledge, only one study has looked at the developmental course of 
white matter underlying fronto-basal-ganglia circuitry, and its relation 
to the maturation of response inhibition. Madsen and colleagues (2020) 
observed that faster SSRTs in childhood (7–19 years, N = 88) were 
contingent on the degree of change in fractional anisotropy (FA) within 
the right preSMA. More specifically, children with lower-than-average 
FA in the right preSMA at baseline exhibited a developmental lag in 
inhibitory performance at earlier ages compared to those with 
higher-than-average FA. However, this study, and the majority of the 
cross-sectional work, has used DTI-based measures which are 
non-specific to the biophysical properties underlying white matter 
(Farquharson et al., 2013; Jeurissen et al., 2013). Thus, the nature of the 
relationship between developmental changes in the fronto-basal-ganglia 
circuit and response inhibition remains unclear. 

The advent of higher-order diffusion models allow greater biological 
specificity to which white matter microstructure can be quantified, 
especially in the presence of crossing fibres (Dell’Acqua and Tournier, 
2019; Tournier et al., 2007). To address the pitfalls of the prevailing DTI 
method, our team recently leveraged Fixel-based analysis (FBA) (Dhol-
lander et al., 2021; Raffelt et al., 2017), a higher-order analytical 
framework, to re-examine the relationship between fronto-basal-ganglia 
microstructure and response inhibition in children aged 9–11 (Singh 
et al., 2021). FBA encodes white matter properties at the fixel level, 
allowing for specific fibre properties within voxels to be quantified with 

greater biological specificity compared to DTI (Dhollander et al., 2021). 
Metrics that can be derived from FBA include: (i) fibre density (FD), a 
microstructural measure of local axonal density, and (ii) fibre 
cross-section (FC), a morphological estimate of fibre bundle size (Raffelt 
et al., 2012, 2017). Using FBA, we revealed that better inhibitory control 
(lower SSRT) was largely facilitated by greater FD in the subcortical 
projections of the right and left IFG-STN and preSMA-STN pathways, 
suggesting that microstructural alterations in these tracts may be a 
crucial factor in distinguishing individual differences in stopping per-
formance in children (Singh et al., 2021). Nevertheless, as this study was 
also conducted using a cross-sectional approach, interpretations of how 
these patterns may be reflected across development remain unknown. 
Independent of inhibition, longitudinal FBA studies have shown wide-
spread increases in both FD and FC across several white matter tracts 
related to executive and sensorimotor functioning such as the superior 
longitudinal fasciculus and corpus callosum (Dimond et al., 2020; Genc 
et al., 2020, 2018). The methodological advantages of the FBA frame-
work therefore is an ideal candidate with which to probe the develop-
mental trajectories of fronto-basal-ganglia white matter and response 
inhibition. 

In the present study, we aimed to determine: (1) the development of 
response inhibition over ages 9–14; (2) white matter maturation of 
within the fronto-basal-ganglia circuit, and (3) whether developmental 
changes in the white matter properties of the fronto-basal-ganglia circuit 
predicted changes in response inhibition. In line with previous response 
inhibition work (Curley et al., 2018; Dupuis et al., 2019; Madsen et al., 
2020; Williams et al., 1999), we hypothesized that response inhibition 
(as indexed by SSRT) would be significantly associated with age. How-
ever, given the limitations of traditional SSRT, our next aim was to 
disentangle the features of the SSRT distribution that contribute to 
performance variability. Here we employed the parametric race-model, 
a bespoke approach which estimates the entire distribution of SSRTs, 
rather than just the mean found in traditional non-parametric models 
(Matzke et al., 2013). The parametric-race model assumes parameters 
(e.g., SSRT) follow the shape of an ex-Gaussian distribution and are 
characterized by the mean (mu), standard deviation (sigma), and the 
exponential ‘tail’ (tau) of the distribution (Dawson, 1988; Matzke et al., 
2013). Thus, the parametric race model affords a more fine-grained 
assessment of the specific components underlying the SSRT distribu-
tion. Here, we hypothesized that age-related improvements in SSRT 
would be paralleled by reductions in the overall mean of the response 
times (mu), response variability (sigma) and the propensity to engage in 
late responses across stop-trials (tau). These effects were expected given 
previous developmental evidence showing that as children age, their 
consistency and ability to inhibit prepotent motor responses more 
quickly, improves (Williams et al., 2005, 1999). 

Second, reflecting evidence of brain white matter maturation in 
childhood (Lebel et al., 2019), we applied FBA to explore the develop-
mental progression of fiber specific properties within the 
fronto-basal-ganglia circuit. FBA was chosen as it provides biologically 
specific metrics that account for the presence of complex fiber orienta-
tions in white matter (Dhollander et al., 2021). Here, we hypothesized 
that fronto-basal-ganglia white matter microstructure (fiber density; 
FD), and morphology (fiber cross-section; FC) would increase with age. 
Lastly, considering DTI-based evidence linking improvements in inhib-
itory control to alterations in fronto-basal-ganglia white matter (Madsen 
et al., 2020), we hypothesized that greater FD and FC will be associated 
with developmental improvements on SST task performance. 

2. Methods 

2.1. Participants 

This study reports on a cohort of children aged 9–14 from the Neu-
roimaging of the Children’s Attention Project (NICAP) (Silk et al., 2016). 
NICAP is a community-based cohort of children with and without 
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ADHD. Given that the aim of the present work was to examine the 
development of response inhibition and fronto-basal-ganglia white 
matter in a non-clinical population, we therefore excluded participants 
at each of the three timepoints with a confirmed diagnosis of ADHD. 
Informed consent was obtained from parents and/or guardians prior to 
children participating in the study. For the present work, we identified 
participants who had completed the SST for at least one, and up to three 
time points. Participants underwent up to 3 repeated assessments (time 
points 1–3) between the ages of 9–14 years. For our neuroimaging 
subsample, we further identified participants from the total behavioral 
sample who had diffusion MRI data for up to three time points. Socio-
economic status (SES) was assessed at all three timepoints using the 
Index of Relative Socio-economic Advantage and Disadvantage (IRSAD) 
(Australian Bureau of Statistics, 2013). Briefly, the IRSAD is a measure 
of relative socio-economic disadvantage in Australia. The IRSAD has a 
mean of 1000 and a standard deviation of 100, and areas are on a 
continuum from most disadvantaged to most advantaged relative to the 
mean. Lower IRSAD SES scores indicate areas with greater incidence of 
disadvantage, whilst the opposite is true for higher IRSAD scores. To 
ensure that the community sample was reflective of the general popu-
lation, participants were sourced from 43 schools spanning multiple 
socioeconomic strata across Eastern and Western Melbourne. Intelli-
gence Quotients (IQ) were also obtained at baseline using the Wechsler 
Abbreviated Scale of Intelligence (Wechsler, 1999). 

Following data cleaning and quality-control assessment of the 
behavioral (Appendix A, Supplementary Section S.2) and neuroimaging 
data (Appendix A, Supplementary Section S.4), the final behavioral 
sample comprised of 138 participants aged 9–14 years (83 completed 
one time point, 39 completed two time points, and 16 completed all 
three time points). The final neuroimaging sample comprised of 116 
scans from 73 participants. (38 were only scanned once, 27 were 

scanned twice, and 8 were scanned thrice. A visual representation of the 
distribution of participants at each assessment point for the behavioral 
and neuroimaging samples is presented in Fig. 1, panels A and B 
respectively. A flow chart of the data analysis pipeline is illustrated in  
Fig. 2. Detailed information on all methodological steps can be found in 
the Supplementary Materials (Appendix A). 

Attrition analyses were conducted in both behavioral and neuro-
imaging cohorts to examine potential biases in key demographic (IQ; 
SES) and SST measures (SSRT; mu, sigma, and tau of the stop-trial dis-
tribution) across participants who completed either one, two or three 
timepoints. Results revealed no significant differences between in-
dividuals attending one, two or three timepoints in any of the de-
mographic or SST measures of interest (behavioral sample p range =
0.521–0.932; neuroimaging sample p range = 0.318–0.849), suggesting 
that no biases due to attrition exist in the data. For further details on the 
attrition analyses, please consult Section S.5 of Appendix A. 

2.2. Cognitive Assessment: Stop-signal Task 

Participants completed a 3.5-hour behavioral assessment at the 
Murdoch’s Children Research Institute in Melbourne, Australia for each 
of the three time points. Assessment measures comprised of a cognitive 
battery (which included the SST), a self-report survey, and a parent 
questionnaire. Response inhibition was assessed using the STOP-IT 
version of the SST which is freely available for download for Windows 
(Verbruggen et al., 2008). Further details on task design and charac-
teristics can be found in Section 1 of the Supplementary Materials 
(Appendix A). 

Fig. 1. (A) Distribution of scores for each subject in the behavioral sample (N = 138); (B) Distribution of scores for each subject in the neuroimaging sample 
(N = 73). Subjects are ordered by age (years). 
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2.3. Parametric estimation of response inhibition 

Quantitative measures of response inhibition were derived by fitting 
raw subject-level data to the parametric race-model, resulting in sepa-
rate parameters that quantify the mean (muS), variability (sigmaS), and 
exponential tail (tauS) of the stopping distribution (Matzke et al., 2019). 
Prior to parametric estimation, raw SST data were appraised so that only 
participants who adequately completed the task entered the final ana-
lyses. Details of the quality control procedure can be found in Section S.2 
of Appendix A and Table S1 of Appendix B. Briefly, participants were 
excluded if they did not (i) complete the task; (ii) slowed their go RT by 
more than 300 ms over the course of the task; (iii) reported a stop 
response rate of > 75 %, and (iv) reported no errors on go-trials (100 % 
accuracy). Further, we visually inspected each participant’s probability 
of responding to a stop-signal to assess if they retained a 50 % success 
rate. Summary estimates (means) were computed for all 
individual-subject level parameters for use in subsequent analyses. 
Lastly, to facilitate comparability of our work with those of previous 
studies (Curley et al., 2018; Madsen et al., 2020), traditional SSRT es-
timates were computed for each subject by adding mu and tau param-
eters of the stopping distribution. All steps of the parametric race-model 
were conducted in R (v.4.0.3) using the Dynamic models of Choice 
package (https://osf.io/pbwx8/). Detailed information can be found in 
Section 3 of the Supplementary Materials (Appendix A). 

2.4. Neuroimaging: Diffusion & T1-weighted MRI 

Diffusion-weighted and T1-weighted MRI images were acquired on a 
3 T Siemens MRI scanning system at a single site across three time points 
(see Section S.4.1 of Appendix A for acquisition parameters). Data for 
time points 1 and 2 were acquired on a TIM Trio scanner whilst data for 
time point 3 were acquired following an upgrade to the MAGNETOM 
Prisma scanner. The effect of scanner type is accounted for in subsequent 
statistical analysis. Following the recommended pre-processing pipeline 
for single-shelled diffusion data (Tournier et al., 2019), diffusion images 

were quality checked and were removed if the pre-processing step failed, 
or if data quality was insufficient for further analysis (i.e., masking is-
sues or hyperintense regions). Further details of the quality control 
procedure can be found in Section S.4.2 of Appendix A and Table S2 of 
Appendix B. 

Fixel-based Analysis (FBA) was conducted following the approach 
recommended for single-shelled 3-tissue Constrained spherical decon-
volution (SS3T-CSD) (Dhollander and Connelly, 2016). 
Regions-of-interest (ROIs) implicated in the fronto-basal-ganglia circuit 
(inferior frontal gyrus [IFG], presupplementary motor area [preSMA] 
and subthalamic nucleus [STN]) were parcellated from each subject’s 
T1-weighted image following the approach in our baseline 
cross-sectional study (Singh et al., 2021). Full details of our parcellation 
scheme and ROI placement can be accessed in the relevant manuscript 
and in Section S.4.4 of Appendix A. Probabilistic tractography was then 
applied bilaterally to obtain white matter tracts of the 
fronto-basal-ganglia circuit in a pairwise fashion (See Fig. 3). Tracts in 
each hemisphere were segmented into fixel masks and mean fiber den-
sity (FD) and fiber cross-section (FC) were computed across all fixels to 
quantify micro- and macrostructural properties respectively. Given that 
FC values are often typically skewed, FC was further log-transformed 
(logFC) to ensure normal distribution of the data in the analysis as per 
the recommended FBA pipeline (Dhollander et al., 2021). Lastly, head 
motion and total brain volume were calculated as mean framewise 
displacement (FWD) and mean estimated total intracranial volume 
(eTIV) respectively (Table 3) (Power et al., 2012; Smith et al., 2019). 

All steps of the FBA pipeline were performed in Mrtrix3Tissue 
(v5.2.8; https://3tissue.github.io/), a fork of the Mrtrix3 software 
package (Tournier et al., 2019). Computational resources were provided 
by the MASSIVE high-performance computing cluster (Goscinski et al., 
2014). For further details on all steps in the FBA pipeline, see Supple-
mental Section 4 (Appendix A). 

Fig. 2. Basic flow diagram of the analysis procedures undertaken in the present study. Detailed information on each step of the process is presented in the Methods 
and the Supplementary Materials (Appendix A). Note: SST: Stop-signal Task; QC: Quality Control; GAMMs: Generalized additive mixed-models; dMRI: Diffusion MRI; 
SS3TCSD: Single-shelled three-tissue constrained spherical deconvolution; FBA: Fixel-based Analysis; FD: Fiber density; FC: Fiber cross-section. 
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2.5. Primary analysis 

Longitudinal analyses were conducted using generalized additive 
mixed models (GAMMs) in the ‘mgcv’ package in R (v1.8.34) (Wood, 
2011). GAMMs were chosen as the preferred method of assessing 
developmental trajectories due to their flexibility in accounting for 
nonlinear relationships between variables (Hastie and Tibshirani, 1990; 
Wood, 2017). Starting from a baseline null model, models of increasing 
complexity were iteratively added in a stepwise fashion. Based on prior 
recommendations (Wood, 2017), all models were fitted using the 
maximum likelihood (ML) estimation method (Wood, 2011), with a 
penalized cubic regression spline and basis dimension of 4. Lastly, all 
continuous predictors were mean centered to improve interpretability of 
the intercepts. Model comparisons were conducted between the current 
and next model in the iteration using a combination of fit statistics. First, 
we considered the difference in the Akaike Information criterion (AIC) 
values between models. Recent studies suggest that the AIC is the most 
appropriate fit statistic for identifying the model closest to the true 
model, with lower AIC values indicating better fit between the observed 
and true model (Lewis et al., 2011; Portet, 2020). In addition, the sig-
nificance of the best-fitting model was assessed by performing a 
chi-square test on two times the difference in minimized smoothing 
parameter selection scores, and the difference in degrees of freedom 
between two models (Van Rij et al., 2015). A p-value of < 0.05 indicates 
the more complex model provided better fit to the data than the less 
complex model. Based on these criteria, more complex models in the 
iteration were chosen if the following were met: (1) chi-square test was 
significant (p < .05); (2) the AIC difference between the current and 
next model is ≥ 2, with the AIC of the complex model being smaller than 
the previous model. 

2.5.1. Developmental trajectories of SST performance 
Developmental trajectories of response inhibition were assessed by 

conducting a series of GAMMs (Appendix A, Section 5, Table S2) 
examining whether age-at-assessment, sex, and the interaction between 
age and sex significantly predicted individual changes in mu, sigma, and 
tau of the SSRT distribution. Further, to facilitate comparability of our 
work with those of previous studies (Madsen et al., 2020), we also 
modelled the longitudinal trajectories of response inhibition using 
traditional SSRT. Sex effects were explored given recent evidence sug-
gesting that sex differences may underlie performance variability in 
response inhibition (Ribeiro et al., 2021; Rubia et al., 2013). Participant 
ID was entered into all models as a random effect to account for indi-
vidual differences in subject-level intercepts (Gibbons et al., 2010). We 
also adjusted for SES as there is evidence suggesting that it can impact 
executive functioning development (Last et al., 2018; Lawson et al., 
2018). Best-fitting models (identified using the approach detailed in 

Section 2.5) were then used as the initial ‘null’ model in our analysis 
examining the association between response inhibition and 
fronto-basal-ganglia white matter (Section 2.5.3). 

2.5.2. Developmental trajectories of fronto-basal-ganglia white matter 
organization 

Maturational changes in fronto-basal-ganglia white matter were 
assessed by computing GAMMs for each FBA metric in our neuroimaging 
subsample (Appendix A, Section 5, Table S3). Like our behavioral 
analysis, a series of models were tested to examine whether age-at- 
assessment, sex, and the interaction between age and sex significantly 
predicted developmental trajectories in FD or logFC in the IFG-preSMA, 
IFG-STN and preSMA-STN pathways. All models were conducted using 
the same parameters as those described for the behavioral analyses (see 
Section 2.5). In addition to controlling for SES and subject-level in-
tercepts, we also adjusted for the following: (1) head size (eTIV), (2) 
head motion (FWD), and (3) scanner type, across all models. Mean eTIV 
was adjusted since changes in white-matter organization are often 
sensitized to gross variations in brain size (Smith et al., 2019). If unac-
counted for, it is difficult to ascertain if developmental trajectories in FC 
are indicative of a true effect or driven by general volumetric differ-
ences. Since our sample consists of children aged 9–14, this is especially 
pertinent since the transition to adolescence is marked by large-scale 
changes in brain structure (Lebel et al., 2019). Considering previous 
evidence that the fronto-basal-basal-ganglia circuit may be right later-
alized during inhibitory control (Aron et al., 2016; Madsen, 2010), 
models were run separately for the left and right hemisphere. Due to the 
large number of comparisons performed during statistical modelling, 
p-values were adjusted for Type 1 error by using the false discovery rate 
method (pFDR) (Benjamini and Hochberg, 1995) at 0.05. All corrections 
for multiple comparisons were conducted using the ‘p. adjust’ function 
in R. Tracts that show a significant age-related change in FD/FC were 
included as predictors in the third analysis (Section 2.5.3). 

2.5.3. Associations between fronto-basal-ganglia white matter and SST 
performance 

This analysis extends models from section 2.5.1 to determine 
whether developmental patterns of SST performance (as observed in our 
behavioral-only GAMMs) are predicted by fronto-basal-ganglia white 
matter maturational changes (Appendix A, Section 5, Table S4). To 
obtain our measures of change in FD/FC, random age slopes from linear 
mixed effects models were extracted based on a model predicting fronto- 
basal-ganglia white matter from age (adjusting for FWD and eTIV). 
Steeper slopes indicate a greater increase in FD or FC with age. These 
slopes were added as predictors in a sequence of GAMMs predicting 
developmental trajectories in response inhibition. Specifically, we ran a 
(1) baseline ‘null’ model which is the initial best-fitting model for the 

Fig. 3. Tracts of the fronto-basal-ganglia circuit. (A) Bilateral IFG-preSMA pathway; (B) bilateral preSMA-STN pathway; (C) bilateral IFG-STN pathway. Voxel 
position of each coronal slice in millimetres: x = 0, y = − 8.5, z = 18. 
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behavioral-only GAMMs (‘nullmod’), (2) a main-effect model, (‘main-
slope’), in which the FD/FC regression slopes for each FBA metric were 
added as a fixed effect; and lastly, (3) an age-by-FD/FC interaction 

(‘interslope’). This latter interaction model was employed to examine 
whether developmental improvements in response inhibition were 
associated with maturation of fronto-basal-ganglia white matter. SES 
was included as a covariate of no interest, whilst between-subject dif-
ferences were entered in as random effects. We also included scanner 
type in these models to account for scanner upgrade. 

3. Results 

3.1. Descriptive analysis 

Summary statistics for the behavioral and neuroimaging samples are 
presented in Tables 1–3 respectively. 

3.2. Primary analyses 

3.2.1. Developmental trajectories of SST performance 
Results of our behavioral analysis revealed a significant age-effect for 

SSRT (Fig. 4, panel A, p < .001), meaning that inhibitory control 
improved as children get older. However, when we explored the indi-
vidual parameters to determine the drivers of this effect, we found 
similar age-related improvements for sigmaS (Fig. 4, panel C, p = .004) 
and tauS (Fig. 4, panel D, p < .001) but not for muS (Fig. 4, panel B). 
Overall, results indicate that reductions in the variability in stopping 
performance and propensity to engage in extreme responses are the 
primary drivers of age-related improvements in SSRT. The age models 
did not improve after the addition of sex or a sex-by-age interaction, 
suggesting that sex did not significantly contribute to individual changes 
in response inhibition. Parametric and smooth coefficients for all sig-
nificant models are presented in Table 4. For model comparison details, 
refer to Tables S3-S6 in Appendix B. 

3.2.2. Developmental trajectories of fronto-basal-ganglia white matter 
organization 

GAMMs revealed that the age model was the best-fitting model for 
analyses involving FC (Fig. 5). In the left hemisphere, examination of the 
best-fitting models demonstrated significant age-related linear increases 
in mean logFC within the IFG-preSMA (Fig. 5, panel A, pFDR <0.001), 
and preSMA-STN (Fig. 5, panel B, pFDR <0.001) pathways. In the right 
hemisphere, we also observed significant age-related increases in logFC 

Table 1 
Summary characteristics for all variables in the behavioral sample (N = 138).   

T1 (n = 115) T2 (n = 60) T3 (n = 34) 

Demographics 
Sex, % female 42 45 38 
Hand, % right 88 88 85 
Age, mean (SD) 10.5 (0.5) 11.8 (0.5) 13.1 (0.5) 
IQ, mean (SD) 102.2 (14.1) 101.1 (12.8) 100.6 (11.7) 
SES, mean (SD) 1021 (43) 1025 (46) 1016 (40) 
SST performance (ms) 
muS, mean (SD) 151.91 (62.90) 139.05 (38.88) 151.55 (44.23) 
sigmaS, mean, (SD) 190.58 (93.97) 141.96 (87.55) 139.74 (94.73) 
tauS, mean (SD) 148.66 (63.42) 110.06 (54.72) 102.37 (57.09) 
SSRT, mean (SD) 317.81 (102.30) 262.59 (71.22) 266.24 (70.13) 

Note: SD: Standard deviation; IQ: Intelligence Quotient; SES: Socioeconomic 
status; SSRT: Stop-signal reaction time; MuS: Mu of the stop-signal reaction time 
distribution; SigmaS: Sigma of the stop-signal reaction time distribution; TauS: 
Tau of the stop-signal reaction time distribution; T1-T3: time points 1, 2, 3. 

Table 2 
Summary characteristics for demographic and SST variables in the neuro-
imaging sample (N = 73).   

T1 (n = 38) T2 (n = 51) T3 (n = 27) 

Demographics 
Sex, % female 32 45 33 
Hand, % right 79 86 89 
Age, mean (SD) 10.4 (0.5) 11.8 (0.5) 13.0 (0.5) 
IQ, mean (SD) 102.1 (12.2) 100.1 (12.7) 102.8 (11.1) 
SES, mean (SD) 1026 (45) 1022 (48) 1018 (42) 
SST performance (ms) 
muS, mean (SD) 158.98 (72.22) 141.06 (40.51) 142.15 (34.39) 
sigmaS, mean (SD) 200.02 (94.02) 144.43 (90.24) 141.63 (94.22) 
tauS, mean (SD) 153.58 (62.91) 112.95 (56.95) 100.66 (50.14) 
SSRT, mean (SD) 330.37 (110.93) 267.64 (73.84) 255.95 (49.13) 

Note: IQ: Intelligence Quotient; SES: Socioeconomic status; SSRT: Stop-signal 
reaction time; MuS: Mu of the stop-signal reaction time distribution; SigmaS: 
Sigma of the stop-signal reaction time distribution; TauS: Tau of the stop-signal 
reaction time distribution; T1-T3: time points 1, 2, 3. 

Table 3 
Summary characteristics for FBA measures in the neuroimaging sample (N = 73).   

T1 (n = 38) T2 (n = 51) T3 (n = 27) 

Head Motion and Total brain volume 
FWD, mean (SD) 0.99 (0.25) 0.80 (0.12) 1.03 (0.18) 
eTIV, mean (SD) 1,634,084.47 1,592,624.901 159,3501.27  

(117,478.36) (143,446.06) (136,787.34)  

Left Hemisphere 
IFG-preSMA (FD), mean (SD) 0.46 (0.03) 0.46 (0.03) 0.48 (0.03) 
IFG-preSMA (logFC), mean (SD) -0.02 (0.08) -0.02 (0.07) 0.04 (0.10) 
IFG-STN (FD), mean, (SD) 0.44 (0.03) 0.44 (0.03) 0.45 (0.03) 
IFG-STN (logFC), mean, (SD) 0.07 (0.07) 0.06 (0.09) 0.08 (0.09) 
preSMA-STN (FD), mean (SD) 0.61 (0.03) 0.61 (0.03) 0.62 (0.03) 
preSMA-STN (logFC), mean (SD) -0.03 (0.07) -0.03 (0.08) 0.02 (0.09)  

Right Hemisphere 
IFG-preSMA (FD), mean (SD) 0.46 (0.04) 0.46 (0.04) 0.46 (0.04) 
IFG-preSMA (logFC), mean (SD) -0.01 (0.08) -0.02 (0.09) 0.01 (0.10) 
IFG-STN (FD), mean (SD) 0.50 (0.03) 0.50 (0.03) 0.50 (0.03) 
IFG-STN (logFC), mean (SD) 0.06 (0.09) 0.03 (0.09) 0.07 (0.09) 
preSMA-STN (FD), mean (SD) 0.63 (0.03) 0.63 (0.03) 0.63 (0.03) 
preSMA-STN (logFC), mean (SD) -0.03 (0.06) -0.02 (0.08) -0.001 (0.08) 

Note: FWD: Mean framewise displacement; eTIV: Estimated total intracranial volume; Left/Right IFG-preSMA (FD/logFC): Fiber density/log-transformed fiber cross- 
section of the left/right inferior frontal-gyrus to presupplementary motor area connection; Left/Right preSMA-STN (FD/logFC): Fiber density/log-transformed fiber 
cross-section of the left presupplementary motor area to subthalamic nucleus connection; Left/Right IFG-STN (FD/logFC): Fiber density/log-transformed fiber cross- 
section of the right inferior frontal-gyrus to presupplementary motor area connection; T1-T3: Time points 1, 2, 3. 

M. Singh et al.                                                                                                                                                                                                                                   



Developmental Cognitive Neuroscience 58 (2022) 101171

7

of the IFG-preSMA (Fig. 5, panel D, pFDR <0.001) and preSMA-STN 
(Fig. 5, panel E, pFDR <0.001) pathways. In addition, model compari-
sons revealed that the age-by-sex interaction model was best-fitting for 
logFC in the left IFG-STN (Fig. 5, panel C), while the age-model was the 
best-fitting for the right IFG-STN (Fig. 5, panel F), however, these effects 
did not survive when correcting for multiple comparisons. Refer to 
Appendix B Tables S10-S12 and S16–S18 for model comparisons 
involving FC in the left and right hemisphere respectively. Further, we 
did not find any significant longitudinal associations for FD in any of the 
models assessed (See Appendix B Tables S7-S9 & S13–S15 for model 
comparisons in the left and right hemispheres respectively). Overall, 
results show that macrostructural properties of select tracts within the 
fronto-basal-ganglia circuit increases during the transition from child-
hood to adolescence. Parametric and smooth coefficients for all signif-
icant models are presented in Table 5 (right hemisphere) & Table 6 (left 
hemisphere). 

3.2.3. Associations between Fronto-basal-ganglia white matter and SST 
performance 

Extending best fitting models from 3.2.1, the addition of age-related 

changes in FC in the left and right IFG-preSMA and preSMA-STN path-
ways did not significantly improve the best-fitting models of SSRT, 
sigmaS and tauS (see Tables S19-S30 in Appendix B for model com-
parison details). 

4. Discussion 

The current study leverages state-of-the-art approaches in cognitive 
modelling and diffusion MRI to examine the development of response 
inhibition and fronto-basal-ganglia white matter in childhood. Building 
on previous cross-sectional and longitudinal work, our study used lon-
gitudinal data to demonstrate an effect of age for inhibitory perfor-
mance, with faster SSRTs associated with increasing age. When using the 
parametric race model, these age effects on SSRT were mirrored in age 
effects for models of sigmaS and tauS but not muS, suggesting that SSRT 
development may be related to decreases in performance variability and 
propensity to respond very late on stop-trials. When examining the 
developmental progression of fronto-basal-ganglia white matter, we 
found significant age-related increases in fiber bundle macrostructure 
(indexed as FC) in the bilateral IFG-preSMA, and preSMA-STN 

Fig. 4. Developmental trajectories of stop- 
signal performance across ages 9–14. Panels 
A-D present the best-fitting models for SSRT, 
muS, sigmaS and tauS respectively. Fitted lines 
with 95 % confidence intervals were modelled 
by the best fitting GAMMs for each variable of 
interest and overlaid on the raw data points. 
SSRT: Stop-signal reaction time; muS: Mu of the 
stop-signal reaction time distribution; sigmaS: 
Sigma of the stop-signal reaction time distri-
bution; tauS: Tau of the stop-signal reaction 
time distribution. ns: non-significant. Age in 
years, SST metrics in milliseconds.   

Table 4 
Model coefficients for the best-fitting behavioral models.   

SSRT SigmaS TauS 

Parametric coefficients Est. (SE) t p Est. (SE) t p Est. (SE) t p 

Intercept 293.89 (7.37) 39.90 < 0.001 169.04 (6.98) 24.20 < 0.001 130.26 (4.69) 27.78 < 0.001 
SES_c -0.06 (0.17) -0.33 0.742 0.09 (0.16) 0.55 0.584 -0.04 (0.11) -0.36 0.719           

Smooth terms edf (Ref.df) F p edf (Ref.df) F p edf (Ref.df) F p 
s(age_c) 2.04 (2.34) 10.09 < 0.001 1.68 (2) 5.60 0.004 1.83 (2.15) 12.03 < 0.001 
s(SID) 80.04 (136) 1.44 < 0.001 41.14 (136) 0.46 0.006 58.61 (136) 0.80 < 0.001 

Note: Est.: Estimated regression parameter; SE: Standard error; edf: Estimated degrees of freedom; Ref.df: Reference degrees of freedom; s(age_c): Smoothed mean- 
centred age; SES_c: Mean-centred SES; s (SID): Subject ID entered as a random effect. SSRT: Stop-signal reaction time; sigmaS: Sigma of the stop-signal reaction 
time distribution; TauS: tau of the stop-signal reaction time distribution. 
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pathways. Lastly, our combined analysis demonstrated that average 
change in FC did not significantly predict age-related improvements in 
inhibitory control. Overall, the present work improves our under-
standing of the underlying developmental patterns subserving child-
hood response inhibition. Firstly, it sheds light on the important role of 
performance variability and propensity to engage in very late responses 
towards inhibitory performance development. Second, it is the first to 
date that has charted the longitudinal progression of fronto-basal- 
ganglia white matter using a fiber-specific framework. Lastly, no sig-
nificant relationship was found between changes in FC and SST metrics, 
suggesting that the development of white matter organization of the 
fronto-basal-ganglia and stopping performance follow distinct matura-
tional trajectories. 

Our longitudinal investigation of response inhibition development 
demonstrated significant age-related improvements in SSRT, a finding 
that is consistent with the existing developmental literature (Curley 
et al., 2018; Dupuis et al., 2019; Madsen et al., 2020; Williams et al., 
1999). Like previous work, we observed a curvilinear relationship be-
tween SSRT and age, in which improvements in inhibitory control 
reached a plateau at around 12 years of age. Taken together, these 
findings support previous interpretations of inhibitory control rapidly 

maturing during childhood and reaching a developmental peak in the 
preadolescent to adolescent years (Curley et al., 2018; Dupuis et al., 
2019; Madsen et al., 2020; Williams et al., 1999). 

Application of the novel parametric race-model (Matzke et al., 2013) 
revealed complementary age-related reductions in the variability of the 
inhibitory response (sigmaS), and the propensity to inhibit much later 
during stop-trials (tauS). Several other cognitive processes (i.e. atten-
tional orienting, stimulus detection) are also evidenced to be involved in 
the ability to inhibit a motor response, with successful stopping being 
contingent on the relative fidelity and timing of these processes (Jana 
et al., 2020). Considering these findings, it is possible that slower SSRTs 
at earlier ages may be due to a less refined executive system, leading to 
more inconsistent performance (i.e., higher sigma) and a greater chance 
of inhibiting much later than anticipated (increased skewing of the RT 
distribution or higher tau). Whilst this may suggest the potential role of 
top-down attention or stimulus detection in facilitating inhibitory con-
trol, we did not directly assess these components in the current study. As 
such, such inferences about the processes underlying changes in sigma 
and tau are speculative. Furthermore, caution is warranted when map-
ping cognitive mechanisms onto parameters of the ex-gaussian distri-
bution given the lack of clear correspondence between these two 

Fig. 5. Developmental trajectories of logFC underlying the fronto-basal-ganglia circuit. Panels A-C presents the best-fitting models for the left IFG-preSMA, right 
preSMA-STN & right IFG-STN pathways. Panels D-F presents the best-fitting models for the right IFG-preSMA, left preSMA-STN & left IFG-STN pathways. Fitted lines 
with 95 % confidence intervals were modelled by the best fitting GAMMs for each variable of interest and overlaid on the raw data points. Left/Right IFG-preSMA 
(logFC): Log-transformed fiber cross-section of the left/right inferior frontal-gyrus to presupplementary motor area connection; Left/Right preSMA-STN (logFC): Log- 
transformed fiber cross-section of the left/right presupplementary motor area to subthalamic nucleus connection; Left/Right IFG-STN (logFC): Log-transformed fiber 
cross-section of the left/right inferior frontal-gyrus to subthalamic nucleus connection. ns: non-significant. 
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components (see Matzke and Wagenmakers, 2009; Rieger and Miller, 
2020). To address this implication, future research should seek correlate 
these indices to performance on tasks traditionally thought to probe 
attention (i.e., sustained attention to response task). Nevertheless, the 
use of the parametric race-model constitutes a key strength of the pre-
sent work as it allows us to disentangle components of the SSRT distri-
bution that drive inter-individual performance differences in response 
inhibition More specifically, it calls into question the viability of single 
SSRT estimates as a behavioral marker of assessing developmental im-
provements in inhibitory control. 

The neuroimaging analysis revealed significant age-related increases 
in FC of the bilateral IFG-preSMA and preSMA-STN pathways. In the 
context of the FBA framework, changes in FC is commonly thought to be 
associated with variability in the size, density, or thickness of the myelin 
sheath surrounding a fiber bundle (Dhollander et al., 2021; Raffelt et al., 
2017), suggesting that axonal pathways within the fronto-basal-ganglia 
circuit are preferentially increasing as children get older. Larger bundle 
size is further thought to indirectly facilitate better transmissibility of 
neural information across brain regions (Raffelt et al., 2017), which may 
suggest a possible link between greater fiber macrostructure and im-
provements in inhibitory performance at older ages. In contrast to FC, no 
significant longitudinal trajectories were observed for FD. Previous 
developmental work has demonstrated localized changes in FD across a 
wide range of associative and commissural white matter pathways, with 
the time course and endpoint of maturation being regionally specific 
(Dimond et al., 2020; Genc et al., 2018). Considering this, it is possible 
that the current non-significant findings may be indicative of micro-
structural properties within the fronto-basal-ganglia circuit having a 
more protracted growth rate during the transition into adolescence. 
Similarly, it is also likely that developmental changes occurring at the 
microstructural level are more subtle in this age-range compared to 

macrostructure. However, this assertion is speculative, and further work 
to explore these trajectories across a wider age-span is warranted. 

Overall, our results support the general trend of brain maturation 
across childhood development. White matter tracts, specifically those 
that support higher-order cognitive functions, demonstrate rapid 
maturation during childhood. These changes reflect a variety of bio-
physical factors including synaptogenesis, myelination or increased 
axonal packing (Lebel et al., 2012, 2019). Indeed, a substantial body of 
DTI-based imaging work has shown complementary increases in white 
matter FA and decreases in MD from birth to adulthood (see review by 
Lebel et al., 2019). Similarly, FBA studies have also revealed develop-
mental increases in FC across several major associative and commissural 
tracts involved in higher-order cognitive functioning, such as the supe-
rior longitudinal fasciculus (SLF; Choy et al., 2020; Genc et al., 2018, 
2020). Whilst our age-effects are relatively consistent with those ob-
tained by Madsen et al. (2020), the use of FBA provides a more bio-
logically specific investigation of the mechanisms that contribute to 
childhood brain development (Dhollander et al., 2021; Raffelt et al., 
2017), suggesting that the maturation of fronto-basal-ganglia white 
matter over years 9–14 is largely localized to macrostructural changes 
rather than microstructure. 

Our exploratory analyses looking at sex differences separately in the 
behavioral and neuroimaging samples did not reveal any significant 
effects, indicating that response inhibition and FC within the fronto- 
basal-ganglia circuit may develop at the same rate for males and fe-
males during this period. To date, evidence of sex effects in childhood 
inhibitory control is mixed. Some studies report no significant sex dif-
ferences (Madsen, 2010; Tamnes et al., 2010), whilst others demonstrate 
evidence of females performing better and maturing more rapidly than 
males (Curley et al., 2018; Madsen et al., 2020). Likewise, evidence of 
sex differences in white matter development are largely mixed across the 

Table 5 
Model coefficients for the best-fitting GAMMs of the right fronto-basal-ganglia 
circuit.   

Right IFG-preSMA (logFC) 
Parametric coefficients Est. (SE) t pFDR 

Intercept 0.008 (0.011) 0.710 0.618 
SES_c 0.0003 (0.0002) 1.268 0.327 
FWD_c -0.002 (0.010) -0.23 0.848 
eTIV_c 0.002 (0.0005) 3.992 0.001 
OFscanner -0.010 (0.007) -1.400 0.270     

Smooth terms edf (Ref.df) F pFDR 

s(age_c) 1.000 (1.000) 16.489 < 0.001 
s(SID) 68.805 (71.000) 64.894 < 0.001   

Right preSMA-STN (logFC)  

Parametric coefficients Est. (SE) t pFDR 

Intercept 0.002 (0.008) 0.234 0.848 
SES_c 0.0002 (0.0001) 1.315 0.304 
FWD_c -0.003 (0.009) -0.376 0.779 
eTIV_c 0.002 (0.0003) 8.120 < 0.001 
OFscanner -0.020 (0.006) -3.230 0.007     

Smooth terms edf (Ref.df) F pFDR 

s(age_c) 1.000 (1.000) 26.269 < 0.001 
s(SID) 67.361 (71.000) 26.981 < 0.001 

Note: Right IFG-preSMA (logFC): Log-transformed fiber cross-section of the right 
inferior frontal-gyrus to presupplementary motor area connection; Right 
preSMA-STN (logFC): Log-transformed fiber cross-section of the right pre-
supplementary motor area to subthalamic nucleus connection; Est.: Estimated 
regression parameter; SE: Standard error; edf: Estimated degrees of freedom; 
Ref.df: Reference degrees of freedom; pFDR: False Discovery Rate corrected p 
value; s(age_c): Smoothed mean-centred age; SES_c: Mean-centred SES; s(SID): 
Subject ID entered as a random effect; FWD_c: Mean-centred FWD; eTIV_c: 
Mean-centred eTIV; OFscanner: Ordered factor of scanner type. 

Table 6 
Model coefficients for the best-fitting GAMMs of the left fronto-basal-ganglia 
circuit.  

Left IFG-preSMA (logFC)  

Parametric coefficients Est. (SE) t pFDR 

Intercept 0.023 (0.009) 2.490 0.039 
SES_c 0.0002 (0.0002) 0.844 0.535 
FWD_c -0.007 (0.009) -0.832 0.539 
eTIV_c 0.002 (0.0004) 5.327 < 0.001 
OFscanner -0.031 (0.006) -4.896 < 0.001     

Smooth terms edf (Ref.df) F pFDR 

s(age_c) 1.031 (1.061) 25.488 < 0.001 
s(SID) 68.477 (71.000) 53.479 < 0.001  

Left preSMA-STN (logFC)  

Parametric coefficients Est. (SE) t pFDR 

Intercept 0.013 (0.009) 1.476 0.252 
SES_c 0.0002 (0.0002) 1.056 0.424 
FWD_c 0.009 (0.010) 0.952 0.474 
eTIV_c 0.002 (0.0003) 6.661 < 0.001 
OFscanner -0.035 (0.007) -5.187 < 0.001     

Smooth terms edf (Ref.df) F pFDR 

s(age_c) 1.000 (1.001) 32.095 < 0.001 
s(SID) 67.932 (71.000) 37.538 < 0.001 

Note: Left IFG-preSMA (logFC): Log-transformed fiber cross-section of the left 
inferior frontal-gyrus to presupplementary motor area connection; Left preSMA- 
STN (logFC): Log-transformed fiber cross-section of the left presupplementary 
motor area to subthalamic nucleus connection; Est.: Estimated regression 
parameter; SE: Standard error; edf: Estimated degrees of freedom; Ref.df: 
Reference degrees of freedom; pFDR: False Discovery Rate corrected p value; s 
(age_c): Smoothed mean-centred age; SES_c: Mean-centred SES; s(SID): Subject 
ID entered as a random effect; FWD_c: Mean-centred FWD; eTIV_c: Mean-centred 
eTIV; OFscanner: Ordered factor of scanner type. 
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literature. Several DTI studies report earlier development of white 
matter organization in females, while males show more protracted 
changes over time (Asato et al., 2010; Seunarine et al., 2016). Others, 
however, report no significant sex differences during childhood and 
adolescence (Brouwer et al., 2012; Genc et al., 2020; Lebel and Beaulieu, 
2011). Given that we adjusted for total brain volume in our analyses, our 
lack of sex-effects may be considered robust since potential differences 
in brain size between the sexes are likely accounted for. Despite the 
non-significant findings in the current study, further exploration of sex 
effects is encouraged to see if these effects replicate in future work. 

Our cross-sectional FBA study of the same cohort found that faster 
SSRT was associated with higher FD within subcortical projections of the 
bilateral IFG-STN and preSMA-STN pathways (Singh et al., 2021). This 
led us to investigate in this paper whether the rate of change in white 
matter is related to inhibition performance. Given that we found an age 
effect for FC in our neuroimaging analysis, we examined whether the 
addition of FC slope predicted changes in SST performance. Contrary to 
expectations, maturational changes in FC of the bilateral IFG-preSMA 
and preSMA-STN pathways did not predict values of sigmaS, tauS, or 
SSRT. That is, no significant main effects of FC slope or age-by-FC slope 
interactions were observed to explain SST metrics over time. The lack of 
significant findings regarding the relationship between changes in FC 
slope and SST performance may speak to the issues in attempting to 
model nonlinear changes in SST performance with linear changes in 
white matter. Further, as will be detailed in the Limitations and future 
recommendations (Section 4.1), our use of tract-averaged values may be 
insensitive at identifying the subtle associations between SST perfor-
mance and white matter macrostructure. However, it is also possible 
that these two processes may develop distinctly during childhood. 
Overall, the current work suggests that the rate of change in FC of the 
fronto-basal-ganglia circuit over the transition to adolescence may not 
be indicative of an individual’s overall inhibitory ability. More specif-
ically, our results stand in contrast to those observed by Madsen et al. 
(2020), in which improvements in SSRT were found to be contingent on 
the degree of change in FA underlying the right preSMA. Nevertheless, it 
can be argued that the use of more specific behavioral and neuroimaging 
measures provides a stronger account of the nature of the relationship 
between brain structure and inhibitory function. Future work should 
seek to replicate these results to examine if these current effects hold up 
in other samples. 

4.1. Limitations and future recommendations 

Current findings should be considered in light of some limitations. 
Despite the advantages of using fiber-specific indices of white matter, 
the longitudinal FBA pipeline currently lacks the capability to conduct 
analyses in data acquired across more than two time points. Therefore, 
developmental changes in the fronto-basal-ganglia circuit were instead 
modelled using tract-averaged FBA values rather than at the fixel level, 
thus limiting the local specificity to which effects can be detected within 
a tract (as these were averaged across the entire tract). This lack of 
specificity may be a reason for why we did not observe significant age- 
effects for FD in our sample. Similarly, our study was impacted by 
attrition, resulting in an unbalanced dataset across the three time points. 
However, a key strength of our study was the use of GAMMs which is 
robust to the presence of missing data, therefore allowing us to utilize 
our full longitudinal dataset in our analyses (Hastie and Tibshirani, 
1990). 

Looking to future work, although white matter properties of the 
fronto-basal-ganglia circuit have been associated with inhibitory control 
across much of the stop-signal literature (Aron et al., 2016, 2007; Chen, 
2020; Coxon et al., 2012; Madsen, 2010; Madsen et al., 2020; Rae et al., 
2015; Singh et al., 2021), the specific role of each region within the 
fronto-basal-ganglia circuit remains a point of contention (e.g., see Aron 
et al., 2014; Hampshire, 2015; Hampshire et al., 2010). Indeed, the 
frontoparietal regions subserve several goal-directed cognitive and 

affective functions beyond inhibition (Friedman and Robbins, 2021). 
Furthermore, there is substantial overlap between axonal fibers of the 
fronto-basal-ganglia circuit with those of other frontostriatal tracts that 
have been implicated in higher-order executive functioning, such as the 
SLF (Chiang et al., 2015). Given that we found evidence to suggest that 
other non-inhibitory processes may indeed subserve response inhibition 
development (cf. sigma and tau), this could imply that the performance 
variability and long infrequent responses (contributing to longer SSRTs) 
may be better captured by these other higher-order white matter tracts 
proximal to the fronto-basal-ganglia circuit. To understand the speci-
ficity of our findings, it is recommended for future work to explore 
whether variability in sigma or tau would be significantly associated 
with the developmental trajectories of tracts traditionally identified as 
subserving other executive functions. 

4.2. Conclusions 

In this study, we examined the developmental trajectories of 
response inhibition, fronto-basal-ganglia white matter, and the associ-
ations between both measures in a cohort of typically developing chil-
dren aged 9–14 years. We observed a significant improvement in 
inhibitory control as children got older, an effect which was explained 
by a reduction in variability and skewness of the SSRT distribution. By 
applying fiber-specific indices of white matter organization, we revealed 
that the development of the fronto-basal-ganglia circuit in children is 
largely confined to changes in fiber macrostructure rather than micro-
structure of the bilateral IFG-preSMA and preSMA-STN pathways. 
Inconsistent with our hypothesis, we did not find any meaningful asso-
ciations between response inhibition and age-related improvements in 
FC of the bilateral IFG-preSMA and preSMA-STN pathways. Taken 
together, the present study sheds light on the likely cognitive mecha-
nisms subserving inhibitory control development in children, and the 
maturational trajectories of fronto-basal-ganglia macrostructure. 
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