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At present infertility is affecting about 15% of couples and male factor is responsible for
almost 50% of infertility cases. Oxidative stress, due to enhanced Reactive Oxygen
Species (ROS) production and/or decreased antioxidants, has been repeatedly
suggested as a new emerging causative factor of this condition. However, the central
roles exerted by ROS in sperm physiology cannot be neglected. On these bases, the
present review is focused on illustrating both the role of ROS inmale infertility and their main
sources of production. Oxidative stress assessment, the clinical use of redox biomarkers
and the treatment of oxidative stress-related male infertility are also discussed.
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INTRODUCTION

Infertility is a multifactorial disease affecting 15% of couples and defined as the inability to achieve
spontaneous pregnancy after 12 months or more of regular unprotected sexual intercourse (Sharlip
et al., 2002; Aitken, 2020). Male factor is responsible for almost 50% of infertility cases, contributing
equally as female factor (Athayde et al., 2007; Wagner et al., 2018). Male infertility diagnosis is
commonly based on standard semen parameters analysis (Nallella et al., 2006), according to the
WHO guidelines, nevertheless, a large proportion of infertile males does not receive a clear diagnosis,
considering them as idiopathic or unexplained cases (Sharlip et al., 2002).

Many studies suggested oxidative stress, a condition characterized by an imbalance between reactive
oxygen species (ROS) production and antioxidant defence systems, as a new emerging factor in unexplained
male infertility (Saleh and Agarwal, 2002; Makker et al., 2009; Agarwal et al., 2018; Cito et al., 2020).

At physiological levels, ROS are associated with the development of sperm fertilization properties,
promoting chromatin compaction in maturing spermatozoa, motility, chemotaxis, sperm capacitation,
hyperactivation, acrosome reaction and oocyte interaction (Kothari et al., 2010; Du Plessis et al., 2015). An
excessive ROS production represents an important cause of sperm injury. Indeed, due to the large amount
of membrane unsaturated fatty acids and the lack of cytoplasmic antioxidant enzymes, spermatozoa are
highly susceptible to oxidation (Agarwal et al., 2017), with consequent detrimental effects on sperm
quality/functioning (Aitken and Baker, 2006; Venkatesh et al., 2011; Barati et al., 2020).

Here, we discuss about the different roles of ROS on spermatozoa pathophysiology, paying
particular attention to ROS effects on semen parameters. Finally, we focus on the available
techniques to assess redox status in biological fluids and the clinical use of redox biomarkers for
diagnosis and management of male infertility.

Oxidative Stress
Oxygen has a central role in life, displaying both beneficial and harmful effects on biological systems.
The main oxygen involvement is in adenosine-5-triphosphate (ATP) generation via mitochondrial
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oxidative phosphorylation (Burton and Jauniaux, 2011;
Lushchak, 2014), a reaction also implicated in ROS and RNS
production (Pham-Huy et al., 2008).

At moderate levels, ROS/RNS play an important role in
regulating several intracellular signaling pathways, immune
and mitogen responses and in maintaining cellular
homeostasis (Kruk et al., 2019). On the contrary, higher
ROS levels can be responsible for oxidative damages on
proteins, lipids and nucleic acids (DNA, RNA), with
harmful cellular effects. However, a complex system of
antioxidant molecules has been evolved to maintain a redox
balance and avoid biological system injury (Burton and
Jauniaux, 2011; Kruk et al., 2019).

Several conditions (as environmental factors, excessive
physical exercise, deficiencies in antioxidants, immune system
dysfunctions, chronic disorders) may alter oxidant/antioxidant
balance, leading to oxidative stress (Halliwell, 2007).

Oxidative stress mediates tissue injury and cell death,
displaying a pathological role in several disorders including
inflammation and aging, cardiovascular and neurodegenerative
diseases, autoimmune disorders, cancer and reproductive system
alterations (Burton and Jauniaux, 2011; Birben et al., 2012; Kruk
et al., 2019).

The Physiological Role of ROS in
Spermatozoa
Physiologically, ROS are considered regulators of several
intracellular pathways, modulating the activation of different
transcription factors (Burton and Jauniaux, 2011). ROS
stimulate cyclic adenosine monophosphate (cAMP) in sperms,
promoting tyrosine phosphorylation by tyrosine phosphatase
inhibition (Wagner et al., 2018). This molecular mechanism
results in the activation of several transcription factors
involved in intracellular signaling cascades for sperm
physiology. Indeed, several studies showed that higher ROS
levels stimulate sperm capacitation and hyperactivation,
acrosome reaction, motility and chemotaxis and chromatin
compaction in maturing spermatozoa (Du Plessis et al., 2015;
Wagner et al., 2018). Furthermore, ROS can improve sperm
capacity of binding to the zona pellucida, inducing sperm-
oocyte fusion (Wagner et al., 2018). By the way, antioxidant
molecules may alter spermatozoa maturation, interfering with
physiological sperm function. Particularly, it was showed that
catalase or superoxide dismutase (SOD) inhibit sperm
capacitation or acrosome reaction, supporting the evidence of
the central involvement of ROS in spermatozoa functioning
(Wagner et al., 2018).

The Pathological Role of ROS in
Spermatozoa
Besides to the physiological role of ROS, excessive ROS
generation and oxidative stress seem to be associated with
harmful effects on spermatozoa, resulting in morphological
and dynamic cellular properties alterations and finally in lower
fertilization ability.

During recent years, a growing literature has shown that an
altered redox balance in seminal fluid may display deleterious
effects on sperm homeostasis, leading to male infertility (Agarwal
et al., 2008; Makker et al., 2009; Agarwal et al., 2014b; Sabeti et al.,
2016; Agarwal et al., 2017; Agarwal et al., 2018; Majzoub and
Agarwal, 2018).

Blood and plasma redox status alterations have been reported
in infertile men, as recently described in a study (Cito et al., 2020)
showing higher blood leukocytes ROS production, increased
plasma lipid peroxidation (LPO) and reduced plasma total
antioxidant capacity (TAC) in oligoasthenozoospermic men
compared to healthy subjects (Cito et al., 2020). In line with
this, several findings also suggest that ROS-mediated sperm
oxidation may induce cellular dysfunctions, affecting
spermatozoa concentration, total number and motility
(Agarwal et al., 2008; Agarwal et al., 2014b).

Spermatozoa are particularly susceptible to ROS-induced
oxidation due to the presence, in their plasma membrane, of
elevated levels of polyunsaturated fatty acids as docosahexaenoic
acid containing six double bonds per molecule (Aitken et al.,
2014). Indeed, ROS mediate the hydrogen abstraction from the
hydrocarbon side-chain of a fatty acid, yielding to a carbon-
centered lipid radical (L·) whose interaction with oxygen
produces a lipid peroxyl radical (LOO·), able to react with an
adjacent fatty acid propagating the process. Following internal
molecular rearrangements conjugated dienes and hydroperoxides
are generated (Phaniendra et al., 2015; Yoshida et al., 2015).

LPO products can also react with proteins, DNA and
phospholipids, generating end-products involved in cellular
dysfunction. Particularly, the interaction of LPO products with
amino residues can result in protein oxidation, affecting protein
structural and functional features (Niki, 2014). In this context, it
was observed that LPO products as 4-hydroxy-2-nonenal
(4HNE) are able to propagate ROS generation via interaction
with proteins of the sperm mitochondrial electron transport
chain (Aitken et al., 2014).

Lipid peroxidation is strictly associated with fluidity and
permeability membrane alterations, inhibition of membrane-
bound enzymes and receptors and activation of apoptotic
cascade, supporting oxidative stress involvement in motility
and morphology sperms abnormalities (Nowicka-Bauer and
Nixon, 2020). Among LPO products, 4HNE seems to be
highly responsible for cytotoxic effects on cellular sperm
membrane, inducing loss of membrane integrity, motility
alterations and compromising sperm-oocyte interactions
(Baker et al., 2015; Walters et al., 2018; Nowicka-Bauer and
Nixon, 2020) It was observed that 4HNE-mediated effects
depends on several factors: cellular differentiation status,
amount of substrates for 4HNE attack and antioxidant defense
systems (Walters et al., 2018).

ROS can also affect sperm functioning by post-translational
oxidative protein modifications (Salvolini et al., 2012; Morielli
and O’Flaherty, 2015). The important association between
protein oxidation markers, as three nitro-tyrosines (3NT), and
sperm motility and morphology in oligoasthenoteratospermia
has been reported (Kalezic et al., 2018). In particular, signs of
sperm protein S-glutathionylation and tyrosine nitration were
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found in infertile men (Salvolini et al., 2012; Morielli and
O’Flaherty, 2015). Accordingly, higher peroxynitrite levels in
human asthenozoospermic sperm samples, emphasizing their
negative impact on sperm motility through the formation of
three nitro-tyrosines were reported (Vignini et al., 2006).

Several investigations observed that not all sperm proteins are
equally susceptible to ROS or to lipid aldehydes (Nowicka-Bauer
and Nixon, 2020). The principal 4HNE target proteins are
represented by metabolic enzymes, involved in bioenergetic
pathways needed for sperm motility (Moscatelli et al., 2019).
Several proteomics studies have been performed on infertile men
spermatozoa in this context. A downregulation of proteins
involved in bioenergetic pathways in altered spermatozoa of
asthenozoospermic men was revealed (Amaral et al., 2014;
Moscatelli et al., 2019). Particularly, some authors observed
alterations in proteins associated with metabolic pathways as
glycolysis, pyruvate metabolism, TCA or beta-oxidation in
asthenozoospermic men, supporting that oxidative stress
compromises sperm functionality by altering bioenergetic
pathways (Elkina et al., 2011; Guo et al., 2019).

It is traditionally accepted that nucleic acids represent another
crucial target of oxidative stress. Both nuclear and mitochondrial
DNA are vulnerable to hydroxyl radical (OH.) attack, leading to
the formation of several biomarkers of oxidative stress. OH. can
react with guanine to produce 8-hydroxy-2′-deoxyguanosine (8-
OH-G), an important marker of DNA oxidative damage,
detectable in several biological samples (Burton and Jauniaux,
2011).

The lack of adequate antioxidant systems makes spermatozoa
highly susceptible to DNA oxidation (Agarwal et al., 2003; Aitken
et al., 2014). Sperm DNA oxidation is also due to the lack of
complete DNA repair strategies in spermatozoa. Indeed, if the 8-
oxoguanine glycosylase (OGG1) is able to remove the 8OHdG
residue from DNA producing an abasic site, sperms do not
possess any base excision repair system for the insertion of a
new base (Aitken et al., 2014).

Several studies indicated that ROS generation is associated
with DNA fragmentation and poor chromatin packaging,
promoting apoptosis with relevant consequences on sperm
count (Aitken et al., 2014; Iommiello et al., 2015). Patients
with asthenozoospermia show enhanced mtDNA copy number
and reduced mtDNA integrity that are associated with higher
ROS generation (Bonanno et al., 2016). Accordingly, other
reports underlined the significant association between NO and
8-OHdG levels and semen parameters abnormalities
(Gholinezhad et al., 2020), supporting redox status assessment
for helping male infertility diagnosis and monitoring.

MAIN SOURCES OF ROS

It is largely accepted that several exogenous factorsmay contribute to
inflammation and redox status alterations, promoting male
infertility. Environmental pollution, lifestyle factors as smoke,
alcohol, obesity, varicocele, bacterial/viral infections,
microorganism mutations or sexual transmitted disorders are
actively involved (Iommiello et al., 2015; Agarwal et al., 2018).

However, seminal fluid oxidative stress is mostly due to
leukocytes -that produce 1,000 more times ROS than normal
spermatozoa- and to immature spermatozoa (Agarwal et al.,
2003; Iommiello et al., 2015; Agarwal et al., 2018).

Leukocytospermia. According to WHO guidelines,
leukocytospermia, defined as peroxidase-positive leukocytes
concentration >1 × 106 per mL of semen, has been found in
about 10–20% of infertile men (Saleh et al., 2002; Agarwal et al.,
2018). Granulocytes and macrophages are the main cellular types
found in the ejaculate and are responsible for ROS generation
which is largely associated to glucose-6-phosphate
dehydrogenase (G6PDH) activity, producing high amount of
NADPH that, in turn, strongly stimulates NADPH oxidase,
one of the major ROS sources (Agarwal et al., 2003; Agarwal
et al., 2018). New emerging observations revealed that seminal
WBC could improve sperm ability to generate ROS in a direct
manner or by soluble products released in sperm
microenvironment (Saleh et al., 2002). However, the clinical
significance of leukocytospermia and its role in sperm quality
is still under debate.

Higher seminal WBC levels were observed in infertile men
compared to healthy controls and leukocytospermia was
significantly correlated with alterations in sperm number,
motility and morphology (Wolff, 1995). Moreover, in vitro
experiments showed that WBC damaged sperm function and
hamster ovum penetration, representing important prognostic
factors for Assisted Reproductive Technologies (ART) success
rate (Wolff, 1995). In line with this evidence, further
investigations supported WBC as a trigger factor for
spermatozoa ROS generation, leading to reduced sperm
quality and sperm DNA damage (Saleh et al., 2002; Agarwal
et al., 2014a). Leukocytospermia was associated with alterations
in sperm concentration, motility and morphology in
leukocytospermic patients respect to nonleukospermic patients
or healthy subjects. In vitro experiments also underlined that ROS
levels remained increased in pure sperms suspensions of
leukocytospermic patients also after WBC removal or phorbol
12-myristate 13-acetate (PMA)-induced ROS stimulation.
Similar results were obtained after sperm incubation with
WBC (Saleh et al., 2002).

Moreover, semen WBC, even at low concentrations,
resulted positively correlated with oxidative stress,
suggesting that semen WBC removal could be useful to
reduce oxidative stress in samples used for ART (Sharma
et al., 2001; Agarwal et al., 2014a).

Immature spermatozoa. When spermatogenesis is
defective, alterations in cytoplasmic extrusion mechanisms
are observed and spermatozoa are released with an excess of
residual cytoplasm (cytoplasmic droplets) (Agarwal et al.,
2003). Immature spermatozoa are associated with higher
ROS generation, via G6PDH and higher creatine
phosphokinase (CK) levels (Cayli et al., 2004). The clinical
significance of CK in sperm maturity and quality is
controversial (Hallak et al., 2001; Cayli et al., 2004;
Muratori et al., 2015). Some reports described higher CK
levels in oligozoospermic men than in healthy subjects and
a significant association between CK levels and semen
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parameters (concentration, motility and morphology),
suggesting this marker as a good predictor of sperm quality
in the follow-up of patients treated for male infertility (Hallak
et al., 2001). Other authors found no difference in CK amount
between cells with or without DNA fragmentation, showing no
involvement of immature spermatozoa in DNA damage
(Muratori et al., 2015). In this context, it was observed that
spermatozoa at different stages of maturation are
characterized by variations in ROS levels, membrane lipid
content, chromatin compaction, morphology and motility.
Immature spermatozoa showed higher ROS generation and
DNA damage and could be considered an important cause of
male infertility, inducing oxidation in mature sperm cells
during sperm migration from the seminiferous tubules to
the epididymis (Ollero et al., 2001).

Mithocondria. Another potential ROS source in spermatozoa is
represented by mitochondria. Indeed, factors as electromagnetic
radiation, polyunsaturated fatty acids or apoptotic factors may
alter the electron transport chain on mitochondrial membrane,
resulting in excessive ROS generation. Several reports indicate
sperm mitochondrial dysfunction and oxidative stress as potential
factors involved in asthenozoospermia (Nowicka-Bauer et al., 2018).
Particularly, interferences in the mitochondrial electron flow at
complexes I and III may trigger ROS generation and cause
sperm tail oxidation, leading to DNA damage and motility
aberrations (Koppers et al., 2008). Sperm mitochondrial
dysfunctions enhance ROS production and are associated with
sperm quality impairment and loss of fertilization potential.
Particularly, a significant correlation between sperm
mitochondrial functioning and sperm motility was reported
(Cassina et al., 2015).

OXIDATIVE STRESS EFFECTS ON SEMEN
PARAMETERS

During these years, the potential correlation between
spermatozoa ROS production and semen parameters has been
largely investigated (Athayde et al., 2007; Hosseinzadeh Colagar
et al., 2013; Agarwal et al., 2014a; Bonanno et al., 2016; Aitken,
2017; Dobrakowski et al., 2017; Dorostghoal et al., 2017). The
detrimental effects of ROS on sperm motility and morphology
has been repeatedly reported. In vitro experiments demonstrated
that lipid aldheydes addiction to spermatozoa promoted loss
motility in human sperm cells (Agarwal et al., 2014a) (Figure 1).

Accordingly, seminal fluid LPO and TAC levels were
significantly correlated with sperm motility, morphology and
sperm count in astheno- and oligoastheno-teratospermic men
(Khosrowbeygi and Zarghami, 2007; Hosseinzadeh Colagar et al.,
2013).

The key role of oxidative stress in spermatozoa alterations is
also supported by evidence of beneficial effects of therapeutic
supplementation with antioxidants on semen quality in infertile
men (Gambera et al., 2019). In particular, therapeutic Coenzyme
Q10 treatment improved semen parameters (sperm
concentration and motility), redox status and sperm DNA
fragmentation in idiopathic male infertility (Alahmar et al.,
2021). Interestingly, an improvement in sperm concentration
and motility after vitamin D supplementation in vitamin D
deficient infertile male with oligoasthenozoospermia was
observed (Wadhwa et al., 2020). The positive effects of an
antioxidant therapy (Gambera et al., 2019) on semen quality
has been suggested as a useful tool to improve successful
conception rate in patients with oligoasthenozoospermia
undergoing intracytoplasmic sperm injection (ICSI).

On the contrary, other authors reported no correlation
between ROS levels and sperm motility, underling that it is
still unclear if reduced sperm functional performances are due
to lower sperm number or to a direct ROS effect (Whittington
et al., 1999).

In this context, the usefulness of a new blood diagnostic tool to
evaluate sperm morphological and/or functional abnormalities,
supporting male infertility diagnosis and management, is
increasingly evident.

In this regards, blood SOD and GSH levels were found to
positively correlate with sperm count and motility, while
enhanced MDA levels were associated with altered sperm
morphology (Shamsi et al., 2010). In line with this, signs of
oxidative stress in seminal fluid and reduced plasma TAC in
infertile men were described. Particularly, plasma TAC
significantly and positively correlated both with seminal fluid
TAC and with semen parameters (Benedetti et al., 2012),
indicating that plasma redox status reflects the redox status of
seminal fluid microenvironment and sperm quality.

In agreement, it has been shown that higher MDA and Nitric
Oxide (NO) levels in plasma and seminal fluid of infertile men
correlated with semen parameters, supporting that blood redox
status is associated with semen parameters (Taken et al., 2016).

However, reports about the existing association between
blood and seminal fluid oxidative stress are still limited and

FIGURE 1 | Oxidative stress negatively affects sperm cells causing
mitochondrial injury and alterations in lipids, nucleic acids and proteins.
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controversial, potentially due to different strategies and
applied methodologies. Indeed, no correlation was found
between blood and seminal fluid oxidative status, suggesting
the independence of seminal fluid redox homeostasis from
systemic microenvironment and external factors (Guz et al.,
2013).

OXIDATIVE STRESS ASSESSMENT AND
CLINICAL USEOFREDOXBIOMARKERS IN
MALE INFERTILITY
The analysis of semen parameters according to the WHO
guidelines represents, currently, the gold standard for male
infertility diagnosis. However, several studies showed that
ROS-induced sperm oxidation can result in sperm quality
alterations, leading to a decrease in sperm fertilizing potential
(Agarwal and Majzoub, 2017; Dutta et al., 2019; Martins and
Agarwal, 2019). Based on this evidence, new tests aimed to
evaluate male fertility by monitoring oxidative stress status are
needed.

Assays for oxidative stress detection may suggest new
biochemical approaches to improve male infertility diagnosis
and management, using simple, fast and less expensive
techniques (Agarwal and Majzoub, 2017; Agarwal et al., 2019).

Oxidative stress can be evaluated in different biological
samples (plasma, serum, urine, follicular/peritoneal/seminal
fluid), obtaining an accurate picture of redox status and
eventually planning a therapeutic supplementation with
antioxidants where it’s needed.

Different oxidative stress assays exist, focusing on ROS
generation, lipid peroxidation products and total antioxidant
capacity. ROS measurement in semen include different
methods as chemiluminescence, nitro blue tetrazolium (NBT)
test, cytochrome c reduction test and electron spin resonance
(Dutta et al., 2019; Martins and Agarwal, 2019).

However, several reports underlined the central use of
cytometry to assess intracellular ROS production in blood cells
as erythrocytes and leucocytes, in spermatozoa as well as in other
cellular categories by incubating cells with the fluorescent probe
H2DCF-DA (2.5 µM) (Invitrogen, Carlsbad, CA, United States)
(Becatti et al., 2016a; Becatti et al., 2017a; Becatti et al., 2018; Cito
et al., 2020). Due to its susceptibility to ROS-induced oxidation by
hydrogen peroxide, peroxynitrite, hydroxyl radicals and also by
superoxide anions, H2DCF-DA is now considered among the
principal methods for measuring intracellular ROS levels, sensing
redox status variations and cellular oxidative stress (Eruslanov
and Kusmartsev, 2010).

Cytofluorimetric analysis can be also employed for the
assessment of membrane lipid oxidation, using the fluorescent
probe BODIPY 581/591 C11. This approach was proposed to
investigate redox status alterations both in erythrocytes of RVO
(Becatti et al., 2016b) and SSNHL (Becatti et al., 2017b) patients.

Moreover, fluorescent anisotropy of cellular membranes, a
new method to evaluate membrane fluidity, could be a future
innovation for further investigations about spermmotility defects
(Becatti et al., 2016b; Becatti et al., 2017b).

Oxidative stress assessment is also performed by evaluating
LPO and TAC levels in biological fluids (Martins and Agarwal,
2019). LPO levels can be detected by measuring lipid oxidation
end products as MDA, 4HNE, isoprostanes with
spectrofluorimetric or immunochemical assays (Agarwal and
Majzoub, 2017). Thiobarbituric Acid (TBA) Assay or the
ALDETECT Assay are the mostly used tests for LPO
assessment. Highly sensitive high pressure liquid
chromatography (HPLC) is promoted for low MDA
concentrations (Grotto et al., 2007), whereas commercial
immunoassays or mass spectrometry represent an alternative
method to evaluate lipid peroxidation end products as
isoprostanes (Morrow, 2005).

Parallelly, TAC level can be measured using enhanced-
chemiluminescence or colorimetric techniques (Martins and
Agarwal, 2019). Among chemiluminescent methodologies,
Oxygen Radical Absorbance Capacity (ORAC) Assay is based
on the intensity fluorescence decay of a fluorescent probe,
fluorescein, consequent to its oxidation by free radical species
(particularly peroxyl radical), generated after the thermal
decomposition of 2,2′-azobis (2-amidinopropane)
dihydrochloride (AAPH) azo-compound. Colorimetric
methods evaluate the antioxidant capacity of samples to
inhibit the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid) (ABTS) to ABTS + by metmyoglobin
(Martins and Agarwal, 2019).

Based on redox biomarkers alterations in infertile men, several
studies emphasized the elaboration of a specific global parameter/
index able to discriminate fertile from infertile men better than
ROS or TAC alone (Roychoudhury et al., 2016). Particularly,
ROS-TAC score, derived from both ROS levels and antioxidant
capacity in a given set of patients, was proposed as a new tool to
investigate redox status in male infertility. Infertile men withmale
factor or idiopathic diagnoses had significantly different ROS-
TAC scores than controls (Sharma et al., 1999; Vatannejad et al.,
2017). Particularly, the potential use of ROS-TAC score for
predicting the oxidative damage of semen samples in
asthenozoospermic men was proposed (Vatannejad et al., 2017).

New emerging data have also shown oxidation reduction
potential (ORP) measurement as a new fast, easy and
reproducible method to assess oxidative stress in seminal fluid
(Agarwal and Majzoub, 2017; Martins and Agarwal, 2019).

ORP indicates the ratio between oxidant and antioxidant
molecules, evaluating the potential for electrons to move from
a chemical specie to another. ORP is assessed by MiOSYS test,
that measures electron transfer from antioxidants to oxidants in
presence of a low voltage reducing current. The obtained data
represent oxidant and antioxidant activity in a sample:
particularly, high ORP levels indicate enhanced oxidant
activity and therefore a condition of oxidative stress (Agarwal
and Majzoub, 2017).

Some evidence reports a good association between ORP level
and semen parameters (Agarwal et al., 2017; Majzoub et al., 2018;
Homa et al., 2019) being found higher ORP levels in infertile men
than in healthy controls (Agarwal et al., 2017). Moreover, a
negative correlation between ORP value and semen parameters
(sperm concentration and total count, motility and morphology)
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was observed suggesting ORP as a further predictor for male
infertility diagnosis and management (Agarwal et al., 2017). In
line with this, further investigations confirmed the significant
association of ORP both with semen parameters and DNA
fragmentation in infertile men (Majzoub et al., 2018; Homa
et al., 2019). Importantly, it was also shown that ORP is a
more accurate tool for investigating redox status in male
infertility than chemiluminescent ROS assessment (Homa
et al., 2019).

TREATMENT OF OXIDATIVE STRESS
RELATED MALE INFERTILITY

Currently, defined guidelines for treatment of oxidative stress-
related male infertility are still lacking, in partly due to the
unknown etiology of this condition (Agarwal et al., 2019).
However, during these years several clinical trials have been
developed to investigate the effects of antioxidant
supplementation (as L-carnitine, selenium, Coenzyme Q10,
ubiquinol, vitamin C and E) on seminal fluid oxidative stress
and semen parameters (Majzoub and Agarwal, 2018; Dutta et al.,
2019). Many of them reported promising effects of antioxidants
on sperm concentration, motility, morphology and DNA
fragmentation (Gambera et al., 2019; Alahmar et al., 2021).
Twenty clinical trials focused on antioxidant therapy effects on
seminal oxidative stress were analyzed. Nineteen of them revealed
an improvement in sperm redox status and semen parameters
and a good correlation with pregnancy outcome (Gharagozloo
and Aitken, 2011).

However, the role of antioxidant therapy in male infertility is
still controversial. In a randomized clinical trial, it was showed
that 3 months of antioxidant treatment did not improve semen
parameters and DNA fragmentation in infertile men and no
beneficial effect on pregnancy or live birth rates was observed
(Steiner et al., 2020).

These observations indicate that evidence to support the use of
antioxidants in male infertility are still uncertain. However,

traditional semen analysis together with oxidative stress
assessment display a great potential to perform accurate
evaluation of infertile patients (Agarwal et al., 2019).

CONCLUSION

Oxidative stress is centrally involved in sperm dysfunctions
and represent a new pathological mechanism of male
infertility (Agarwal et al., 2008; Hosseinzadeh Colagar
et al., 2013; Agarwal et al., 2018). Based on previously
reported investigations and results, new methods and
diagnostic approaches for male reproductive disorders are
needed. Together with seminal fluid oxidative stress
assessment, blood redox status monitoring and leukocytes
ROS levels, could represent a new potential and less invasive
practice for clinicians to evaluate sperm cells quality and
fertilization ability. The considered redox parameters may
therefore be useful to develop new therapeutic strategies based
on antioxidant supplementation in order to reduce systemic
oxidative stress in infertile men, improving male infertility
diagnosis and management and ART success rate.
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