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Klotho and the Aging Process

Makoto Kuro-o

Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA 

The klotho gene was originally identified as a putative age-suppressing gene in mice that extends life span when 
overexpressed. It induces complex phenotypes resembling human premature aging syndromes when disrupted. The gene 
was named after a Greek goddess Klotho who spun the thread of life. Since then, various functional aspects of the klotho 
gene have been investigated, leading to the identification of multiple novel endocrine axes that regulate various metabolic 
processes and an unexpected link between mineral metabolism and aging. The purposes of this review were to overview 
recent progress on Klotho research and to discuss a novel aging mechanism. (Korean J Intern Med 2011;26:113-122)
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INTRODUCTION

The klotho gene encodes a single-pass transmembrane 

protein and is expressed primarily in the kidney [1]. A 

defect in Klotho expression in mice leads to a syndrome 

resembling aging [1], whereas overexpression of Klotho in 

mice extends life span [2]. The Klotho protein is composed 

of a large extracellular domain (- 130 kD), a transmembrane 

domain, and a very short intracellular domain (10 amino 

acids). The extracellular domain has homology to family 1 

glycosidases (enzymes that hydrolyze terminal glycosidic 

linkages in sugars, glycoproteins, and glycolipids) and is 

subject to ectodomain shedding. As a result, the entire 

extracellular domain is released into the extracellular 

space and is detectable in blood, urine, and cerebrospinal 

fluid [2-5]. Thus, the Klotho protein exists  in two forms: 

membrane Klotho and secreted Klotho (Fig. 1). Mem-

brane Klotho functions as a receptor for a hormone that 

regulates excretion of phosphate and synthesis of active 

vitamin D in the kidney [6-8]. Secreted Klotho functions 

as a humoral factor with pleiotropic activities, including 

suppression of growth factor signaling, suppression of 

oxidative stress, and regulation of ion channels and trans-

porters [9-12].

Function of membrane Klotho
The function of membrane Klotho was not clear un-

til we realized that Klotho-deficient mice and FGF23-

deficient mice suffered identical phenotypes. FGF23 was 

originally described as one of the 22 members of the 

fibroblast growth factor (FGF) family [13]. The function 

of FGF23 became clear when FGF23 was identified as the 

gene mutated in patients with autosomal dominant hypo-

Correspondence to Makoto Kuro-o, M.D.
Department of Pathology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9072, USA
Tel: 1-214-648-4018, Fax: 1-214-648-4033, E-mail: Makoto.Kuro-o@UTSouthwestern.edu

FGF23

K
lo

th
oMembrane

Klotho

Calcitriol
synthesis

Pi
excretion 

Kidney

Secreted
Klotho

K
lo

th
o

Klotho

FG
FR

α-
 o

r β
-s

ec
re

ta
se

Figure 1. Membrane Klotho and secreted Klotho. Membrane 
Klotho forms a complex with the fibroblast growth factor  re-
ceptor (FGFR) to create a de novo high-affinity binding site for 
FGF23. Membrane Klotho is subject to ectodomain shedding by 
α- and β-secretases to release secreted Klotho.
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phosphatemic rickets (ADHR) [14]: ADHR is character-

ized by hypophosphatemia due to phosphate wasting into 

urine, inappropriately low serum levels of active vitamin 

D (1,25-dihydroxy vitamin D3 or calcitriol), and a defect in 

bone mineralization (rickets). ADHR patients carry mis-

sense mutations in the FGF23 gene, which confer resis-

tance to proteolytic inactivation of FGF23 [15]. As a result, 

serum FGF23 levels are elevated in patients with ADHR. 

Thus, gain-of-function mutations in the FGF23 gene lead 

to phosphate wasting, hypophosphatemia, and rickets. 

These symptoms can be explained by the fact that FGF23 

is a bone-derived hormone that acts on the kidney to in-

crease phosphate excretion into urine (phosphaturia) and 

to suppress calcitriol synthesis [16]. 

In contrast, FGF23-deficient mice suffer phosphate 

retention phenotypes, including hyperphosphatemia and 

vascular calcification [17]. However, in addition to these 

expected phenotypes, FGF23-deficient mice unexpectedly 

develop complex phenotypes resembling aging, including 

growth arrest, kyphosis, osteopenia, emphysematous 

lung, and atrophy of the gonads, thymus, muscle, skin, and 

intestine, which are reminiscent of Klotho-deficient mice 

[18]. Conversely, in addition to aging-like phenotypes, 

Klotho-deficient mice exhibit hyperphosphatemia and 

vascular calcification similar to FGF23-deficient mice 

[1,19,20]. These observations led us to hypothesize that 

Klotho and FGF23 might function in a common signal 

transduction pathway. 

We found that FGF23 requires membrane Klotho 

to bind to cognate FGF receptors [6], which was later 

confirmed independently by other laboratories [7,21]. 

Although FGF23 belongs to the FGF family, it cannot bind 

to the FGF receptor (FGFR) with high affinity. Instead, 

FGF23 uses the Klotho-FGFR complex as its high-affinity 

receptor: Klotho forms a constitutive binary complex 

with FGFR1c, FGFR3c, or FGFR4, thereby creating a de 

novo high-affinity binding site for FGF23 [22]. In other 

words, Klotho functions as an obligate co-receptor for 

FGF23. This explains why mice lacking FGF23 (hormone) 

and Klotho (receptor) develop identical phenotypes. 

Furthermore, kidney-specific expression of Klotho 

explains why FGF23 identifies the kidney as its target 

organ among many other tissues that express multiple 

FGFR isoforms. The Klotho-FGF23 system may represent 

a novel mechanism by which a redundant ligand-receptor 

system secures tissue specificity. 

Endocrine regulation of phosphate homeostasis
Phosphate homeostasis is maintained by a counterbalance 

between absorption of dietary phosphate from the 

intestine and excretion of blood phosphate from the kidney 

into urine [23]. These processes are coordinately regulated 

by several endocrine factors. Calcitriol and parathyroid 

hormone (PTH), which have been extensively studied 

as hormones that regulate calcium metabolism, are also 

involved in phosphate metabolism [24,25]. Calcitriol 

is secreted by the kidney and acts on the intestine to 

increase absorption of calcium and phosphate, thereby 

inducing a positive phosphate balance. PTH is secreted 

from the parathyroid glands in response to decreases in 

serum calcium levels and acts on the kidney to promote 

calcitriol synthesis. However, unlike calcitriol, PTH does 

not induce a net positive phosphate balance, because PTH 

promotes phosphate excretion into urine at the same time. 

Calcitriol in turn suppresses PTH secretion and closes a 

negative feedback loop. Thus, it had been thought until 

quite recently that phosphate metabolism was regulated 

indirectly by calcium-regulating hormones (calcitriol and 

PTH). 

Discovery of the FGF23-Klotho endocrine system has 

transformed this classic view. One critical feature of 

FGF23 is that it requires Klotho to be expressed in target 

organs [11]. FGF23 is secreted from bone and acts on 

the kidney where Klotho is expressed. FGF23 promotes 

phosphate excretion and suppresses calcitriol synthesis in 

the kidney, thereby inducing a negative phosphate balance 

[16]. Klotho is also expressed in parathyroid glands [26], 

indicating that parathyroid is another target organ of 

FGF23. In fact, FGF23 suppresses PTH production and 

secretion [26], further enhancing its ability to suppress 

calcitriol synthesis in the kidney. Expression of the 

FGF23 gene is transactivated with calcitriol in a vitamin 

D receptor dependent manner [27], forming a negative 

feedback loop between bone and kidney. Furthermore, 

PTH increases FGF23 expression [28,29], forming another 

negative feedback loop between bone and the parathyroid. 

These newly identified bone-kidney-parathyroid endocrine 

axes mediated by FGF23 and Klotho add new dimensions 

to the classic view of endocrine regulation of phosphate 

homeostasis (Fig. 2, modified from [30,31]). 

Phosphate and aging
FGF23 functions as a phosphaturic hormone and a 

counter-regulatory hormone for vitamin D (calcitriol) 

in a Klotho-dependent manner. Thus, underlying 
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abnormalities caused by defects in the FGF23-Klotho 

system are hyperphosphatemia and hypervitaminosis 

D, suggesting that the complex aging-like phenotypes 

observed in mice lacking FGF23 or Klotho may be 

attributed to phosphate retention and/or vitamin D 

intoxication. Several laboratories have successfully 

rescued the aging-like phenotypes in FGF23-deficient 

mice and/or Klotho-deficient mice by resolving the 

hyperphosphatemia and/or hypervitaminosis D by 

means of dietary and genetic interventions (Table 1, 

modified from [31]). A vitamin D-deficient diet rescued 

many aging-like phenotypes of Klotho-deficient mice [19] 

and FGF23-deficient mice [32]. Similarly, disruption of 

the vitamin D receptor (VDR) gene [33] or the Cyp27b1 

gene (encoding 1a-hydroxylase, an enzyme essential for 

calcitriol synthesis) [18,34] rescues these mutant mice 

as well, implying that excess vitamin D activity might 

be responsible for the aging-like phenotypes. However, 

these dietary and genetic interventions lowered not only 

calcitriol but also phosphate and calcium in the blood, 

raising the possibility that phosphate and/or calcium 

might be the true culprit (s). In fact, a low phosphate diet 

reduces blood phosphate levels and rescues mice lacking 

Klotho [35] or FGF23 [32], despite the observation that it 

did not reduce blood calcium or calcitriol levels. Similarly, 

limiting phosphate reabsorption by deleting the kidney-

specific sodium-phosphate co-transporter type-2a (Npt2a) 

gene reduces blood phosphate levels and rescues these 

mice without restoring serum calcium and calcitriol 

levels to normal [36]. Thus, it is not calcitriol or calcium 

but phosphate that is primarily responsible for the aging-

like phenotypes caused by defects in the FGF23-Klotho 

system. These observations indicate that phosphate 

retention leads to pathologies resembling aging, which 

may be collectively referred to as “phosphatopathies.”

Aging and chronic kidney disease
Phosphatopathies are universally observed in patients 

with chronic kidney disease (CKD). CKD is defined as a 

state of progressive decline of renal function over months/

years caused by any chronic diseases that affect the kidney 

(most notably hypertension and diabetes) and/or natural 

aging. More than 26 million Americans, or 13% of the total 

population, have CKD, which is increasingly recognized as 

a public health problem in the aging society [37,38]. Since 

hyperphosphatemia was identified as a potent mortality 

risk in CKD patients [39-41], lowering blood phosphate 

levels below 4.5 mg/dL with a low phosphate diet and 

phosphate binders (medications that chelate phosphate in 

the gut and prevent its absorption) has been an important 

therapeutic goal in the management of patients with CKD 

[42].

Patients with CKD exhibit a marked decrease in renal 

Klotho expression associated with resistance to FGF23, 

Table 1. Changes in serum levels of Pi, Ca, and vitamin 
D by various interventions that rescue Klotho- and/or 
fibroblast growth factor 23 (FGF23)-deficient mice 

Interventions 

Serum levels

Pi Ca
Vitamin 

D

Low Pi diet ↓ ↑ ↑

Npt2a knockout ↓ ↑ ↑

Cyp27b1 knockout ↓ ↓ ↓

VDR knockout ↓ ↓ ↑

Vitamin D-deficient diet ↓ ↓ ↓

Na-dependent Pi co-transporter type-IIa (Npt2a) is primarily re-
sponsible for renal Pi reabsorption. Thus, loss of Npt2a causes 
Pi wasting into urine and compensatory increases in vitamin D, 
which increases intestinal absorption of both Pi and Ca. Cyp27b1 
encodes 1α-hydroxylase, an enzyme that synthesizes calcitriol 
(active vitamin D). VDR, vitamin D receptor (modified from 
[30,31]).
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Figure 2. Endocrine regulation of phosphate homeostasis 
(modified from [30,31]). Parathyroid hormone (PTH) increases 
synthesis of calcitriol (1,25-dihydroxyvitamin D3) in the kidney 
(a). Calcitriol in turn decreases PTH (b), thereby closing a nega-
tive feedback loop. The fibroblast growth factor 23 (FGF23)-
Klotho system has emerged as the principal phosphate-regu-
lating endocrine axes. FGF23 is secreted from bone and acts 
on kidney to reduce calcitriol synthesis (c). Because calcitriol 
increases FGF23 expression in bone (d), a negative feedback 
loop exists between FGF23 and calcitriol. FGF23 also acts on the 
parathyroid to reduce PTH (e). Because PTH increases FGF23 
expression (f), another negative feedback loop exists between 
PTH and FGF23.
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hyperphosphatemia, and vascular calcification, which are 

reminiscent of Klotho-deficient mice [43-45]. Notably, the 

vast majority of patients with CKD die prematurely not 

due to renal failure, but due to early onset of common age-

related diseases such as cardiovascular disease, cancer, 

and infection [46,47]. Consequently, the spectrum of 

death causes in patients with CKD is similar to that of the 

general population. Patients with CKD also suffer many 

aging-like symptoms, including hypogonadism, skin 

atrophy, osteopenia, and cognitive impairment. Thus, 

CKD may be viewed as a state of accelerated aging and/or 

an age-related disease associated with Klotho deficiency 

and phosphate retention. 

Phosphate metabolism in CKD
As functional nephrons are progressively lost during 

the progression of CKD, each nephron is required to 

excrete an increasing amount of phosphate to prevent 

phosphate retention. This can be achieved by increasing 

serum levels of FGF23. However, FGF23 suppresses 

calcitriol synthesis in the kidney at the same time. 

Decreases in functional nephrons capable of calcitriol 

synthesis may also contribute to decreases in calcitriol. 

In fact, increases in FGF23 and decreases in calcitriol 

precede overt hyperphosphatemia during the progression 

of CKD [41]. These observations indicate that early-stage 

patients with CKD maintain normal blood phosphate 

levels by increasing FGF23 to compensate for the reduced 

ability of the kidney to excrete phosphate at the expense 

of calcitriol. Because calcitriol is a potent upregulator 

of Klotho [19], decreases in calcitriol can reduce Klotho 

expression. In fact, decreases in urine Klotho levels 

are observed in the early-stage of CKD long before 

hyperphosphatemia ensues [48]. Because calcitriol also 

functions as a potent suppressor of PTH [24], decreases 

in calcitriol can increase PTH. In fact, serum PTH levels 

start increasing during the early-stage of CKD prior to 

the start of the increase in serum phosphate levels [41]. 

Decreases in Klotho can induce FGF23 resistance in the 

kidney and parathyroid. Moreover, increases in PTH can 

increase FGF23 [29]. Thus, these changes in phosphate-

regulating hormones and Klotho form a vicious cycle, 

leading to high FGF23, high PTH, low calcitriol, and low 

Klotho in patients with end-stage renal disease (Fig. 3, 

modified from [30,31]). Hyperphosphatemia ensues when 

the number of functional nephrons decreases to a level 

that fails to excrete ingested phosphate into urine.

Notably, phosphatopathies such as vascular calci-

fication can occur in patients with CKD and normal 

blood phosphate levels, which is associated with an 

increased incidence of cardiovascular events [46,49,50]. 

One possible explanation for this dissociation would 
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Figure 3. Changes in the phosphate-regulating endocrine system during progression of chronic kidney disease (CKD) (modified from 
[30,31]). (A) Vicious cycles leading to high fibroblast growth factor 23 (FGF23), high parathyroid hormone (PTH), low vitamin D, and 
low Klotho in CKD. (B) Increases in serum FGF23 and serum PTH levels and decreases in serum vitamin D and urine Klotho levels pre-
cede hyperphosphatemia during CKD progression from stage 1 to stage 5.
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be that these patients might suffer postprandial 

hyperphosphatemia, which may be sufficient to induce 

phosphatopathies even if they are normophoshatemic 

under fasting conditions. Because dietary phosphate 

overload can increase blood phosphate levels transiently, 

even in healthy individuals [51], it is possible that patients 

with CKD and a reduced ability to excrete phosphate into 

urine may suffer prolonged and/or enhanced postprandial 

hyperphosphatemia. Another possible explanation would 

be that tissue phosphate content might be increased in 

patients with CKD even if their serum phosphate levels 

are normal. Secreted Klotho protein has activity that 

suppresses phosphate uptake in various types of cells, 

including vascular smooth muscle cells, by inhibiting type-

III sodium-dependent phosphate co-transporters, which 

may protect arteries from calcification [48]. Decreased 

Klotho expression in the kidney of patients with CKD 

potentially reduces blood levels of secreted Klotho and 

promotes vascular calcification. 

Function of secreted Klotho
Membrane Klotho is clipped on the cell surface by mem-

brane-anchored proteases (α- and β-secretases), resulting 

in the secretion of the entire extracellular domain (- 130 

kD) into systemic circulation [3-5]. Secreted Klotho has 

pleiotropic functions as a humoral factor independently of 

FGF23 (Table 2). 

Secreted Klotho belongs to family 1 glycosideses and 

has weak glycosidase activity in vitro [52]. However, 

endogenous substrates for secreted Klotho were not clear 

until the mechanism by which secreted Klotho activates 

the TRPV5 calcium channel was revealed [53,54]. TRPV5 

is expressed on the luminal side of distal tubules in the 

kidney and functions as the rate-limiting entry gate for 

transepithelial calcium reabsorption [55]. TRPV5 activity 

depends on the number of channels present on the cell 

surface, which is regulated by the rate of endocytosis. 

Secreted Klotho suppresses TRPV5 endocytosis by 

modifying its N-linked glycans and increasing the cell-

surface abundance of TRPV5; secreted Klotho removes 

terminal sialic acids in the N-glycan of TRPV5 on the cell 

surface through its putative sialidase activity. Removal of 

terminal sialic acids by secreted Klotho exposes underlying 

galactose residues in the N-glycan, which are ligands for 

a ubiquitous galactose-binding lectin called galectin-1. 

Binding of the modified N-glycan to the galectin-1 lattice 

in the extracellular matrix suppresses TRPV5 endocytosis, 

leading to the accumulation of TRPV5 on the cell surface 

[54]. The  ROMK1 potassium channel is also activated by 

secreted Klotho through the same mechanism [56].

The putative sialidase activity of secreted Klotho 

may also be involved in its ability to suppress kidney-

specific sodium-dependent phosphate co-transporter 

type-IIa (Npt2a) [57]. Npt2a is expressed on the brush 

border membrane of renal proximal tubular cells and 

functions as the major entry gate for transepithelial 

phosphate reabsorption. Modification of the N-glycan 

of Npt2a by secreted Klotho leads to inactivation and 

proteolytic degradation of Npt2a through a mechanism 

yet to be identified. Secreted Klotho also suppresses 

type-III sodium-dependent phosphate co-transporters 

(Pit-1 and Pit-2), which are ubiquitously expressed to 

mediate cellular phosphate uptake [48]. It is possible that 

the ability of secreted Klotho to suppress these sodium-

dependent phosphate co-transporters may contribute to 

preventing phosphatopathies. 

Secreted Klotho regulates the activity of multiple 

growth factors, including insulin/insulin-like growth 

factor-1 (IGF-1) [2], Wnt [58], and transforming growth 

factor (TGF)-β1 [59]. Because adequate suppression of 

insulin/IGF-1 signaling pathway has been identified as an 

evolutionarily conserved mechanism for extending life 

Table 2. Pleiotropic functions of secreted Klotho protein 
Glycoproteins regulated by secreted Klotho Klotho effects 

Ion channels Transient receptor potential vanilloid type isoform-5 (TRPV5) Increase in Ca2+ influx [54]

Transporters Renal outer medullary potassium channel-1 (ROMK1) Increase in K+ efflux [56]

Na-dependent phosphate co-transporter, type-IIa (Npt2a) Decrease in Pi influx [57]

Pit-1, 2 (Na-dependent phosphate co-transporter, type-III) Decrease in Pi influx [48]

Receptors Insulin/insulin-like growth factor (IGF)-1 receptors Inhibition [2]

Transforming growth factor (TGF)-β1 receptor (type-II) Inhibition [59]

Secreted Klotho has emerged as a humoral regulator of multiple glycoproteins on the cell surface.
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span [60], the anti-aging properties of Klotho may stem 

partly from its ability to suppress insulin/IGF-1 signaling. 

In fact, transgenic mice that overexpress Klotho are long-

lived and slightly resistant to insulin and IGF-1 without 

overt diabetes [2]. The mechanism by which secreted 

Klotho suppresses insulin/IGF-1 signaling remains to 

be determined. However, secreted Klotho inhibits Wnt 

signaling by directly binding to Wnt ligands and preventing 

them from binding to their receptors. Wnt signaling 

is enhanced in Klotho-deficient mice, which results in 

exhaustion of stem cells in highly proliferative tissues such 

as skin and intestine and may partly contribute to atrophy 

of these tissues in Klotho-deficient mice [58]. 

We recently found that secreted Klotho suppresses 

TGF-β1 signaling; secreted Klotho directly binds to type-II 

TGF-β receptor (TGFβR2) on the cell surface and prevents 

TGF-β1 binding to TGFβR2 [59]. TGF-β1 is the most potent 

inducer of the epithelial-to-mesenchymal transition 

(EMT) [61]. EMT is a cellular process whereby epithelial 

cells lose epithelial characters and undergo a phenotypic 

transition to acquire mesenchymal characters, including 

the ability to migrate and proliferate. EMT is essential for 
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tissue repair in response to injury but can result in fibrosis 

under pathological conditions in the kidney as well as in 

many other tissues, including the liver, lung, and heart 

[62]. Furthermore, cancer cells undergo EMT and acquire 

the ability to migrate and proliferate, leading to metastasis 

[62]. Thus, the ability of secreted Klotho to inhibit TGF-β1 

activity may counteract EMT and prevent tissue fibrosis 

and cancer metastasis. In fact, injecting secreted Klotho 

prevents renal fibrosis induced by unilateral ureteral 

obstruction and metastasis of human cancer xenografts 

in mice [59]. These activities of secreted Klotho may also 

contribute to life span extension by Klotho overexpression 

in mice [2]. 

The Klotho family and endocrine FGFs
After the discovery of the klotho gene, two Klotho-

related genes were identified based on sequence similarity 

and designated as βKlotho [63] and gKlotho (also known 

as KLPH or LCTL) [64]. The original Klotho has been 

referred to αKlotho when necessary to distinguish it from 

βKlotho and gKlotho. Similar to αKlotho, βKlotho and 

gKlotho are single-pass transmembrane proteins that 

form complexes with FGF receptors [65-67]. βKlotho is 

expressed in various tissues, most notably in the liver and 

white adipose tissue, and forms complexes with FGFR1c 

and FGFR4 [66-68]. gKlotho is expressed in eyes and 

forms complexes with FGFR1b, FGFR1c, FGFR2c, and 

FGFR4 [67]. Importantly, these Klotho-FGFR complexes 

function as high-affinity receptor for endocrine FGFs 

other than FGF23. A phylogenetic analysis has segregated 

FGF23 and two additional FGFs (FGF19 and FGF21) from 

the other FGF family members. These three FGFs, FGF19, 

FGF21, and FGF23, are collectively called endocrine FGFs, 

because they function as hormones, unlike the other FGFs 

that function primarily as paracrine/autocrine factors [69]. 

One critical feature of endocrine FGFs is that they require 

Klothos to be expressed in their target tissues and exert 

their biological activity. FGF19 requires βKlotho [66] or 

gKlotho [67], whereas FGF21 requires βKlotho [65].

FGF19 is secreted from the intestine upon feeding 

and acts on the liver to suppress bile acid synthesis by 

downregulating Cyp7a1 gene expression, which encodes 

the bile acid synthesis rate-limiting enzyme [70]. This 

intestine-liver endocrine axis mediated by FGF19 and 

βKlotho is indispensable for maintaining bile acid 

homeostasis, because mice lacking either FGF15 (the 

mouse ortholog of human FGF19), βKlotho, or FGFR4 (the 

prominent FGFR isoform expressed in the liver) exhibit 

increased Cyp7a1 expression and bile acid synthesis in the 

liver [70-72]. Bile acids bind to the FXR nuclear receptor 

and transactivate the FGF19 gene in the intestine, forming 

a negative feedback loop between the intestine and liver 

[70] (Fig. 4, modified from [69]).

In contrast to FGF19, FGF21 is secreted from the 

liver upon fasting and acts on white adipose tissue to 

induce lipolysis and the metabolic adaptation to fasting 

[73]. Fatty acids bind to the PPARα nuclear receptor 

and transactivate the FGF21 gene in the liver, forming a 

negative feedback loop between white adipose tissue and 

liver. Of note, transgenic mice that overexpress FGF21 

are subject to torpor, a short-term hibernation-like state 

whereby animals reduce activity and body temperature 

to limit energy expenditure [73]. These mice are smaller 

than wild-type mice due to resistance to growth hormone 

and low serum IGF-1 levels [74], suggesting that FGF21 

may extend life span by suppressing the somatotroph-

endocrine axis. 

These observations indicate that the most important 

function of the Klotho family (αKlotho, βKlotho, and gK-

lotho) is to regulate the function of endocrine FGFs (FGF19, 

FGF21, and FGF23) [69]. These newly identified endocrine 

axes mediated by endocrine FGFs and Klothos regulate 

various metabolic processes and have a common negative 

feedback structure composed of lipophilic ligands (bile 

acid, fatty acid, and vitamin D), nuclear receptors (FXR, 

PPARα, and VDR), and cytochrome P450 superfamily 

enzymes (Cyp7a1 and Cyp27b1) (Fig. 4).

CONCLUSIONS

Since the discovery of the klotho gene in 1997 [1], we have 

witnessed several breakthroughs that have significantly 

advanced our understanding of Klotho protein function. 

Membrane Klotho functions as the obligate co-receptor 

for FGF23, a bone-derived phosphaturic hormone. Defects 

in either FGF23 or Klotho result in phosphate retention 

associated with complex aging-like phenotypes, which we 

propose calling phosphatopathies. These findings have 

revealed an unexpected link between phosphate and aging 

[75]. Phosphate retention associated with Klotho deficiency 

is universally observed in patients with CKD, suggesting 

that CKD may be viewed as a state of accelerated aging. 

Discovery of the Klotho family members have identified 

multiple novel endocrine axes and opened a novel research 

field in endocrinology. Further studies on the Klotho 
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family are expected to provide new insights into endocrine 

regulation of various metabolic and aging processes.
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