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Unveiling the third dimension 
in morphometry with automated 
quantitative volumetric 
computations
Lawrence R. Frank1,2*, Timothy B. Rowe3, Doug M. Boyer4, Lawrence M. Witmer5 & 
Vitaly L. Galinsky1

As computed tomography and related technologies have become mainstream tools across a broad 
range of scientific applications, each new generation of instrumentation produces larger volumes of 
more-complex 3D data. Lagging behind are step-wise improvements in computational methods to 
rapidly analyze these new large, complex datasets. Here we describe novel computational methods 
to capture and quantify volumetric information, and to efficiently characterize and compare shape 
volumes. It is based on innovative theoretical and computational reformulation of volumetric 
computing. It consists of two theoretical constructs and their numerical implementation: the 
spherical wave decomposition (SWD), that provides fast, accurate automated characterization of 
shapes embedded within complex 3D datasets; and symplectomorphic registration with phase 
space regularization by entropy spectrum pathways (SYMREG), that is a non-linear volumetric 
registration method that allows homologous structures to be correctly warped to each other or a 
common template for comparison. Together, these constitute the Shape Analysis for Phenomics 
from Imaging Data (SAPID) method. We demonstrate its ability to automatically provide rapid 
quantitative segmentation and characterization of single unique datasets, and both inter-and 
intra-specific comparative analyses. We go beyond pairwise comparisons and analyze collections 
of samples from 3D data repositories, highlighting the magnified potential our method has when 
applied to data collections. We discuss the potential of SAPID in the broader context of generating 
normative morphologies required for meaningfully quantifying and comparing variations in complex 
3D anatomical structures and systems.

Imaging and data complexity. Advances in modern digital imaging methods are revolutionizing a wide 
range of scientific disciplines by facilitating the acquisition of huge amounts of 3D volumetric data that represent 
objects of scientific interest with unprecedented fidelity. Such data can often replace examination of physical 
objects and thereby increase the quantitative rigor and computational power that can be aimed at the analysis of 
those  objects1. This is particularly true in the fields of evolutionary biology and paleontology where 3D volume 
data avail both the external and internal complex geometry of museum specimens to detailed visualization and 
quantitative study. In addition, digitizing and virtualizing research objects such as those in museum collections 
allows them to be deposited in web repositories or broadly shared, thereby increasing accessibility and value of 
these collections for research and public benefit, while simultaneously reducing the risk of damage to fragile 
specimens due to handling. Methods such as MRI and CT are rapidly changing the world of evolutionary biol-
ogy research and have had a profound influence on scientific discovery. These data are just the starting point for 
the scientific exploration that modern computational and visualization methods enable. In particular, our ability 
to understand phenomic effects of genetic variation is limited by availability of quantitative representations of 
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the morphological/anatomical phenomes in this case). Therefore, the more advanced our ability to characterize 
morphological variation, the more we can eventually understand about genetic variation.

These advances come at a cost. While the reservoir of digitized specimen data is growing rapidly, as evidenced 
from the frequency of published papers using digital volume  data2–14, the cumulative impact and power of these 
data remains unrealized because of the labor intensive data analysis. As dataset size, dimensionality and complex-
ity grow along with sample sizes (number of datasets available), so does the need for increasingly efficient and 
accurate algorithms capable of robustly extracting quantitative parameters relevant to research questions. The 
difficulties are not only computational, as data sizes and dimensionalities continue to increase, but also, perhaps 
surprisingly, theoretical as well: The vast majority of studies still rely on surfaced based analysis methods, and 
thus do not fully exploit the volumetric nature of the data and the vast amount of information it contains.

In short, the great potential that these advanced digital imaging systems have for making sense of biologi-
cal diversity remains untested in many ways because of the significant difficulties in analyzing the increasingly 
complex volumes of data.

Phenomics and computational morphology. During the past decade, biology has been revolutionized 
by enormous advances in molecular and cellular biology. Conspicuously, comparative morphology has been 
slower to evolve during this same  period15, even though great technological advances in imaging can provide 
volumetric digital data of exquisite resolution. One reason why morphometrics has lagged behind genomics 
is the difficulty in characterizing and comparing complex morphological variations in 3D volumetric  data16. 
Moreover, volumetric morphological datasets are also orders of magnitude larger than sequence data.

Broadly speaking, revitalizing the study of anatomical aspects of organismal phenome (i.e., morphology) is 
critical, as patterns of shape variation in biological structures form the basis for understanding important aspects 
of gene  function17,18, developmental  mechanisms19, ecological  adaptation20,21, and evolutionary  history22. This is 
also an important short-fall because as research designs in phylogenetics become increasingly multi-factorial and 
complex, there is an increased need for more accurate and sophisticated techniques to measure morphological 
variation, particularly as modern scanners provide increasing resolving power. Further—though amazing insight 
continues to flow from rapid and profound advances in genomics—there is growing recognition that the utility 
and information content of genetic data will only reach its fullest extent once data on associated phenotypes can 
be analyzed at equivalent rates and  scales23. This is a central issue for the emerging field of  phenomics24.

Geometric morphometrics has emerged as an important tool for phenomics, becoming commonly used to 
quantify morphology, wherein landmark points are identified in images and then are fit to a warped mesh that 
provides a common coordinate system in which different specimens can be  compare25–32. Landmark coordi-
nates are the basis of statistical comparisons of geometric morphometrics. These coordinates are intended to be 
biologically equivalent on all specimens analyzed and they are usually defined manually, though more recently 
new algorithmic approaches for automatically placing landmarks have begun to  arise16,33–36 and statistically 
compare morphologies based on these points. However, current methods remain primarily surface-based37–41. 
In fact, true volumetric analysis should be much better suited to detecting and comparing subtle morphological 
variations and is a more efficient use of volumetric data. But the extension to volumetric analysis comes at the 
cost of an increased complexity of the analysis.

Shape analysis for phenomics from imaging data (SAPID). Over the last several years, our (Dr 
Frank and Dr Galinsky) Center for Scientific Computation in Imaging (CSCI, http:// csci. ucsd. edu) has developed 
a theoretical and computational methodology to address the two major technological issues involved in the 
application of shape analysis to 3D volumetric data to phenomics: (1) characterizing and (2) comparing shapes. 
Characterizing volumetric geometric properties of different tissue types within a sample involves shape analysis 
and image segmentation and is done on single specimens, while comparing geometric characteristics involves 
image registration and is done between specimens. The two algorithms we have developed for addressing these 
issues are the Spherical Wave Decomposition (SWD)42 for shape analysis and image segmentation, and sym-
plectomorphic registration with phase space regularization by ESP (SYMREG)43 for registration. Together, we 
collectively call these the Shape Analysis for Phenomics from Imaging Data (SAPID) toolkit.

The technical details of these methods have been discussed  elsewhere42,43, so here we will first present the 
methodology in more descriptive and intuitive form. Our main objective in this paper though is to describe the 
application of this methodology to different volumetric datasets from three collaborators (Drs Rowe, Boyer, and 
Witmer) who make heavy use of imaging in their ongoing research in evolutionary biology and paleontology. 
The intent is to show that this small sample of data from a broad spectrum of applications will serve as sufficient 
demonstration of the practical utility of our approach in solving computational morphology problems of wide-
spread applicability. Data used in this study are shown in Table 1.

The theoretical foundations and computational implementations of the SAPID methods SWD and SYMREG 
have been described in detail in previous  publications42,43. These papers are necessarily quite technical in order 
to describe the details of the algorithm implementations. Here we will focus on a more intuitive description of 
the methods with some illustrative examples aimed at elucidating the important features of the methods.

Results
Example 1: analysis of CT growth series data of stained Monodelphis specimens (Rowe 
Lab). In the late 1980s and early 90s Dr Rowe’s team assembled a calibrated growth series of the opossum 
Monodelphis domestica, a popular experimental model species for early-diverging mammals. It was provided 
by the Southwestern Foundation for Biomedical Research, an NIH-sponsored facility that supports research on 
model organisms. The collection consists of ≈ 200 specimens some of which were cleared and double-stained, 
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and others skeletonized. Six of the small skulls representing different levels of maturity (post-natal days 27, 48, 
57, 75, 90, and a retired breeder) were the first to be CT scanned using an industrial high-resolution scanner 
at the University of Texas High-Resolution X-ray Computed Tomography Facility (UTCT). At that time it was 
a state-of-the-art instrument, producing 512× 512 pixel images representing 200µ thick slices, and 300  Mb 
datasets (see DigiMorph.org). Early research on these data provided novel insights into the effects of relative 
growth of the brain and auditory ossicles including a novel solution to the problem of evolution of the mamma-
lian middle ear. It took weeks to manually register images from the different datasets, to plot growth vectors for 
different elements of the braincase and middle ear, and to illustrate the results which were sufficiently important 
for publication in the journal  Science44.

Table 1.  CT scan datasets used in this study deposited in MorphoSource.org.

Figure Group/sample Specimen♯ Description/element taxon Doi link

1 27 days old TMM:M:7595 Skull Monodelphis domestica https:// doi. org/ 10. 
17602/ M2/ M1689 16

1 48 days old TMM:M:7536 Skull Monodelphis domestica https:// doi. org/ 10. 
17602/ M2/ M1687 01

1 57 days old TMM:M:7539 Skull Monodelphis domestica https:// doi. org/ 10. 
17602/ M2/ M1687 73

1 75 days old TMM:M:7542 Skull Monodelphis domestica https:// doi. org/ 10. 
17602/ M2/ M1688 29

1 90 days old TMM:M:7545 Skull Monodelphis domestica https:// doi. org/ 10. 
17602/ M2/ M1688 84

1 Retired breeder TMM:M:7599 Skull Monodelphis domestica https:// doi. org/ 10. 
17602/ M2/ M1689 48

2 and 4 “Anthropoid” MCZ:mamm:10132 Cranium Saimiri oerstedii https:// doi. org/ 10. 
17602/ M2/ M4489

2 and 4 “Anthropoid” MCZ:mamm:10133 Cranium Saimiri oerstedii https:// doi. org/ 10. 
17602/ M2/ M4488

2 and 4 “Anthropoid” MCZ:mamm:27098 Cranium Cebus apella https:// doi. org/ 10. 
17602/ M2/ M5207

2 and 4 “Anthropoid” MCZ:mamm:29488 Cranium Saimiri oerstedii https:// doi. org/ 10. 
17602/ M2/ M4484

2 and 4 “Anthropoid” MCZ:mamm:30724 Cranium Cebus apella https:// doi. org/ 10. 
17602/ M2/ M5210

2 and 4 “Anthropoid” MCZ:mamm:34326 Cranium Cebus capucinus https:// doi. org/ 10. 
17602/ M2/ M5148

2 and 4 “Anthropoid” MCZ:mamm:43484 Cranium Saimiri sciureus https:// doi. org/ 10. 
17602/ M2/ M4445

2 and 4 “Strepsirrhine” AMNH:mammals:M-100640 Cranium Cheirogaleus major https:// doi. org/ 10. 
17602/ M2/ M12868

2 and 4 “Strepsirrhine” AMNH:mammals:M-170553 Cranium Lepilemur leucopus https:// doi. org/ 10. 
17602/ M2/ M11537

2 and 4 “Strepsirrhine” AMNH:mammals:M-170558 Cranium Lepilemur leucopus https:// doi. org/ 10. 
17602/ M2/ M11533

2 and 4 “Strepsirrhine” AMNH:mammals:M-170561 Cranium Lepilemur leucopus https:// doi. org/ 10. 
17602/ M2/ M11666

2 and 4 “Strepsirrhine” AMNH:mammals:M-170568 Cranium Lepilemur mustelinus https:// doi. org/ 10. 
17602/ M2/ M11664

2 and 4 “Strepsirrhine” AMNH:mammals:M-170573 Cranium Lepilemur leucopus https:// doi. org/ 10. 
17602/ M2/ M11662

2 and 4 “Strepsirrhine” AMNH:mammals:M-196618 Cranium Cheirogaleus major https:// doi. org/ 10. 
17602/ M2/ M23465

3 na AMNH:mammals:M-72141 Cranium Callicebus cupreus https:// doi. org/ 10. 
17602/ M2/ M21971

3 na AMNH:mammals:M-72143 Cranium Callicebus cupreus https:// doi. org/ 10. 
17602/ M2/ M21972

5 Flexed/treeshrew FMNH:mammals:76865 Flexed hind limb Tupaia minor https:// doi. org/ 10. 
17602/ M2/ M30401

5 Extended/treeshrew FMNH:mammals:76865 Extended hind limb Tupaia minor https:// doi. org/ 10. 
17602/ M2/ M30398

5 Flexed/primate DPC:ost:030 Flexed hind limb Microcebus murinus https:// doi. org/ 10. 
17602/ M2/ M30424

5 Extended/primate DPC:ost:030 Extended hind limb Microcebus murinus https:// doi. org/ 10. 
17602/ M2/ M30420

6 na FMNH:PR:2081 Cranium& hemi-
mandible Tyrannosaurus rex https:// doi. org/ 10. 

17602/ M2/ M3669 12
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Applying SAPID to register pairs of these same datasets took only a few hours and required no user manual 
input (Fig. 1). The results not only corroborated the earlier findings of differential growth trajectories for spe-
cific points on the skull, but also provided comparisons of the entire skulls in different slice planes that reveal 
differential growth in the face and dentition that have not previously been studied quantitatively in 3D. It also 
enabled identification of artifacts resulting from drying the skulls before scanning, especially in the less mature 
specimens. Preparation artifacts are rarely identified as sources of uncertainty in morphometric comparisons 
between recent specimens. With our latest Northstar ultra high-resolution scanner, we can generate imagery up 

Figure 1.  Volumetric SAPID analysis of high resolution X-ray CT images of Monodelphis. (Left) Slice through 
original volumetric CT data (red) overlayed with adult CT (grayscale), (Middle) Slice through volumetric non-
linear registration of original CT data (red) overlayed with adult CT (grayscale), (Right) 3D visualization of 
volumetric non-linear registration of original CT data (red) overlayed with adult CT (grayscale).
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to 4098× 4098 pixels, at micron-scale resolutions, and data volumes more than an order of magnitude larger 
than those produced by the previous generations of scanners. The advent of iodine-staining and phase contrast 
 scanning45 has enabled CT to image soft tissues as well as the skeleton. CT is now poised to facilitate a much 
fuller understanding of the complex dynamic between the developing skull, its neurosensory structures, and its 
musculature. Moreover, we can now successfully image 1-day-old specimens in which nearly all of the skeleton 
is still cartilaginous, and capture all of postnatal ontogeny using a much denser sample of specimens. The data 
volumes will quickly grow into hundreds of gigabytes. Quantitative analysis and visualization of such large and 
rich volumes of data can for the first time be accomplished using the improved, automated algorithms integrated 
in SAPID.

Additionally, SAPID provided the SWD quantitative geometric measures that compares skull shape between 
specimens. The original data is shown in Fig. 1(left) and the registered data is shown in Fig. 1(middle). We 
emphasize that these results are fully volumetric, as shown in Fig. 1(right). The measurements indicate rapid 
differentiation of shape in early ontogeny followed by slowing and then a plateau approaching maturity. These 
results are not surprising, but quantifying rates of morphogenesis over the course of ontogeny has been limited 
to surface based methods until now, which limits the ability to detect more subtle morphological changes that 
occur in 3D. Using fossils in a phylogenetic context, we will be able to quantify rates of evolutionary morpho-
genesis througout the entire image volume as well. Whole head analyses, quantitatively in 3D, will enable testing 
of recent hypotheses that olfactory gene duplications were major drivers in the evolution of skull and cortical 
organization along the mammalian stem and in many of its living  clades46,47.

Figure 2.  Skull shape characterization by Spherical Wave Decomposition (SWD) on skulls of an Anthropoid 
and a Strepsirrhine from MorphoSource. Bandwidth (i.e. more accurate shape description) increases from left 
to right. Blue voxels are similar between skulls, red are dissimilar. As fit increases, the percent of voxels in the 
volume that are different between the species increases.

Figure 3.  CT scans of two Callicebus cupreus skulls archived in MorphoSource. (Left) original and (right) 
registered using symplectomorphic non-linear registration. The yellow is registered to the red. Red is the 
“template”, yellow is warped to the “template” space.
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Figure 4.  An example of intra-species (A, B) and inter-species (C, D) quantitative morphological comparison using 
CT scans of seven anthropoid and seven strepsirrhine skulls. Intra-species comparison. (A) Red circle encloses average 
anthropoid skull computed from the surrounding 7 individual skulls using SYMREG. Similarity values for individual skulls 
compared with the template is show as the red dot on the plot with scores on the vertical axis. (B) Blue circle encloses average 
strepsirrhine skull computed from the surrounding 7 individual skulls using SYMREG. Similarity values for individual skulls 
compared with the template is show as the blue dot on the plot with scores on the horizontal axis. Scores are high in all cases, 
as would be expected, and suggest each skull is from the same species. Variations provided by variations from the mean form 
a basis for quantitative comparision. Inter-species comparison. In (C) the average strepsirrhine from (B) is used for the 
comparison template for the seven anthropoid skulls in (A). The similarity values (pointed to by red dotted line) are all low, 
suggesting each is a poor match in species. In (D) the average anthropoid from (A) is used for the comparison template for the 
seven strepsirrhine skulls in (B). Again, the poor similarity scores (pointed to be blue dotted line) suggest that the species are 
different. Note that while the similarity measure here (mean squared difference) is a simple scalar values, it is derived from the 
volumetric differences between individual skulls and templates which can be used to identify specific locations of geometric 
variations.
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Example 2: posture correction and interspecies skull comparison (Boyer Lab). It has long been 
recognized size variation among individuals within a species scales proportionally and is generally less than 
size variation between  species48. Understanding of the intraspecific limits on size variation has been critical for 
utilizing data on size variation to address questions about evolution. A complete geometric characterization not 
just of size but shape necessarily provides greater quantitative sensitivity to evolutionary changes. Classic mor-
phometric methods have proven useful in this problem but are limited by their restriction to surfaces, and not 
easy to generalize to full volumetric data. They are also somewhat limited in the application to specimens that 
have well defined similar landmarks, though even in this case they artificially assume the importance of certain 
landmarks chosen a priori, as discussed below in “Hypothesis testing” section.

In the case where similar landmarks do not exist, current analysis methods become even more problematic. 
However, the volumetric registration of SAPID is unaffected by this problem, as no landmark identification is 
required a priori. Even in the absence of similar landmarks, SAPID provides a general method for describing 

Figure 5.  SAPID allows postural differences to be excluded from shape comparisons. (A) The same structure 
(a mammal hindlimb—femur and tibia/fibula) was scanned twice (boxes of the same color) in two different 
postures (a flexed and extended posture). Then scans of the same structure in different postures were compared 
to each other using SAPID (#1–2). As well, all combinations of different specimens in similar and different 
postures were compared (#3–6). (B) Despite different postures, SAPID successfully identified instances of the 
same structure in different postures as morphologically more similar (having smaller computed morphological 
distances) than comparisons of different structures. This suggests that whole body scans can be compared to 
quantify interspecific differences in body plan even though each specimen that is scanned has a unique posture. 
Red box = primate limb, Blue box = treeshrew limb.
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intraspecific variation in different species by iteratively permuting monospecific sample compositions to gener-
ate a distribution of best-parameters for each sample. The distribution of SWD parameters then becomes the 
measure of shape variation that can be compared between species. When pairs of groups have non-overlapping 
distributions of parameters, one could define these groups as having heterogeneous levels of variation. The same 
parameters that we use to demonstrate differences in intraspecific variation can also be used to assess group 
membership of unknown individuals or to assess shape overlap between populations.

A demonstration of the capabilities of shape characterization with SWD is shown in Fig. 2 where skulls from 
an anthropoid and a strepsirrhine (from MorphoSource.org) are compared by characterizing each in terms of 
the SWD at different accuracies which allows the quantitative characterization of similar and dissimilar local 
and global shape changes. A demonstration of volumetric non-linear registration using SYM-REG on volumet-
ric CT scans of two Callicebus cupreus skulls is shown in Fig. 3. An example of intra-species and inter-species 
quantitative morphological comparison facilitated by SAPID is shown in Fig. 4 using volumetric CT scans of 
quantitative morphological comparison using CT scans of seven anthropoid skull and seven strepsirrhine skulls.

These whole body datasets present a more difficult but very critical practical problem for characterizing 
phenotypic differences. Variations of posture of different specimens introduce large differences in volumetric 
geometry unrelated to differences due to shape of individual bones. We found that SAPID is able to distinguish 
these, as demonstrated by the example where the same specimen scanned twice in two completely different 
postures can still be recognized as uniquely similar even when compared to different specimens in similar pos-
tures (Fig. 5). In addition, the SAPID derived parameters have been able to demonstrate the relative similarity of 
different scans. This is completely outside the realm of capability of any other shape comparison method based 
on either volumes or surfaces.

Example 3: shape analysis and segmentation of Tyrannosaurus rex (Witmer Lab). Paleobiology 
is another field where the rapid advancement of imaging and computational capabilities is completely altering 
our understanding of form and function. The SAPID algorithms have the capabilities of addressing common 
problems in vertebrate paleontology, such as deformation, disarticulation, and missing bony elements, within a 
framework of rigor and repeatability, and help address key questions in dinosaur paleobiology.

Figure 6.  Automated shape analysis and segmentation of Tyrannosaurus Sue skull. (A) Slice through original 
CT volumetric data; (B) SWD of low intensity values, (C) SWD of high intensity values; (D) combined display 
of (B, C); (E) unsegmented SWD reconstruction of entire volume, (F) combined segmented SWD volumes.
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Imaging in paleobiology research shares common goals with evolutionary biology of extant species, such as 
automatic segmentation and quantitative shape characterization of internal structures and statistical assessment 
of structure variations between specimens. But extending these analytical advances into deep time, however, 
presents challenges for paleobiological interpretation due to the added complication of diagenetic and tapho-
nomic factors.

Ultimately, optimization of the SAPID methods for paleobiological data will require addressing the unique 
characteristics of CT in inhomogeneous samples (e.g., fossils in rock matrix, often with additional materials 
introduced by museum staff such as plaster, adhesives, and metal mounting armature) and the optimal fitting 
parameters for data that contain a large number of sharp edges (e.g., from fractures). We performed an initial 
SWD analysis on the skull of the well-known specimen of Tyrannosaurus rex known as “Sue” (FMNH PR 2081). 
This specimen, on display at the Field Museum of Natural History in Chicago, is among the most complete 
(approximately 85%) and largest specimens of T. rex collected. The results, shown in Fig. 6, demonstrate the 
ability to fit and segment a specimen that has these issues.

Future work will require addressing deformation and other taphonomic artifacts, including development 
of standardized analysis and reproducibility pathways for retrodeformation of fossils, and optimizing the tools 
to take into account diagenetic and/or taphonomic deformation, which hampers analytical comparison of 
specimens.

Just as it is able to factor out differences due to posture, the SAPID tools also have the potential to meaning-
fully quantify and compare specimens even when bones are out of position or missing, as is often the case in 
fossils. This will provide a level of objectivity and repeatability previously lacking in dinosaur studies.

The ultimate goal of SAPID in this application is the elucidation of specific paleobiological issues such as 
dinosaur skull function, such as sensory organization and behavior of  tryannosaurs49. Analytical advances in 
bioengineering—such as finite element analysis (FEA) of feeding mechanics or computational fluid dynamics 
(CFD) of nasal airflow—are highly sensitive to structural conformation. Having powerful analytical software 
connected to high-fidelity 3D data for multiple specimens within different clades will allow unprecedented com-
putational accuracy and reproducibility of functional studies. In conjunction with soft-tissue reconstructions 

Figure 7.  Shape analysis and segmentation of a CT scan of the skull of the London specimen (BMNH 37001) 
of Archaeopteryx lithographica for a study of the brain and inner ear and its adaptation to  flight50. Specimen was 
scanned at UT Austin’s High-Resolution X-ray CT Facility at low and high X-ray energies (120 kV and 180 kV). 
The resulting matrix data size was 1024× 1024× 650 voxels and the voxel size was 20× 20× 46µm . (A) The 
original segmentation (Fig. 1b  in50) which took ∼ 100 h of manual segmentation. (Visualization using Mimics 
v7.3, https:// www. mater ialise. com) (B) Automated SWD analysis. The SWD detects continuous distributions of 
similar intensity and quantitatively characterizes their shape. Subsequent to the SWD analysis, a segmentation 
algorithm extracts the skull. The total processing time to produce figure (B) was 7 min and required no user 
input.

https://www.materialise.com
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(e.g., jaw muscles, brain), this will allow hypothesis-testing of critical functional systems (e.g., feeding, respiration, 
sound production, sensory and cognitive ability).

Example 4: the fossil problem: Archaeoptery × lithographica (Rowe Lab). A good example of 
the challenges facing paleobiological imaging data, and the potential utility of SAPID in addressing them, is 
illustrated with high resolution CT data of the skull of the important London specimen of Archaeopteryx litho-
graphica (BMNH 37001) shown in Fig. 7. This was the subject of a study that elucidated the avian nature of the 
brain and inner ear and its adaptation to  flight50.

The braincase of BMNH 37001 was scanned twice, at low and high X-ray energies (120 kV and 180 kV, 
respectively) The resulting matrix data size was 1024× 1024× 650 voxels and the voxel size was 20× 20× 46µm . 
(For full scanning details,  see50, and additioanal imagery on http:// digim orph. org/ speci mens/ Archa eopte ryx_ 
litho graph ica/).

In Fig. 7A is shown the results of the original manual processing (Fig. 1b  in50) using Mimics v7.3 software 
(www. mater ialise. com). This required a significant amount of hand editing and took approximate 100 h to com-
plete. In Fig. 7B is shown the SWD analysis, which used on the high power (180 kV) data. The computation of 
the SWD took ≈ 2 min and the segmentation took ≈ 5 mins.

It is important to recognize that there is a fundamental difference between the traditional histogram method 
and the SWD method for segmentation. The most principled approach to histogram based segmentation is to 
estimate different statistical distributions of intensities. However, this will still include any voxels with similar 
intensities, even if they are spatially isolated from the large scale structures, such as the ubiquitous sand grains 
that are often isointense with bone in CT images and thus contaminate segmentations that use standard his-
togram based methods. However the SWD is first performing a quantitative estimate of the entire volumetric 
shape of these structures by fitting them to a set of 3D functions (as described in the “Methods” section), then 
using the estimated coefficients to detect boundary regions between components (i.e., rock and bone). The 
results (e.g. Fig. 7B) are thus distinct (i.e., segmented) 3D shapes fully numerically characterized by a set of 
coefficients that can be used for geometric analysis—computation of volumes, surface areas, etc, and can be 
compared with other shapes. It should be noted that while bird and reptile brains are smooth, some mammals, 
especially humans, cetaceans, proboscideans, and artiodactyls are highly folded, and the SWD can be used to 
quantify the degree of foliation. This analysis has been shown to be useful in the study of cerebellar foliations in 
elasmobranch brains, which is related to their evolutionary development, predation strategies, habitat, behavior, 
and cognitive  capabilities51.

Discussion
Volumetric versus surface based methods. The spherical wave decomposition (SWD)52 was developed 
to overcome the limitations of surface-based methods by directly analyzing the entire data volume, obviating the 
segmentation, inflation, and surface fitting steps of surface based methods, significantly reducing the computa-
tional time and eliminating topological errors while providing a more detailed quantitative description based 
upon a more complete theoretical framework for volumetric data. One of its most important features is the lack 
of topological defects that plague surfaced based  methods52.

Characterization of morphological features embedded within noisy volumetric data is the essential technical 
issue in quantitative descriptions of morphology, and so plays a critical role in the characterization of morphology 
both within and among species. Standard approaches to this problem employ surface based methods. Those that 
attempt to fit functional coefficients require an initial segmentation of a surface and often a subsequent inflation 
of this surface to satisfy the uniqueness or stability of subsequent surface fitting algorithms. These methods are 
inefficient and time consuming because of the need for segmentation prior to fitting and the computationally 
intensive inflation process, the latter being also a significant source of errors due to creation of topological defects.

It is also worth noting that most implementations of surface-based methods are of the external surfaces, not 
the internal surfaces, so that a significant portion of the morphology remains uncharacterized. Exceptions to 
this are surface renderings of internal negative spaces within skulls, such the brain and inner ear spaces and the 
nasal  cavity49. However, this type of skull morphometric analyses to use internal anatomy along with external 
anatomy is uncommon. The SAPID approach presented here makes such analysis straightforward.

Another important feature of our SWD numerical implementation is its speed: it can reconstruct a volu-
metric data of size 256× 256× 128 in the order of about 10 s, as compared to a surface only reconstruction 
using a standard package used in medical  imaging53 on the same data, which took ≈ 14 h. This speed opens up 
the possibility of automatically exploring very large databases in a practical amount of time, enabling broader 
intra- and inter-species comparisons.

It should be noted that the volumetric approach emphasized here does not preclude the use in cases where 
only surfaces, or other substructures, are of interest (and other features ignored), as these are straightforward to 
extract following the volumetric processing.

Scientific use cases: pivotal questions. The dominant patterns and processes of morphological change 
across animal lineages remain subjects of active debate. Morphological change can be modeled as primarily 
gradual in pattern or as saltatory and punctuated, with rapid accumulations of evolutionary change after long 
periods of  stasis54. The processes of morphological diversification among lineages are also  contentious55. Diver-
sification may occur primarily through widespread adaptive evolution, bringing lineages closer to theoretical 
ecological or engineering optima. If evolution is primarily driven by different selective pressures then frequent 
convergence in shape among distantly related species may be  observed56. Proposed examples of functional-
adaptive diversity and convergence include a few different dietary ecologies in hundreds of species in  bats57, 

http://digimorph.org/specimens/Archaeopteryx_lithographica/
http://digimorph.org/specimens/Archaeopteryx_lithographica/
http://www.materialise.com
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similarities in the dental morphology of mammals adapted to similar diets but representing widely divergent 
 clades58; similarities in the distal limb morphology of eutherian and metatherian large mammal  predators59; 
and even relatively specialized structures like the “plagiaulacoid” form of premolar seen in multituberculates, 
marsupials, and  plesiadapiforms60. Alternatively, diversification in anatomical form may occur primarily along 
pathways regulated by legacies of  constraint61. Under this model of diversification, a more limited role of adap-
tive evolution as well as an extensive role for non-selective drift and historical constraints is acknowledged. 
This model of limited adaptation within the parameters of constrained inherited body plans was  proposed62 to 
describe the evolution of animal life subsequent to the Cambrian. However, as Gould noted, this hypothesis is 
impossible to conclusively assess in the absence of quantitative methods for capturing organismal shape in the 
absence of homology. In other words, a key premise of the hypothesis is that differences between phyla should be 
larger and more environmentally correlated than differences within phyla. But since all shape comparison meth-
ods reference specific homologous structures we cannot yet actually comment on whether differences between 
worms and vertebrates are in fact bigger or smaller than differences within vertebrates.

One might think that finding the answer to questions about evolutionary process is now the purview of 
genomics since anatomy has a genetic basis and population genetics provides researchers with straightforward 
tools for determining whether selection has operated or is operating on a given genetic region or  locus63. How-
ever, the ability of genetics to describe the selective basis of differences in complex structural anatomical traits 
may in fact be quite  limited64,65. There is growing recognition that patterns of anatomical variation themselves 
may still hold the most promise, especially when quantified correctly and analyzed in the appropriate statistical 
 frameworks66–68. A starting point for such analyses is recognizing cohesive species/population units in the fossil 
record and extant museum collections, which allows for documenting magnitudes and patterns of intraspecific 
variation and trait  covariance69–71. Broadly characterizing general properties of shape variation, while critical 
for understanding macroevolutionary processes, has stymied evolutionary biologists and paleontologists alike. 
While there have been a growing number of 3D morphometric studies based on landmark datasets, these are 
still based on surface based methods, and only register a limited number of preselected landmark points, rather 
than the entire volume. With the SAPID approach to shape characterization and comparison, not only can we 
statistically quantify the shape in populations (such as the mean, which provides a template or atlas, and the vari-
ance which is the necessary unit of evolutionary change), but we can define shape difference without reference 
to subject landmarks, linear measures, or ordinations of such subjective variables. In other words, we can define 
metrics representing variation in overall anatomy without being limited by the presence/absence of particular 
features, while still quantifying the subregion variation contributing to these overall metrics.

The efficiency and automation of the SAPID algorithms will facilitate exploration of large datasets to inves-
tigate the role of natural selection in driving extant vertebrate diversity. Distinguishing epigenetic relationships 
from change driven by natural selection is a tenacious problem. This is currently not within the capability of 
existing algorithms. For example, with large virtual collections of specimens as CT data, one could investigate 
the hypothesis that natural selection has had a significant and primary effect on cranial and skeletal anatomy. 
The scan data combined with SAPID methods would allow one to evaluate the prediction that (a) those groups 
with greater ecological diversity should have greater cranial and skeletal diversity when estimated age of the 
group’s common ancestor is taken into account, (b) and that when grouped by ecological niche, different clades 
of primates or classes of vertebrates should show common trends relating and distinguishing those niche groups.

Development of standardized analysis and reproducibility pathways. SAPID demonstrably rep-
resents a fundamental advance in methods for volumetric shape comparison and image registration from a theo-
retical, mathematical, and computational perspective. However, it is not necessarily intuitive to most morpho-
metricians for some of the same reasons. The most fundamental difference between SAPID and traditional shape 
comparisons is that ‘shape distance’ between two objects is not uniquely defined as it would be in comparing 
landmark datasets in geometric morphometrics via Procrustes distances. Instead, with SAPID, it is possible to 
control the ‘goodness’ of fit between two distinct shapes by modifying parameters used to generate the symplec-
tomorphic mapping, thus producing results with different “shape distances” for the same two shapes. This could 
be frustrating for morphometricians because it superficially adds a new level of ambiguity to image comparison. 
However, such ambiguity, in truth, has always been there. In traditional geometric morphometrics, it is masked 
by the problematic assumption that affine transformations are biologically and geometrically sufficient, and that 
a researcher’s particular choice of landmarks and the between-species deformations implied by those landmarks 
are meaningful descriptions of the geometry. Allowing the first of these assumptions to monopolize geometric 
morphometrics risks misinterpreting the repeated observation of patterns due to this approach as fundamental 
patterns of shape variation, which could mislead the development of broad evolutionary theories. The second 
set potentially adds to problems of reproducibility between researchers and fundamentally prohibits comparing 
variation among structures that are not homologous on some level.

A non-unique distance measure leaves two possible routes for assessing degree difference between morpho-
logical samples. (1) Use a biological control (aka reference) sample to define the appropriate parameters of image 
registration, and apply these to experimental perturbations of the sample or comparisons with other samples. 
(2) Use a critical measure of shape difference (e.g., zero difference), to determine the appropriate parameters for 
image registration between any two objects. In this second scenario, understanding and quantifying biological 
variation between samples will require introduction of some kind of registration metric that can possibly incor-
porate the magnitude of the deformation and/or the parameters of the fit needed to perfectly match individuals 
to each other and/or a template representing the average.

The benefit of the first approach is that it shares more similarity with other current methods of shape compari-
son and we can already define shape statistics for these comparisons (e.g. parameters of image registration can 
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even be chosen to keep the deformations uniform across the volume or across each coordinate independently, 
thus resulting in familiar orthogonal or affine transforms)31. The drawback is that it requires the assumption that 
particular control samples have been appropriately defined, it requires the preservation of these control samples 
for reproducibility, and it means that conclusions of studies hinge on the composition of their control samples. A 
further problem with this approach is that, while it should usually produce satisfying results in suggesting large 
quantitative differences among qualitatively different shapes, the registration of these shapes often will not make 
much biological sense to researchers, leading them to question the utility of the distance.

The benefit of the second approach is that forcing a complete registration between two objects leaves little 
ambiguity about the correctness of the mapping (researchers can easily verify that obviously homologous struc-
tures (e.g., nasal apertures, orbits, neurocrania) are mapped to each other. The drawback is that statistics for 
parameters describing the amount deformation used to accomplish the registration are not yet defined. Defining 
statistics for this mode of comparison is thus an area of important work.

Finally, one opportunity presented by the SAPID approach to shape registration is that effects of non-linear 
differences in position of homologous objects (like differences in postures of two articulated skeletons) can be 
separated from differences due to registering their volumes to one another. If implemented into an analytical 
workflow, scans of multiple skeletons of the same species could be retro-deformed into similar postures and then 
compared for whole skeleton morphological variation.

Another area of future work is the assessment of sensitivity to control samples and problems with mappings 
of qualitative different shapes. Possible approaches to this problem include (1) iteratively permuting composition 
of control samples for various bones of various species to assess the sensitivity of intraspecific mappings to these 
variables. While helping us understand the effect of robustness of intraspecifically (or subspecifically) defined 
parameters, this will allow comparison of heterogeneity in variation among species and among anatomical 
regions which will also address interesting biological questions.

The SAPID analysis can be used to augment existing taxonomic strategies. For example, after computing 
within and between species differences using parameters based on one or several intraspecific samples, the matrix 
of interspecific differences can be used to define the minimum spanning tree relating those samples where the 
length of a connection between species, which is defined as the shape differences between two species templates 
under the predefined image registration parameters. This graph can be used to compose (or guide) mappings 
between species with large qualitative differences thereby avoiding distances based on unlikely registrations but 
maintaining a constant set of registration parameters.

Hypothesis testing. In the end, what is of greatest importance for morphometric methods is their utility 
in hypothesis testing. This requires the ability to quantitatively compare complex shape variations within or 
between species over time. The more precise the geometric characterization of a volumetric shape and the regis-
tration between specimens, the greater the sensitivity to subtle variations hypothesized in evolutionary models. 
This is ultimately the greatest power of the SAPID method, which provides such precision in the very general 
context of volumetric imaging data, be it from MRI, CT, or any other scanner type.

A specific example that might be helpful in clarifying this point is provided by the question of the coevolution 
of the mammalian middle ear and neocortex examined  in44 using CT data of Monodelphis domestica. At the time 
this paper was written ( ∼ 25 y ago), 3D analysis methods were far less developed. Studying the development 
and growth of the didelphid mandibular arch was done by examining how CMJ and middle ear growth relate 
to each other in the context of cortical plane growth. The CMJ is a fixed reference point to align the different 
individuals to show the growth trajectory of the fenestra vestibuli, and outlines of the ’cortical equator’ were used 
to represent brain growth. This required manual tracing of structures in a single slice, identifying appropriate 
landmarks for comparison, then merging the results onto a single image (see Fig. 1d  in44). This took several 
weeks of work to complete.

That same CT data is shown Fig. 1(left column) where the entire dataset, or any substructure(s) of interest, 
can be quantitatively characterized and compared between species and over time. In Fig. 1(middle column) we 
have demonstrated the simplest form of such a comparison—the decreasing mean squared difference in shape 
between maturing specimens and a reference adult specimen, just to emphasize these capabilities. In the practical 
application to this problem, SAPID could be used to examine the particular substructures of interest (the CMJ 
and fenestra vestibuli) and provide quantitative characterizations of the shape variations in terms of whatever 
metrics are deemed of greatest interest, such as distances, angles, mid-points, shape complexity (i.e., number 
of SWD coefficients necessary to characterize the shape, etc). These would provide more precise quantitative 
measures that can then be used in a hypothesis-driven analyses of shape association with particular factors such 
as diet/locomotion, disparity measurements, and sometimes estimates of integration and/or modularity—more 
often than not in a comparative/phylogenetic context. Such work is beyond the scope of the current paper but 
will be addressed in a future study.

It is important to recognize that the SAPID methods actually broaden the scope of hypothesis driven research. 
The current standard methods for shape comparison that involve identification and subsequent registration 
of landmarks identify these landmarks a priori, and thus there is an implicit bias as to their relevance. On the 
contrary, SYMREG will automatically register the entire shapes. Standard landmarks (homologous structures) 
will automatically be registered but any additional co-registered shapes can be identified ex post facto as useful 
landmarks, potentially providing new hypotheses about the evolutionary trajectory. These methods might use-
fully inform more current research on a wide variety of topics (e.g.,72–74).

The important overarching point is that the ability of the SAPID approach to produce quantitative volumetric 
characterization and registration provides the basis for utilizing a wide range of standard statistical comparison 
methods with much greater sensitivity to geometric variations in specific tissue types than extant methods. 
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This can result in an enhanced ability to more precisely quantitatively address significant specific questions in 
evolutionary biology.

Conclusion
In conclusion, we have presented two theoretical constructs and their numerical implementations, the spherical 
wave decomposition (SWD)42 that provides fast, accurate automated characterization of shapes embedded within 
complex 3D datasets, and symplectomorphic registration with phase space regularization by ESP (SYMREG)43, a 
volumetric non-linear registration method that allows homologous structures to be correctly warped to each 
other or a common template for comparison. Take together, these constitute an automated approach to true 
volumetric computational morphometrics that we call the Shape Analysis for Phenomics from Imaging Data 
(SAPID) method. This paper has shown its capability on several datasets of importance to evolutionary biology, 
paleobiology, and digital library data usage, which suggests its widespread utility in a broad scope of these and 
related disciplines.

Methods
Volumetric shape analysis. The goal of shape analysis is to quantitatively characterize a 3D “object”, such 
as a skull specimen, that has been imaged by some volumetric imaging modality, such as computed tomography 
(CT). Specifically, the objective is to represent the digitized version of the object by some well-defined math-
ematical functions to assign numbers containing the shape information that uniquely describe the specimen 
and can be used to compare to other specimens. It is useful to think of this process as involving two steps: (1) 
Choosing a set of mathematical functions appropriate to generally describe such objects, which we will call the 
issue representation and (2) Determining the parameters of that representation that uniquely describe a specific 
volumetric image of a specimen, a process called reconstruction.

The goal of quantitative morphology is to construct a numerical characterization of the spatial organiza-
tion of an object. There are often many ways to do this but implementing an efficient numerical method can be 
greatly facilitated by a judicious choice of the representation. One way to think about this problem is as a deci-
sion about the choice of coordinate system. This is best illustrated by three examples, which will quickly take us 
to the motivation for the SWD.

Cartesian basis and spatial coordinates. Consider the problem of analyzing very regular shapes, such as an 
office building which we assume to be a perfectly rectangular cuboid. The shapes are characterized by the three 
numbers—the length a along one base, which will call the x-axis, the length b along the other base, which will 
call the y-axis, and the height c along the vertical or z-axis. Since these directions are all perpendicular, we can 
define a vector of unit length along each direction:

and then any point f(x, y, z) within the building can be described by

where 0 ≤ α,β , γ ≤ 1 . The vectors in Eq. (1) are called basis vectors of the Cartesian coordinate system. The 
construction in Eq. (2) is called a linear combination of basis vectors and it works because the basis vectors are 
mutually perpendicular, or orthogonal. This important property will be shared by the other bases we use below. 
A basis can be thought of a set of functions that can completely and uniquely describe all points in a space. In 
order to strictly qualify as a basis, certain properties are required, which go beyond the scope of this paper but 
can be found in any linear algebra  book75.

Characterizing the shape of the building—its volume, distance between the ground floor entrance and your 
desk on the 10th floor, the volume of a substructure (such as a floor) can all be done using these basis vectors. 
We just use points along these axes and the rule for vector addition and we can compute the geometric quantities 
of interest—distance, area, volume, etc.

The frequency domain and plane waves. Unlike an office building, biological objects such as the CT of a skull or 
the MRI of a brain have exceedingly complex geometries, so a more general approach is necessary. One feature of 
biological structures that can be used to advantage is that they tend to exhibit extended spatial patterns, though 
these maybe complicated. This suggested working in a coordinate system of patterns, rather than directly in the 
spatial coordinates. A simple example is the very regular pattern of a sine wave in space, which in one-dimension 
is:

where x is the spatial coordinate. This wave is described by only three parameters: (1) its spatial frequency in the 
x-direction k (in units of 1/distance)—how rapidly it oscillates as a function of position; (2) its amplitude A—the 
height of the peak; and (3) the phase θ—the offset of the starting point. In other words, the best coordinate system 
to describe such a wave is not the spatial domain {x, y, z} , but rather the coordinates {ω,A, θ} . This is called the 
spatial frequency domain. The variables x and k are called conjugate variables because we can characterize the 
wave equation (3) in either domain.
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Somewhat surprisingly, more complex shapes can be described by the combination (i.e. the sum) of waves 
of different amplitudes, spatial frequencies, and phases. This is the essence of Fourier’s Theorem. The remarkable 
property of the sin and cos functions is that they are mutually orthogonal and form a basis in frequency space, 
in the same way that the vectors equation (1) formed a basis in coordinate space. Frequency space is also called 
Fourier space and the trigonometic functions are called the Fourier basis functions.

Recalling that sin and cos are just phase shifted versions of one another, we can eliminate the explicit phase 
θ and write such a combination of waves in one-dimension at a single point xi

where m is the number of spatial frequencies in the shape and the phase θ is now contained in the relative ampli-
tudes of a and b. The last equality is a consequence of Euler’s relation eib = cos b+ i sin b where i =

√
−1 defines 

a complex number which can be thought of as a convenient bookkeeping device that makes the equations much 
easier to work with as it avoids a proliferations of terms.

This notation is particularly convenient because we can easily generalize the expression for the signal at any 
point xi to 3-dimensions as

(4)s(xi) =
m
∑

j=1

(

aj cos kjxi + bj sin kjxi
)

=
m
∑

j=1

cje
ikjxi

(5)s(xi) =
m
∑

j=1

cje
ikj ·xi

Figure 8.  Shape characterization with Fourier plane waves. (A) Real sand dune, with surface ripples. (B) 
Numerically generated (idealized) sand dune with ripples. The underlying dune is represented by a single 
low spatial frequency, high amplitude wave. The ripples were generated by the sum of two high frequency, 
low amplitude waves oriented at 45◦ and −45◦ relative to the y-axis. The entire dune is the sum of all these 
waves. (C) The magnitude of the Fourier Transform (FT) of (B) detects these three waves. The location of the 
peaks gives the spatial frequency, the angle of the peaks in the (kx , ky) plane provides the angle in the spatial 
(x, y) domain. These estimated Fourier components characterize the dune shape. The mirror image peaks are 
redundant information that result from the symmetry of the FT. The small ridges emanating from the peaks are 
a consequence of the finite nature of the numerical FT.
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where bold-faced represents vectors, which in this case are x =
(

x, y, z
)

 (a standard, if somewhat confusing 
reuse of x) and k =

(

kx , ky , kz
)

 , and the dot represents the dot product, i.e. k · xi = kxxi + kyyi + kzzi . In this 
representation the waves are perpendicular to planes in 3D space and so are called plane waves. Equation (5) is 
called the Fourier Transform of the coefficients c. It converts the coefficients in the frequency domain into a signal 
in the spatial domain. Using Eq. (5) we can write the expression for data collected at n points x = {x1, . . . , xn} 
represented by m plane waves in compact matrix form as

where F is a matrix if size m× n and c is a vector m. This form will prove useful when we turn to the problem 
of reconstruction.

A simple example of the Cartesian Fourier (i.e. plane wave) representation is the description of the shape of 
a sand dune that has wind-blown ripples on its surface, as in Fig. 8A. A highly idealized mathematical repre-
sentation, for illustrative purposes, is shown in Fig. 8B. The underlying dune is constructed from a low spatial 
frequency but high amplitude wave and the ripples are created from a high spatial frequency but low amplitude 
wave. The entire dune is the sum of these waves.

The representation of a generic object in terms of a set of basis functions can be thought of as the construc-
tion of a model for the data. Characterization of a particular object requires finding the parameters of that model 
that produces the most faithful representation of the object. This is the problem of reconstruction. It is an inverse 
problem that requires methods of inference, and hence probability theory. The example of Fourier reconstruc-
tion provides a nice example of the power of probability in reconstruction problems (see, for example,76) but is 
beyond the scope of the present paper.

From Eq. (6), given the data s(x) the estimated coefficients ĉ can naively be estimated by using the Inverse 
Fourier Transform

(6)

s(x) = Fc

where F = {eik1·x , . . . , eikm·x}
c = {c1, . . . , cm}

(7)ĉ ≈ F
†s(x)

Figure 9.  Shape characterization with Spherical Waves. (Left) Schematic of the geological layers of the Earth, 
each of which is idealized to have a mean spherical shape but complicated surface features (e.g., mountains 
and valleys on the outer, or crust, layer). (Right) Schematic of spherical waves fit to each layer consisting of 
variations in both the radial and angular dimensions. No data was actually fit, and the features size is greatly 
exaggerated for emphasis. In this example the complexity of the surface is presumed to increase with radius just 
for illustrative purposes. Only the surfaces of each layer has been “fit” for clarity but in practice a continuum of 
fits over all radial values is performed.
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where F† is the complex conjugate transpose of the model functions. The result of this procedure for the sand 
dunes is shown in Fig. 8C, which shows that the shape, characterized by the Fourier spectrum is reasonably 
retrieved. It is important to recognize, however, that Eq. (7) is formally not the correct answer, even though in 
many cases it is a reasonable approximation. But generally reconstruction is not the same thing as multiplying by 
the inverse of the basis functions!. For example, in standard least-squares estimation, c would be reconstructed 
by replacing F† with the pseudo-inverse of F in Eq. (7). This example was chosen for its simplicity and because 
the constituent waves are visible as such. But much more complex geometries that do not appear wavelike can 
be constructed by the same approach, as we shall see.

Spherical basis and spherical waves. In the sand dune example we ignored the fact that the sand dune is sitting 
on a curved surface—the Earth. This was reasonable because the curvature of the Earth is insignificant over the 
extent of the dune so that, for all intents and purposes, the dune is sitting on a flat surface. Mathematically, we 
say that the Earth is locally flat in the region of the dune. This problem is therefore naturally described as Fourier 
functions in Cartesian coordinates—just the plane waves discussed in the previous section.

But what if we wanted to characterize the entire surface of the Earth, not just a single dune? And then go 
even further and examine the surfaces of the major interior layers of the Earth (Fig. 9)? For this there is a more 
efficient, and intuitively obvious, coordinate system called the spherical coordinate system, parameterized by the 
three coordinates {r, θ ,φ} which are the radius r—the distance from the center of a sphere to a point on its surface, 
such as the top of a mountain, the polar angle θ—the angle from the geographical (not magnetic) North pole, and 
the azimuthal angle φ—the angle along the Equator, measured from some reference point (say, the Greenwich 
Meridian). These are more familiar, of course, as altitude, the latitude and the longitude. (Actually the latitute is 
measured from the equator, so 90◦ − θ , but the lines of constant latitude are the same).

The spherical coordinate system does not provide any more information than the Cartesian coordinate sys-
tem (indeed, one can transform from one to the other), but it is more natural, and provides more parsimonious 
descriptions. For example, the path of someone traveling on an arbitrary path on the surface of a sphere can be 
specified by only two parameter—the angles {θ ,φ} , since the radius r is a constant. In Cartesian coordinates, 
description of the same path would require all three parameters {x, y, z}.

Let’s consider first a hypothetical situation in which the Earth’s surface was entirely covered by giant sand 
dunes. And for simplicity let’s assume that the shape of the Earth underneath the dunes is a perfect sphere (it’s 
actual an oblate spheroid). How do we describe the wave in spherical coordinates so as to take into account the 
curved surfaces on which the waves are propagating? Well, it turns out that the Fourier plane wave functions 
developed in a Cartesian coordinate system can be rewritten in spherical coordinates using special functions: 
spherical harmonics and spherical Bessel functions. The combination of spherical harmonics (the angular varia-
tions) and spherical Bessel functions (the radial variations) are called spherical waves. These are the functions 
that we will use to characterize the entire shape of the digitized 3D objects within the volumetric images.

The characterization of the Earth’s volumetric features in terms of spherical waves is shown schematically in 
Fig. 9. No actual fitting has been performed, and the surface features are idealized and exaggerated—this is just an 
illustration of the ability of spherical waves to characterize both radial and angular variations volumetric shapes.

Figure 10.  Automated human brain shape characterization by Spherical Wave Decomposition (SWD) from a 
high resolution anatomical MRI scan. (A) Original volumetric MRI scan, (B) SWD estimate of the brain shape 
(adapted  from42). The shape in (B) is characterized by the specific set of N = 100 SWD coefficients, as well as 
by the number N itself, which is calculated as the “optimal” number of coefficients and is thus a measure of the 
brain shape complexity  (see51).
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Determining the coefficients that characterize the shape of the object through these spherical wave functions 
is what we call the spherical wave decomposition42. An example of volumetric shape characterization of a single 
high resolution anatomical MRI brain scan is shown in Fig. 10.

The model order problem. There is an insidious problem lurking in the previous examples. In Eq. (5) the label 
m represents the number of model functions necessary to completely described the shape. This is called the 

Figure 11.  The model order problem. In the left column is shown the “data”, which consist of a third-order 
polynomial (green). The shape estimated from a standard least-squares fit is shown in magenta for hypothesized 
model order p. Deviations between the fit and the data at each point are shown as red dots. In the right column 
is shown the RMS error between the estimated shape and the data as a function of model order. In the top row 
there is no noise ( σ = 0 ) and the shape is faithfully reconstructed (i.e., RMS ≈ 0 ) at the correct model order 
p = 3 . Subsequent fits at higher order p > 3 also provide correct fits, but are no improvement over the correct 
solution of p = 3 , as seen by the RMS vs model order plot on the right. The “optimal” fit order is thus estimated 
to be where there is no RMS improvement, which is p = 3 . In the bottom row the same analysis is performed 
but the data is now contaminated with random zero-mean Gaussian noise with σ = 2�d (twice the mean 
deviation of the data). The RMS versus model order plot on the right no longer shows a sharp distinction at the 
true value of p = 3 and continue to decrease as the higher order components of the shape due to the noise are 
increasingly well fit.

Figure 12.  The model order problem in volumetric SWD analysis. The optimal fit shown in Fig. 10B was 
determined by searching through a range of model orders n (shown in yellow) and determining statistically 
which value first reduced the mean squared error to a minimum to within the noise (the equivalent of p = 3 in 
Fig. 11).  See42 for details.
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model order. But how many basis functions do we need to accurately and optimally characterize the shape or, 
alternatively, what is the optimal model order m̂ ? In the sand dune example, this problem was hidden because 
we constructed such a simple model with separate spatial frequencies that were well resolved. And there was 
no noise. But with noisy data that contain a wide spectrum of spatial frequencies, we will no longer be able to 
ignore this issue.

Every imaging process has limited resolution because of sampling restrictions and is contaminated by imper-
fections that we will generically call “noise”. In addition, the number of functions necessary to characterize the 
shape, also called the model order, is another unknown. The goal of the reconstruction process is to determine 
the coefficients of the data model and the correct model order from the noisy volumetric data of finite resolu-
tion. We can illustrate the problem with a very simple example of fitting a polynomial discussed in Fig. 11. An 
example of this applied to a volumetric human brain image using the SWD is shown in Fig. 12.

The model order has physical significance as a measure of an objects complexity, and consequently can have 
biological and evolutionary significance, as was demonstrated in our study to characterize of cerebellar foliations 
in elasmobranch  brains51, which has implications in the quantification and comparison of the cerebellum in dif-
ferent species of elasmobranchs where variation in cerebellar foliations has been shown to be related to species 
habitat and predation strategies and has evolutionary  significance77–79.

Volumetric segmentation. One important difference between the SWD and surface based methods is that the 
SWD provides a method for naturally and effectively performing the very complex task of volume segmenta-
tion. Segmentation is not tractable by surface based methods alone because they are themselves predicated on 
segmentation. That is, segmentation must be performed (either by hand or by using additional specialized semi-
automated segmentation tools) before the surface based methods can even be applied to new volumetric data. In 
the SWD approach, the segmentation is done on the entire volume. All important features of the SWD approach 
(including weighted Fourier smoothing, optimal SWD order and volume morphometry/complexity) are also 
applicable to segmented and independently represented structures.

Because the SWD estimates fit coefficients for a set of volumetric functions, the coefficients for the analytic 
expansion of the derivatives is produced as well. This automatically provides an estimate of the coefficients of 
tissue border regions and thus allows automated segmentation of tissue types. This is shown for the human brain 
data in Fig. 13 where separate volumes for the two tissue types, white matter (WM) and gray matter (GM), are 
automatically produced.

Summary. The SWD produces a quantitative description of an entire volume of data. This output can then 
be used for comparison between datasets. Comparison of homologous structures between datasets requires a 
method for non-linear registration, which we discuss next.

Volumetric image registration. The registration problem. The general idea behind geometric morpho-
metrics is to transform different images to the same coordinate system so that relations between homologous 
points can be determined. Approaches to this problem of registration, or spatial normalization, fall into three 
basic categories: (1) Rigid registration, which seeks a linear transformation that best aligns two objects without 
altering the objects’ size and shape, and thus involves only translation and rotation; (2) Affine registration, which 
seeks a general linear transformation that allows objects’ global size and shape to be altered and thus involves 
shear and scaling in addition to translation and rotation; and (3) Diffeomorphic registration, a non-linear opera-
tion that, in addition to affine registration, normalizes the objects’ size and shapes as well. Not surprisingly, it is 
also the most complex.

However, current geometric  morphometrics80–83 is typically based on some form of Generalized Procrustes 
Alignment (GPA)25,31 which is based upon a minimum Procrustes distance over all affine  transformations84 and 
then performing a subsequent statistical analysis. Unfortunately, the affine methods are only approximations 

Figure 13.  Automated human brain tissue segmentation using the Spherical Wave Decomposition (SWD) on 
a high resolution anatomical MRI scan. (A) Original volumetric MRI scan, (B) segmented white matter (WM) 
and (C) gray matter (GM) (adapted  from42). Each of these segmented tissues are individually described by their 
own SWD, and thus can be used for quantative comparative analysis.
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Figure 14.  Non-linear variations between brain. While two normal brains have the same structures, the 
geometrical relationship between them generally varies in a non-linearly fashion. If brain1 (top) is assumed 
to lie on a perfectly Cartesian grid, the relative geometry of brain2 can be thought of as lying on a nonlinearly 
distorted version of brain1 grid. SYMREG estimates these distortions and maps brain2 to the grid of brain1. 
This example is in 2D but SYMREG operates in 3D on the full volume.

(and sometimes quite poor) for matching, comparing, or combining homologous anatomical structures because 
affine registration is a global transformation and is incapable of capturing localized changes in shape. In many 
cases of interest, the localized changes are the most important part. The Procrustes method is rather simplistic 
in this respect as the geometric differences are essentially distributed as evenly as possible among all landmarks 
representing each specimen since it aligns specimens by their centroids and then rotates them to minimize the 
summed distance among all landmark coordinate pairs.

A  review82 discussing the state of geometric morphometrics states that the 3D extension of 2D methods 
(namely, Procrustes superimpositions) is straightforward, but the methods discussed only represent affine trans-
formations. These linear methods (utilized in the popular  TpsRelW85) are currently the standard (e.g.,39). Cor-
rectly extending non-linear methods to volumetric data is a difficult theoretical and computational problem, 
encountered often in MRI where it is necessary to compare volumetric data from multiple subjects.
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Figure 15.  Registration of multiple high resolution anatomical (HRA) MRI scans using symplectomorphic 
registration (SYMREG). (A) Single reference HRA, (B) average of HRA datasets from 10 different people. 
Blurring is do to subtle natural shape variations between individual subjects (C) average of 10 images in (B) after 
registration with template image in (A) from (adapted  from43).

Figure 16.  Actual 3D volumetric SYMREG warping grid used in the registration of Fig. 15.

The SYMREG method. The ability to do accurate quantitative geometric morphometrics is predicated on the 
ability to address the non-linear registration problem. A conceptual way to think about this problem is that two 
different volumetric data sets have different non-linearly related coordinate systems. The goal of registration 
is the put all data into the same Cartesian coordinate system. A schematic of this problem is shown in Fig. 14.

As remarked above, diffeomorphic methods are the current standard for current non-linear registration. 
However, despite their ubiquity, in practice these methods have significant limitations in speed and accuracy that 
compromise their practical  utility86,87. The SYMREG method is similar in spirit to diffeomorphic mapping, but is 
more general and flexible. This development was motivated not only to address the issues of speed and accuracy, 
but also to facilitate merging of multiple imaging modalities with different resolutions. This has implications 
for computational morphology where different modalities, in particular both MRI and CT, are in common use.

The SYMREG method is developed within a coordinate space that is more general than just the spatial 
coordinates used for diffeomorphic methods. Registration methods work by warping the coordinates of one 
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spatial grid onto another. The target grid is called the template (the undistorted Cartesian grid in the top row of 
Fig. 14). Each spatial coordinate in the warped grid (the grid in the bottom row of Fig. 14) must therefore move 
along some non-linear path at some rate determined by the multiple steps of the numerical algorithm which 
iterates towards a final spatial configuration that minimizes the error between the warped grid and the template 
grid. Therefore each point has a “velocity” in addition to a position. Systems with both a spatial coordinate q 
and a velocity v (or more generally, a momentum p) can be characterized by the space (q, p) that contains both 
coordinates. This is called the phase space of the system. The dynamics within this space can be described a func-
tion H, called the Hamiltonian, which can be thought of as characterizing the energy of the system, and can be 
used to impose constraints that reduce the space of possible solutions, thereby increasing speed and accuracy. 
Specifically, whereas current methods employ diffeomorphic transformation in spatial coordinates, SYMREG 
is diffeomorphic in phase space, which is called a symplectomorphism.

There is another important and unique aspect of the SYMREG method. Image grids are characterized by the 
relative spatial locations of the points. Incorporating this relative information between points can be used to 
impose addition constraints that incorporate position dependent information into the problem. A very general 
and flexible way to do this is using our theory of Entropy Spectrum Pathways (ESP)88 where coupling between 
neighboring locations, constructed using a spatially dependent coupling density Q(x, x′) matrix, results in the 
ability to constrain, or regularize, the solutions with interactions that extend spatially away from the individual 
points. These are called non-local interactions. What this means is easily understood in simplest case that Q(x, x′) 
depends only on the different in positions and is a Gaussian centered at the targe location x′ with inverse covari-
ance matrix S, i.e., Q(x, x′) = Q(x − x

′) ∼ N(x′, S−1) . The results in the commonly used Gaussian regularization 
kernel. Generally, however, more complex coupling schemes can incorporate more relevant prior information, 
resulting in more robust warping schemes. For more details, the reader is referred  to43.

An example of the use of SYMREG registration on multiple MRI volumetric brain images from different nor-
mal human volunteers is shown in Fig. 1543,89. This demonstrates that naïvely combining (e.g., averaging) datasets 
(e.g., brains) from multiple subjects produces highly blurred images due to the natural geometric variations of 
the organs between individuals (Fig. 15B). Accurately taking into accounts the non-linear geometrical relations 
using SYMREG produced a combined image with little blurring Fig. 15C). The corresponding volumetric 3D 
warping grid used in the registration in Fig. 15 generated by SYMREG is shown in Fig. 16.

In summary, SYMREG allows for rapid and robust automated non-linear registration of multi-modality 
multi-subject data.

Data availability
Researchers interested in obtaining the SAPID software can contact Dr. Lawrence Frank at lfrank@ucsd.edu. 
Data used in this study is listed in Table 1 which includes the Digital Object Identifiers (DOI) where users can 
access the data.
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