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Abstract

Background: Immune evasion is one of the recognized hallmarks of cancer. Inflammatory responses to cancer can also
contribute directly to oncogenesis. Since the immune system is hardwired to protect the host, there is a possibility that
cancers, regardless of their histological origins, endow themselves with a common and shared inflammatory cancer-
associated molecular pattern (iCAMP) to promote oncoinflammation. However, the definition of iCAMP has not been
conceptually and experimentally investigated.

Methods and Findings: Genome-wide cDNA expression data was analyzed for 221 normal and 324 cancer specimens from
7 cancer types: breast, prostate, lung, colon, gastric, oral and pancreatic. A total of 96 inflammatory genes with consistent
dysregulation were identified, including 44 up-regulated and 52 down-regulated genes. Protein expression was confirmed
by immunohistochemistry for some of these genes. The iCAMP contains proteins whose roles in cancer have been
implicated and others which are yet to be appreciated. The clinical significance of many iCAMP genes was confirmed in
multiple independent cohorts of colon and ovarian cancer patients. In both cases, better prognosis correlated strongly with
high CXCL13 and low level of GREM1, LOX, TNFAIP6, CD36, and EDNRA. An ‘‘Inflammatory Gene Integrated Score’’ was further
developed from the combination of 18 iCAMP genes in ovarian cancer, which predicted overall survival. Noticeably, as a
selective nuclear import protein whose immuno-regulatory function just begins to emerge, karyopherin alpha 2 (KPNA2) is
uniformly up-regulated across cancer types. For the first time, the cancer-specific up-regulation of KPNA2 and its clinical
significance were verified by tissue microarray analysis in colon and head-neck cancers.

Conclusion: This work defines an inflammatory signature shared by seven epithelial cancer types and KPNA2 as a
consistently up-regulated protein in cancer. Identification of iCAMP may not only serve as a novel biomarker for
prognostication and individualized treatment of cancer, but also have significant biological implications.
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Introduction

The relationship between cancer and inflammation was

observed as early as the 19th century, when Ronald Virchow

described tumor-infiltrating leukocytes. However, it was not until

the past two decades that the inflammatory microenvironment has

been recognized as a key component in carcinogenesis, being

involved in cancer initiation, promotion and metastasis [1].

Chronic infections are established etiological factors for many

human cancers [2]. Similarly, chronic inflammation such as

inflammatory bowel disease and chronic hepatitis increases the risk

for colorectal and hepatocellular carcinomas, respectively. In most

cases, immune-surveillance is thought to eliminate tumorigenic

foci [3]. However, cancer-initiating cells reprogram immune cells

to create a tumor-friendly microenvironment, thereby evading

antitumor immunity. In addition, cancer can educate both the
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innate and adaptive arms of the immune system through myeloid-

derived suppressor cells [4], regulatory T cells [5] and other

mediators, to promote growth and invasion.

The role of inflammation in carcinogenesis begins with tumor

initiation, through multiple mechanisms such as genotoxic stress

via reactive oxygen species, induction of activation-induced

cytidine deaminase (AID) [6], TNF-a-induced entry of b-catenin

into the nucleus [7] and others. Beyond initiation, cytokines

activate pro-tumorigenic transcription factors such as STAT3 and

NF-kB in existing cancer cells [8]. Inflammatory cells also dampen

antitumor immunity through molecules such as indoleamine-2,3-

dioxygenase and arginase 1, which interfere with the function of T

lymphocytes [4]. Epithelial-mesenchymal transition is also favored

by cytokines such as TGF-b, promoting distal metastasis [9].

‘‘Onco-inflammation’’ therefore contributes to the different

cancer hallmarks, including cell proliferation, angiogenesis and

escape from apoptosis. However, despite this elaborate cross-talk

between cancer cells and the inflammatory microenvironment, the

approach to uncover critical players in this interaction has so far

been sporadic and non-comprehensive. In this study, we

hypothesize that a common inflammatory pattern exists among

different cancer types, constituting a signature profile termed as

iCAMP. We performed a comprehensive analysis of gene

expression across 7 common epithelial cancer types. A robust

oncoinflammatory profile was identified, demonstrating indepen-

dent and strong predictive values in clinical outcomes of multiple

cancers. This approach has also led to the discovery and validation

of KPNA2 as the single most consistently up-regulated protein in

cancer.

Methods

Ethics Statement
Access to patient samples and anonymous analysis of data was

approved by the Institutional Review Board for Human Research

at the Medical University of South Carolina.

Datasets
This analysis included gene expression profiles from 7 types of

cancer. One dataset was included for each cancer type, resulting in

a total of 7 datasets. The cancers included in this study are: breast,

Figure 1. Heat map of dysregulated inflammatory genes. Heat
map showing the 44 up-regulated and 52 down-regulated genes across
the seven cancer types, in addition to the direction of dysregulation in
ovarian cancer.q, up-regulated.Q, down-regulated. «, unchanged.
doi:10.1371/journal.pone.0057911.g001

Figure 2. Expression of KPNA2 and PIGR in multiple cancer
types. An example of an up-regulated gene (KPNA2) (A) and a down-
regulated gene (PIGR) (B) in 5 cancer types on the protein level.
Numbers correspond to average fold changes of the mRNA levels
across all 7 cancer types in the current study.
doi:10.1371/journal.pone.0057911.g002
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colon, lung, oral, prostate, pancreatic and gastric cancers

[10,11,12,13,14,15,16]. Datasets were obtained from Gene

Expression Omnibus (GEO) Datasets, an NCBI public database.

Each of the datasets included microarray mRNA expression data

from cancer and normal tissue (Table S1). All of the datasets used

[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0

Array platform for quantification of gene expression levels.

CDEP analysis on seven GEO datasets
The seven epithelial cancer types were investigated to identify

genes showing consistent differential expression using the recently

developed Consistent Differential Expression Pattern (CDEP)

method [17]. The raw microarray data comparing gene expres-

sion between normal and cancer cells was downloaded from

NCBI’s GEO database (http://www.ncbi.nlm.nih.gov/gds/)

(Table S1). After excluding 10 adenoma samples in the colon

dataset, 545 samples were studied, of which 324 were from cancer

tissue and 221 were normal. The expression values of the replicate

samples in the pancreatic cancer dataset were averaged. The raw

datasets were pre-processed individually. For each dataset, gene

expression values were adjusted and normalized by the GCRMA

approach implemented in R [18]. The false discovery rate (FDR)

of each gene on each normalized dataset was calculated using

permutation method implemented by the ‘‘RankProd’’ package in

R [19]. Each gene in each dataset was then associated with a raw

FDR, F
up
gi (Fdown

gi ) for being up/down-regulated [17]. For genes not

present in the platform of a dataset, the median FDR value of that

dataset was assigned [17].

CDEP meta-analysis was then applied to the raw FDRs of the

seven datasets. For each dataset, the false positive rate is defined as

the probability of a non-up-regulated gene being falsely called as

over-expressed (or a non-down-regulated gene being falsely called

as repressed). The number of genes being up-regulated, down-

regulated, and non-differentially expressed for each dataset was

estimated by a Beta mixture model implemented in WinBUGS

[20]. Based on this rate and using independent Bernoulli

distributions, we calculated the likelihood of a gene to be falsely

identified as over/under-expressed among the seven datasets for

each FDR threshold l. The procedure was evaluated by estimating

the false discovery rate (FDRg) observing the above expected log

likelihood, i.e. the proportion of false positives among the genes

identified to be consistently differentially expressed. The ‘‘null log

likelihood’’ was computed by permuting the F
up
gi (Fdown

gi )values

relative to the genes within each dataset, and then performing the

same above procedures to calculate the expected value of the ‘‘null

log likelihood’’ in each permutation b for every gene, using

FDRg~0:05 as a cutoff.

Database for Annotation, Visualization and Integrated
Discovery (DAVID)

After identifying the differentially expressed genes across the 7

cancer types, the set of up-regulated and down-regulated genes was

entered into DAVID database (http://david.abcc.ncifcrf.gov/), and

those with gene annotations related to inflammation and/or

immune response were selected for further analysis.

Human Protein Atlas (HPAT)
Six of the seven cancer types and their corresponding normal

tissue were investigated for the protein expression level of all of the

immune-related genes by HPAT (www.proteinatlas.org).

Oncomine Cancer Database
Oncomine database (www.oncomine.org) was used to identify

the clinical significance of the immune-related genes and their

ability to predict patient survival and disease recurrence. X-tile

software [21] was used to determine the optimal cut-off points for

separating low risk from high risk patients.

Inflammatory Gene Integrated Score (IGIS)
IGIS for each ovarian cancer patient is the summation of the

risk value of 18 iCAMP genes with independent prognostic

significance demonstrated by the training dataset [22]. These

genes are CCL28, CXL12, EDNRRB, GFRA1, GREM1, IL8, JAM2,

LOX, MAL, MIF, MPZL2, PIGR, PTGER4, RSAD2, SERPINA5,

TFF3, TNFAIP6 and TNFSF4. The predictive value of IGIS was

tested using an independent TCGA ovarian cancer dataset, based

on cut-off values pre-determined by the training dataset [22]. For

a given patient, the value of a gene conferring poor prognosis is its

relative risk (RR), whereas the value of a gene whose expression in

that patient predicts better prognosis was set as zero. As an

example, if a patient A falls in the high risk group for genes 1 and 2

but in the low risk group for gene 3, this patient’s IGIS will be the

summation of Relative Risk for gene 1 and Relative Risk for gene

2, since the value of gene 3 is zero.

Ingenuity Pathway Analysis (IPA)
Using the Ingenuity Pathway Analysis tool (www.ingenuity.

com), inflammatory genes were mapped into multiple networks,

each showing over-expressed and under-expressed ones.

Tissue Microarrays
Tissue microarrays (TMAs) for colon cancer and head-neck

cancer specimens contained formalin-fixed, paraffin embedded

tissues. Colon cancer TMAs were developed from patient

specimens obtained at the Medical University of South Carolina

(MUSC), Charleston, SC, USA. Our study was approved by the

Institutional Review Board. The colon cancer cohort consisted of

tumors from 55 patients and adjacent normal tissue from 50 of

them, along with 15 lymph node metastatic samples. Each of the

normal and cancer specimens was at least in duplicate. Clinical

and demographic information including age, sex, histologic type,

grade, tumor (T) and lymph node (N) stages, overall and

recurrence-free survival were obtained from the Cancer Registry

of the Hollings Cancer Center at the Medical University of South

Carolina. The head-neck cancer TMA was obtained from US

Biomax, which contained 60 head-neck squamous cell carcinomas

and normal specimens from 9 independent patients.

Immunohistochemistry (IHC)
5-mm sections were cut from the TMA blocks. KPNA2 staining

was performed using a rabbit polyclonal antibody specific to

human KPNA2 (Abcam, Cat # 84440) at 1:500 dilution. Slides

were baked for 1 hour at 60uC and de-paraffinized. After antigen

retrieval using citrate buffer (pH = 6.0), endogenous peroxidase

was quenched using 3% H2O2 in dH2O for 5 minutes and non-

specific binding was blocked by 2% normal goat serum for 3 hours

at room temperature. Samples were incubated with anti-KPNA2

antibody at 4uC for 16 hours, followed by secondary antibody

(Vectastain ABC Kit, PK-4001) and development using DAB

substrate (Vector Labs SK-4100). Staining showed absolute

specificity to the nucleus without discernible off-target signal.

KPNA2 quantification was performed by a surgical pathologist

(S.S.) who was blinded to the patient’s clinical parameters.

Quantification included nuclear staining intensity (1: faint;
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Figure 3. Up-regulated (A) and down-regulated (B) genes with clinical correlations in colon cancer. Four independent studies were
analyzed for the expression of indicated genes and their clinical significance. The vertical axis represents the normalized expression intensity of each
gene relative to the median intensity of the entire gene probes. Error bars represent standard deviation. Genes are listed in alphabetical order.
doi:10.1371/journal.pone.0057911.g003
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Figure 4. Up-regulated (A) and down-regulated (B) genes with clinical correlations in ovarian cancer. Same as in Figure 3 except that
five independent studies of ovarian cancer were analyzed for the expression of indicated genes and their clinical value.
doi:10.1371/journal.pone.0057911.g004

Figure 5. Inflammatory genes predicting overall (A) and recurrence-free (B) survivals in colon cancer. Two datasets from Smith et al.
[37] were examined for the indicated genes. High, patients with high gene expression. Low, patients with low gene expression. RR, relative risk. Genes
are listed in alphabetical order. Red: Elevated iCAMP gene, Blue: Repressed iCAMP gene.
doi:10.1371/journal.pone.0057911.g005
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2: moderate; 3: strong but less intense than 4; and 4: intense) and

percentage of positive nuclei over all tumor cells in one TMA core.

Results

Data-mining workflow and identification of consistently
differentially expressed genes in seven human cancer
types

Raw data from 7 datasets (Table S1) was first obtained from

Gene Expression Omnibus (GEO). Each dataset corresponds to

one cancer type: breast, colon, lung, oral, pancreatic, prostate and

gastric cancers. These datasets include expression microarray

profiles from cancer tissues and corresponding normal tissues.

After determining dysregulated genes in each cancer type, the

Consistent Differential Expression Pattern (CDEP) methodology

was implemented to identify differentially expressed genes across

the seven datasets. 911 genes were up-regulated and 618 genes

were down-regulated. Using DAVID, these genes were then

functionally classified and the immune-related genes were

identified (Figure S2, Table S2). To further improve the signal-

to-noise ratio, genes which showed a fold change (FC) ,2 in five

or more cancer types were excluded. This resulted in a robust

inflammatory profile, termed iCAMP, of 44 up-regulated and 52

down-regulated genes at the mRNA level (Figure 1). The protein

expression of iCAMP was verified by IHC in 6 cancer types:

breast, colon, lung, pancreatic, prostate and gastric by mining the

Human Protein Atlas (Table S3, Figure S5). The clinical signif-

icance of iCAMP was determined by using Oncomine database.

Finally, the Ingenuity Pathway Analysis tool was used to pinpoint

the function of iCAMP in cancer-associated inflammation.

Identification of immune-related genes
Among the up-regulated genes in iCAMP, those involved in the

positive regulation of lymphocyte apoptosis were significantly

enriched by 11.2 folds. Small chemokines of the CXC family, such

as CXCL9, CXCL10 and CXCL11 were enriched by 9.5 folds

(Figure S2A). Additionally, tumors were also enriched with genes

in other immunological categories such as host-virus interaction

and response to wounding (Figure S2A). Down-regulated genes

were highly enriched for complement components in the

alternative pathway (9.9 folds), T-cell-associated genes such as

CD8a, granzyme A and mal, T cell differentiation proteins (7.3

folds) and genes involved in regulating NK cell function such as

lectin-like receptor subfamily K, member 1 (KLRK1) (Figure S2B).

Figure 6. Inflammatory genes predicting patient prognosis in stage IIIC ovarian cancer. A. Overall survival. B. Recurrence-free
survival. C. IGIS predicts overall survival in TCGA dataset. Raw gene expression data was obtained from Tothill et al. [22] for (A) and (B), and
from TCGA for (C). Red: Elevated in ovarian cancer, Blue: Repressed in ovarian cancer, Black: Unchanged or unknown. IGIS score was calculated based
on all the 18 genes indicated in (A).
doi:10.1371/journal.pone.0057911.g006

Figure 7. Correlation of KPNA2 expression with colon cancer stage and survival. A. Representative images of KPNA2
immunohistochemical staining from normal and malignant colon tissues. B. Quantification of KPNA2 staining intensity in normal tissues (N,
n = 50), primary tumor (T, n = 55) and lymph node metastasis (LN Ca, n = 15). *p,0.0001. C. Frequency of KPNA2 positive cells. *p,0.0001. D. The
percentage of KPNA2-positive cells correlates with T stage. *p,0.05. E. Kaplan-Meier curve showing the overall survival of colon cancer patients with
different KPNA2 expression.
doi:10.1371/journal.pone.0057911.g007

Human Inflammatory Cancer-Associated Signature

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e57911



The functions of many iCAMP genes are yet to be understood.

For example, KPNA2 was shown to be upregulated across a

broad-spectrum of cancer types (Figure 1) [23,24,25,26,27]. It is

unclear, however, if the possible tumor-promoting activity of

KPNA2 is due to its function as a nuclear transporter for selective

immunoregulatory proteins such as STAT1 [28] and interferon-c-

induced transcription factor IRF-1 [29].

Expression of iCAMP at the protein level
To examine the protein expression pattern of the iCAMP genes,

we took advantage of the publically available protein expression

database, HPAT. Genes which did not show differential expres-

sion by IHC were not excluded due to the limited sensitivity of this

method. Using IHC as a filtering step would expand the false

negative observations, limiting the power of this study. However, it

was informative to define which genes showed protein changes in

what cancer types as this has direct implications on the choice of

genes for further functional analyses. For example, KPNA2 was

found to be increased in all cancer types except pancreatic cancer

(Figure 2). On the other hand, polymeric immunoglobulin

receptor (PIGR), a protein involved in the trans-epithelial

transport of immunoglobulins, is consistently down-regulated in

cancer cells (Figure 2). Altogether, protein expression data is

available for 34 up-regulated and 38 down-regulated genes (total

= 72) of the 96 genes (Table S3, Figure S5). Of the 34 up-

regulated genes at the mRNA level, 13 were also up-regulated by

IHC in at least 3 of 6 cancer types studied. As for the

transcriptionally down-regulated genes (38 were examined for

protein expression), 20 showed down-regulation by IHC in $3 of

the same 6 cancer types.

Figure 8. Preferential expression of KPNA2 in head-neck SCC. A. Representative images of KPNA2 immunohistochemical staining from
normal and malignant tongue tissues. B. KPNA2 staining intensity in primary tumor and adjacent normal tissue *p,0.0001. C. Frequency of KPNA2
positive cells in primary tumor and adjacent normal tissue (2%). *p,0.0001. D. Correlation between KPNA2 expression and tumor grade. *p,0.05.
doi:10.1371/journal.pone.0057911.g008

Figure 9. Elevation of TNFAIP6 in colon cancer. A. Representative images of TNFAIP6 immunohistochemical staining from normal and
malignant colon tissues. B. TNFAIP6 staining intensity in primary colon tumor (n = 55) and adjacent normal tissue (n = 50). *p,0.001. C. Frequency of
TNFAIP6 positive cells in primary tumor (n = 55) and adjacent normal tissue (n = 50). *p,0.0001. D. Kaplan-Meier curve showing recurrence-free
survival of colon cancer patients with different TNFAIP6 expression, based on the percentage of positive cells.
doi:10.1371/journal.pone.0057911.g009
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Clinical significance of iCAMP genes
We next chose to use ovarian cancer to study the significance of

iCAMP genes based on two considerations. First, most of ovarian

malignancies are of epithelial origin which is histologically similar

to the seven cancer types from which the gene profile was defined.

Second, ovarian cancer was not used to generate the iCAMP

genes. The predictive value of these genes in ovarian cancer would

validate the utility of our gene discovery approach. As a control,

the clinical predictive values of these genes were also examined in

colon cancer. To determine the direction of dysregulation of each

gene in ovarian cancer, we mined 5 published datasets

[30,31,32,33,34] and one additional dataset from The Cancer

Genome Atlas (TCGA) (Table S4), which collectively contain 35

normal and 878 cancer samples. Based on the number of datasets

showing dysregulation in each direction, each gene was labeled as

elevated, unchanged or repressed in ovarian cancer (Figure 1). A

gene is determined to be elevated if 1) at least 1 dataset shows up-

regulation (p,0.05) and none of the other datasets shows down-

regulation, or 2) at least 3 datasets show up-regulation and not

more than one dataset shows down-regulation (p,0.05). The

inverse applies to repressed genes. Based on that, 33 of the 44 up-

regulated genes were also elevated in ovarian cancer, 3 were

repressed and 8 could not be determined. Among the 52 down-

regulated genes, 28 were also repressed in ovarian cancer, 7 were

unchanged, 10 were elevated and 7 were undetermined (Figure 1).

Thus, at least 61 out of 96 iCAMP genes were concordantly

dysregulated in ovarian cancer.

Colon [35,36,37] and ovarian cancer datasets [22,30,38,39,40]

from Oncomine, as well as TCGA colon cancer dataset, were then

analyzed for clinical significance of expression level of individual

iCAMP gene. A number of genes such as CCL20, CD36 and

IL18RAP individually showed significant correlations with clinical

variables in colon cancer such as tumor stage (T1 to T4), lymph

node status (N0 to N2), metastasis (M0 or M1), pathological grade

Table 1. Selected iCAMP genes consistently elevated or repressed in cancer and their clinical significance.

Elevated Genes Background Information Current Findings

EDNRA Up-regulated in colon cancer [63] Higher levels confer worse survival in colon and ovarian cancers

SPP1 Elevated in multiple types of carcinoma [64] Elevated with higher stages of ovarian cancer – Predicts worse overall
survival in colon cancer

KPNA2 Correlates with worse disease and survival [24,26,65] Up-regulated in several cancer types – Correlates with poor prognosis in
ovarian, head/neck and colon cancer

BST2 Poorly studied in the context of cancer Elevated in gastric, pancreatic, oral, breast, colon and lung cancers by mRNA
and/or IHC.

TNC Elevated in multiple cancers – Induces focal adhesion [66] Over-expression confers poorer survival in colon cancer.

TNFAIP6 Induces the stability of the ECM and promote cell migration
– Elevated mRNA in peripheral blood of colon cancer
patients [43]

Up-regulated in metastatic ovarian cancer – Elevated with higher T stage –
Predicts worse survival in ovarian and colon cancers

TNFSF4 Dendritic cell co-stimulatory molecule Confers worse survival in ovarian cancer – Positively correlates with grade,
nodal stage and tumor size in colon cancer

LOX Hypoxia-induced mediator of metastasis – Recruits CD11b+
cells to metastatic niche facilitating malignant cell seeding
[67]

Up-regulated in 6 of 7 cancer types – Higher levels confer worse survival in
colon and ovarian cancers

VCAN Upregulated in tumors of the breast, ovary, colon and
prostate – Confers poor prognosis in endometrial cancer
patients [68]

Higher levels predict worse survival in colon and ovarian cancers

Repressed Genes Background Information Current Findings

LEAP2 Expressed in gastro-intestinal epithelial tissue – Upregulated
in response to Salmonella enterica and TLR ligands – Role in
tumorigenesis unknown [69,70]

Down-regulated in multiple cancer types – Lower expression predicts worse
survival in ovarian cancer

MPZL2 Cellular localization and homology to myelin suggest its
involvement in cellular attachment – Unclear roles in cancer

Decreased in higher grade ovarian cancer – Lower with higher stage colon
cancer – Lower expression predicts worse survival in ovarian cancer – Lower
expression predicts worse survival in colon cancer

PIGR Decreased in non-small cell lung cancer [71,72] – Elevation
predicts earlier recurrence of human hepatoma – Promotes
metastasis in mouse models [73]

Down-regulated with higher stage ovarian cancer – Lower expression
predicts worse survival in ovarian cancer

LIFR IL6 type cytokine receptor – Suppressed in colorectal and
liver cancers [74,75]

Down-regulated on the mRNA level in 6 of the 7 cancers and on the protein
level in all 7 cancer types

PTX3 A glycoprotein secreted by antigen presenting cells,
endothelial cells and fibroblasts in response to
inflammatory stimuli [76]

Lower expression predicts better survival in colon cancer – Lower expression
in grade 1 compared to grade 3 ovarian cancer

SERPINA5 Inhibitor of urokinase-type plasminogen activator (UPA) –
Downregulation in advanced-stage ovarian cancer [77]

Lower expression confers worse survival in ovarian cancer – Higher in
patients with metastatic disease

CCL28 Secreted by ovarian cancer cells in response to hypoxia
to mediate Treg recruitment – Higher
expression predicts worse survival in ovarian cancer [78]

Increased CCL28 in ovarian cancer with nodal metastasis – Higher levels
predict worse overall and recurrence-free survival – Consistently repressed in
other cancer including colon, breast, prostate, gastric and pancreatic cancers
– lower expression in colon cancer predicts worse survival

doi:10.1371/journal.pone.0057911.t001
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(G1 to G4) and Duke stage (A to D) (Figures 3A and 3B). In

ovarian cancer, all of the up-regulated genes were increased with

more advanced stage (CXCL10, RIPK2 and SPP1) or higher

pathological grade (CXCL11, KPNA2, RSAD2, THOC4 and TNC)

(Figure 4A). As for the down-regulated iCAMP genes, more

advanced stages conferred higher expression of some genes

(CCL28 and CFD) and lower expression of others (CLU, LEAP2,

PIGR and TFF3) (Figure 4B).

We next determined if iCAMP gene expression level predicts

survival, based on raw microarray data for colon cancer [37] and

ovarian cancer [22]. Genes which showed different expression

levels between survivors and non-survivors at one, three and/or

five years were tested by Kaplan-Meier analysis (Figures 5 and 6).

In colon cancer, better overall survival was predicted with higher

levels of GFRA1 and THOC4, and lower levels of C7, GREM1,

ISG15, LIFR, LOX, MMRN1, SCN4B, SPP1, TNC, TNFAIP6

and ZC3H8 (Figure 5A). The dysregulated expression of many

iCAMP genes also has significant predictive value for cancer

recurrence (Figure 5B).

In stage IIIC ovarian cancer, improved overall survival was

associated with higher mRNA levels of IL8, MIF, MPZL2, PIGR,

RSAD2, SERPINA5 and TFF3, but lower levels of CCL28,

CXCL12, EDNRB, GFRA1, GREM1, JAM2, LOX, MAL,

PTGER4, TNFAIP6 and TNFSF4 (Figure 6A). The dysegulation

of many of these genes also predicts recurrence-free survival

(Figure 6B).

Interestingly, lower expression of a number of genes (GREM1,

LOX, TNFAIP6, CD36, and EDNRA) predicted better prognosis

in both ovarian and colon cancers. On the other hand, CXCL13

elevation predicted better prognosis in both diseases (Figures 5 and

6).

To determine the prognostic value of iCAMP genes as a group,

an inflammatory gene integrated score (IGIS) was devised for

ovarian cancer (Figures 6C). IGIS included 18 genes which

independently showed significant predictability (p,0.05) by

Kaplan-Meier analysis. This score takes into consideration the

number of genes within which the patient falls in the high risk

group, as well as the risk each of these genes confers. The

robustness of IGIS was validated using the independent ovarian

cancer TCGA dataset. Based on cutoff values pre-determined

from the initial training dataset above [22], stage IIIC patients

from the TCGA dataset were categorized as either high or low risk

for each gene. Then, for each gene where a TCGA patient shows

poor prognosis, relative risk (RR pre-determined by the training

dataset) of that gene was added to the patients IGIS score. The

TCGA patients eventually were distributed with different IGIS

scores based on expression levels of all 18 IGIS genes. We found

that IGIS indeed predicted overall survival (RR = 1.21, p = 0.02)

(Figures 6C).

Clinical significance of KPNA2 in colon adenocarcinoma
and head-neck squamous cell carcinomas

We next focused on KPNA2 in colon adenocarcinoma and

head/neck squamous cell carcinoma, since KPNA2 overexpres-

sion has not been reported in these two cancer types. KPNA2 is a

nuclear/cytoplasmic protein involved in the import of select

cytoplasmic proteins into the nucleus. It binds to the nuclear

localization sequence (NLS) of its cargo protein and to

karyopherin b1, and the whole protein complex translocates

across the nuclear envelope through the nuclear pore complex

(NPC) [41]. Among KPNA2 clients is the interferon-c-induced

transcription factor IRF-1 [29] and STAT1 [28], both of which

are involved in host immune response.

We examined the KPNA2 expression with immunohistrochem-

istry using our in-house tumor microarray which contains 55

primary colon cancer specimens, 15 lymph node metastases and

50 corresponding adjacent normal tissues from patients of various

disease stages. We found a drastic increase in KPNA2 expression

in primary and lymph node metastatic colon tumors compared to

adjacent normal tissues (Figures 7A, 7B and 7C). KPNA2

expression also correlated with the tumor (T) stage, where the

percentage of positive cells increased from T1 through T4 (T1:

6.4%, T2: 10%, T3: 20.6% and T4: 25.4%) (Figure 7D). Given

that most of the patients were in the T2 (n = 11) and T3 (n = 31)

categories, we found significant difference in KPNA2 expression

between T2 and T3 (p = 0.017). The difference was also significant

between combined T1–T2 and T3–T4 stages (p = 0.003)

(Figure 7D). More importantly, patients with KPNA2 intensity

score $3 displayed worse overall survival than those with KPNA2

intensity #2 (Relative risk = 1.9, p = 0.048) (Figure 7E).

Similar to colon cancer, oral and laryngeal squamous cell

carcinomas displayed elevated levels of KPNA2 compared to

independent mouth and larynx normal tissues (Figure 8A, 8B and

8C). Although KPNA2 showed no correlation with the disease

stage, it was higher in each of grade 2 (39.2% positive cells) and

grade 3 (49% positive cells) carcinomas compared to grade 1

(26.3%). (p(G1 vs. G2) = 0.03 and p(G1 vs. G3) = 0.002)

(Figure 8D).

TNFAIP6 is overexpressed in colon adenocarcinoma
Tumor necrosis factor alpha-induced protein 6 (TNFAIP6) is a

secreted glycoprotein expressed by epithelial cells and leukocytes

under normal and inflammatory conditions. Its anti-inflammatory

function is well established in different inflammatory conditions

such as osteoarthritis, and it is detectable in serum samples from

patients with autoimmune disorders [42]. Recently, transcriptional

profiling of blood from colorectal patients and normal controls by

qRT-PCR identified TNFAIP6 as a biomarker for colorectal

cancer [43]. This study shows that TNFAIP6 mRNA is elevated in

peripheral blood cells of colorectal cancer patients. Here, we

investigated the protein levels of TNFAIP6 in colon cancer cells

and adjacent normal epithelium. Immunohistochemical staining of

55 colon cancer specimens and 50 adjacent normal tissues

revealed an increased expression in cancer on a per cell basis, as

well as an increase in the frequency of TNFAIP6-expressing cells

(Figures 9A, B and C). TNFAIP6 protein levels did not predict

overall patient survival (data not shown). As for disease recurrence,

we found a trend towards worse recurrence-free survival in highly

expressing patients (Figure 9D), without reaching statistical

significance (RR = 2.44, p = 0.09).

Discussion

This study was designed to conceptually and experimentally

address a novel hypothesis that cancers, irrespective of their

etiology, harbor shared iCAMPs to evade immune surveillance

and to highjack host immunity for promoting onco-inflammatory

growth and metastasis. An unbiased and comprehensive data-

mining strategy was undertaken to address this hypothesis and to

mine common molecular expression patterns in a large number of

patients from many independent studies to ensure the consistency

of our findings. The expression of selective genes was confirmed by

tissue microarrays. Although the biological significance of our

finding awaits further studies, it is clear that the iCAMP not only

exists but also shows significant clinical relevance. The core

iCAMP gene set reproduces many well-established genes that are

aberrantly expressed in cancer tissue, such as VCAN and KPNA2.
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It also uncovers a number of new consistently dysregulated genes

that have not been studied in the context of anti-cancer immunity,

such as BST2, LEAP2, TNFAIP6, TNFSF4 and KPNA2 (Table 1).

The existence of iCAMP highlighted the importance of ‘‘onco-

inflammation’’ as one of the common drivers for oncogenesis [44].

The consistent dysregulation of these genes across cancers of

different histological origins suggests similar set of ‘‘rules’’ all

cancers have to follow in order to sabotage the host immune

response and engage it in growth and invasion. Remarkably, these

iCAMP genes can potentially be harnessed as biomarkers for

cancer aggressiveness, as we found striking predictability of these

genes for disease recurrence and patient survival in a number of

cancers. The fact that these molecules show consistent aberrant

expression and prognostic significance also suggests that they could

potentially be therapeutic targets for multiple cancers.

Data-mining is helpful not only in identifying biomarkers and

potential therapeutic targets, but also to uncover the underlying

biology of human cancer. As an example, molecular profiling of

colon cancer revealed higher levels of T cell homing and adhesion

molecules to confer more favorable prognosis [45]. In our study, the

iCAMP gene set is enriched for genes in positive regulation of

lymphocyte apoptosis, which could be a defense mechanism for

cancer cells to decrease the pressure of anti-tumor immunity. CXC

chemokines are also enriched among the over-expressed genes.

These chemokines have been reported to play different roles,

ranging from recruiting inflammatory cells to aid cancer invasion to

dampening the positive signaling in antitumor immunity.

As for down-regulated genes, they were mostly enriched for

immune effector molecules such as granzyme A, Mal and NKG2D

(Figure S2B). In fact, NKG2D, which confers activation and anti-

tumor immunity in T cells and NK cells, was shown to be shut down

in esophageal cancer [46]. Moreover, ligands of this receptor were

down-regulated in colorectal cancer [47], which provides a

mechanism for evading immune-surveillance. Similarly, granzyme

A is part of the cytotoxic T cell and eosinophil arsenal for

tumoricidal activity [48]. Mal, which was first described in myelin

and lymphocytes was later reported to function in apical transport in

epithelial cells, thus, its disruption could lead to disorganized

polarity [49]. This protein was down-regulated in multiple types of

cancer, including breast and head and neck cancers [49,50].

The concept of iCAMP is analogous to pathogen-associated

molecular patterns (PAMPs) that was postulated more than two

decades ago [51]. Importantly, not all up/down-regulated genes

contribute to the invasiveness of the cancers studied. The tumor

microenvironment consists of a complex interaction among

cancer, stromal, endothelial, and immune cells. Any given change

in gene expression could be an active process initiated by cancer

cells and eventually promote invasiveness, or alternatively, be a

reaction by other cells of the immune system. This is best

illustrated by some up-regulated genes whose elevation predicts

better prognosis, and down-regulated genes whose repression

correlates with longer survival.

Among the genes that drew our attention was KPNA2, which was

increased in expression in 6 of 7 cancer types at the mRNA and the

protein levels, with limited expression in normal epithelia. KPNA2

is an embryonic antigen, shown to be expressed in mouse

embryonic stem cells [52] and normal human testis [53,54], and

emerges again in a variety of epithelial [23,24,25,26,27,55,56] and

non-epithelial [57,58] cancers. Despite the exceptional correlation

of this gene with cancer behavior across multiple cancer types, its

function in shaping tumor behavior remains unclear. One study

showed KPNA2 to promote invasive phenotypes of human breast

cancer cells in vitro [59], but the mechanism underlying this

observation was not investigated. In a cell-free system, KPNA2 was

reported to interact with OCT4, a transcription factor involved in

maintaining pluripotency and self-renewal in embryonic stem cells

[54]. Could KPNA2 expression lead to a significant activity in

cancer cells to produce oncogenic inflammatory mediators? This is

possible, particularly since KPNA2 does not seem to be a general

nuclear importer. The selective transport of some key immunolog-

ically important transcription factors such as STAT1 and IRF1 by

KPNA2 raises a strong possibility of underlying immunological

properties of KPNA2. Thus, the potential dual roles of KPNA2 to

regulate inflammation as well as stemness of cells suggests that it

could serve as a critical link between chronic inflammation and

oncogenesis. This speculation warrants further studies.

Since iCAMP represents a list of multiple gene products, an

integrated score or index shall be expected to predict the clinical

behavior of cancers, which indeed was proven to be the case for

both colon and ovarian cancers. This predictive value of iCAMP

as a biomarker awaits further investigation in prospective studies,

much like the MamaPrintH [60] and Oncotype DXH [61] in

optimizing personalized medical practice. Given the inflammatory

function of iCAMP genes, the integrated score could prove

effective in identifying high risk patients who would benefit from

immunotherapy. In this regard, significant efforts are already

undertaken to implement the immune score into the staging of

cancer, in conjunction with the tumor (T), lymph node infiltration

(N) and distal metastasis (M) parameters [62].

Supporting Information

Figure S1 Methodology followed to identify the inflam-
matory cancer-associated molecular pattern (iCAMP).

(PDF)

Figure S2 Enrichment of inflammatory gene ontologies
within the cancer-associated molecular pattern. (A) Up-

regulated genes, (B) Down-regulated genes. Using DAVID

database, all differentially expressed genes were assigned gene

ontology terms based on their known functions in the literature.

Immune-related gene ontologies are presented here. The hori-

zontal axis represents the enrichment fold: The proportion of a

given functional class within our list relative to its proportion in the

whole human genome.

(PDF)

Figure S3 Distribution of the dysregulated genes in
different cellular compartments. Obtained from WebGes-

talt gene set analysis toolkit. (http://bioinfo.vanderbilt.edu/

webgestalt/).

(PDF)

Figure S4 Distribution of dysregulated genes, their
functional classes and previously established interac-
tions. Each line represents a direct interaction corroborated by at

least one evidence from the literature. Obtained from Ingenuity

Pathway Analysis (www.ingenuity.com).

(PDF)

Figure S5 Immunohistochemical stains of selected
genes on representative specimens from the Human
Protein Atlas (HPAT). Up-regulated Genes. A: FN1,

STAT1, BST2; B: TNC, COL3A1, ISG15; C: PLA2G7,

KRT8, CXCL11. Down-regulated Genes. D: UNC13B, C7,

CDO1; E: TGFBR3, PITGR4, IL1R2; F: SCNN1B, MST1,

LIFR; G: PTX3, AZGP1, GIMAP5; H: VSIG2.

(PDF)

Table S1 GEO datasets. Summary of the GEO datasets from

which differentially expressed genes were identified. HG-
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U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0

platform was used in all datasets.

(PDF)

Table S2 Immune-related genes and their correspond-
ing mRNA ratios (cancer:normal). Shaded genes are those

presented in figure 1. These genes have a Fold Change (FC).2 in

3–7 cancer types, in addition to some genes whose FC values are

slightly less than 2 in more than 3 cancer types.

(PDF)

Table S3 Protein expression of iCAMP genes. Protein

expression changes (Interpreted from the Human Protein Atlas

immunohistochemical stains) of the up-regulated and down-

regulated genes which showed mRNA differential expression with

a fold change FC.2 in 3–7 cancer types. q, elevated. Q,

repressed. «, no change. NA, Not available.

(PDF)

Table S4 The number of Oncomine datasets showing
elevation or repression of each gene in ovarian cancer.
U, up. D, down. X, no change.

(PDF)
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