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Background: Previous work has revealed sizeable deficits in the abilities of children

with an autism spectrum disorder (ASD) to integrate auditory and visual speech signals,

with clear implications for social communication in this population. There is a strong

male preponderance in ASD, with approximately four affected males for every female.

The presence of sex differences in ASD symptoms suggests a sexual dimorphism in the

ASD phenotype, and raises the question of whether this dimorphism extends to ASD

traits in the neurotypical population. Here, we investigated possible sexual dimorphism

in multisensory speech integration in both ASD and neurotypical individuals.

Methods: We assessed whether males and females differed in their ability to benefit from

visual speech when target words were presented under varying levels of signal-to-noise,

in samples of neurotypical children and adults, and in children diagnosed with an ASD.

Results: In typically developing (TD) children and children with ASD, females (n = 47 and

n = 15, respectively) were significantly superior in their ability to recognize words under

audiovisual listening conditions compared to males (n = 55 and n = 58, respectively).

This sex difference was absent in our sample of neurotypical adults (n = 28 females;

n = 28 males).

Conclusions: We propose that the development of audiovisual integration is delayed

in male relative to female children, a delay that is also observed in ASD. In neurotypicals,

these sex differences disappear in early adulthood when females approach their

performance maximum and males “catch up.” Our findings underline the importance

of considering sex differences in the search for autism endophenotypes and strongly

encourage increased efforts to study the underrepresented population of females within

ASD.
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Introduction

Autism Spectrum Disorders (ASDs) are diagnosed in
considerably greater numbers of males than females, with
estimated ratios in the range of four affected males for every
female (CDC, 2014). The mechanisms that give rise to this male
bias are not well understood and are the subject of much current
debate (e.g., Baron-Cohen et al., 2009; Fombonne, 2009; Werling
and Geschwind, 2013). Several biological and non-biological
theories have been proposed.

Non-biological models attribute differences in prevalence
rate to biases introduced by differences in the presentation of
ASD symptoms. Males with ASD have been reported to show
more “externalizing behavior” including hyperactivity, aggressive
behaviors, and repetitive and stereotyped behaviors and interests
(Giarelli et al., 2010; Bölte et al., 2011; Hattier et al., 2011;
Mandy et al., 2012; Solomon et al., 2012; Szatmari et al., 2012).
On the other hand, females diagnosed with ASD present with
more “internalizing behaviors” such as anxiety and depression
(Hattier et al., 2011; Solomon et al., 2012). It therefore seems quite
likely that the more socially disruptive behaviors in males have a
higher likelihood tomotivate parents or caretakers to seek clinical
evaluations. In females, ASD symptoms are diagnosed when
associated with more severe intellectual disabilities. In addition,
high functioning ASD in females may be masked by their higher
social abilities causing them to remain undiagnosed (Russell et al.,
2011; Dworzynski et al., 2012).

Several biological models have been proposed to explain sex
differences in ASD prevalence. The Extreme Male Brain (EMB)
theory (e.g., Baron-Cohen, 2002) proposes that factors inherent
in the male genotype and development that give rise to typically
observed sexual dimorphisms in cognition (e.g., empathy and
systemizing; Asperger and Frith, 1991) may be exaggerated in
people affected with ASD giving rise to disordered social behavior
(Baron-Cohen et al., 2003, 2005; Baron-Cohen andWheelwright,
2004). This proposed “masculinization” can be observed in overt
behavior (Ingudomnukul et al., 2007; Knickmeyer et al., 2008)
and at the levels of brain structure and function (Lai et al., 2013)
and may be linked to the expression of sex-hormones (Auyeung
et al., 2006, 2009). Another model proposes that females with
ASD carry a higher mutational load than affected males, but
that the minimum liability threshold sufficient to cause ASD
is higher in females. Evidence in support of this model has
been mixed (Goin-Kochel et al., 2007; Hallmayer et al., 2011),
but recently, some fairly convincing support emerged from a
study by Robinson et al. (2013). The central premise of the
Robinson study was that if a female “protective” effect exists, then
a simple prediction would be that siblings of females with very
high autistic trait scores (i.e., those above the 90th percentile)
should show greater autistic trait scores than siblings of males
with similarly high trait scores. This is exactly what was found
in this large study of almost 10,000 twin pairs. There is also
support for this protective notion from studies in females with
Turner syndrome, a chromosomal abnormality where one of the
X chromosomes is either missing or partially deleted (Bondy
et al., 2012). Skuse and colleagues showed that social difficulties
in this syndrome were predicated upon the parent of origin of

the functioning X chromosome (Skuse et al., 1997). That is, those
girls with a paternally derived X showed better social abilities
than those with a maternally derived X, pointing to an imprinted
genetic locus (or loci) for social cognitive functions expressed
only on the paternal X. Of course, all males inherit their X
chromosome from the mother, and so they won’t express this
socially protective gene (or genes), and their threshold for ASD
would therefore be lower than it is in females (Skuse, 2000).

The study of sex differences in ASD traits is challenged by the
relatively lower prevalence of females diagnosed with ASD and
complicated by developmental changes and biases inherent in
the diagnostic process due to differences in the presentation of
symptoms. These circumstances may have led to inconsistencies
in reports on sex differences in core ASD traits with some
studies reporting evidence for sex differences in core diagnostic
features (McLennan et al., 1993; Carter et al., 2007; Hartley and
Sikora, 2009; Lai et al., 2011; Mandy et al., 2012) and other
studies providing evidence to the contrary (Tsai and Beisler, 1983;
Pilowsky et al., 1998; Holtmann et al., 2007; Solomon et al.,
2012). Biological and non-biological models of sex differences in
ASD are clearly not mutually exclusive, and both have important
implications for the investigation of genetics, brain function
and their relationship to the overt symptoms of ASD. These
implications extend to research on ASD traits in the neurotypical
population as there is mounting evidence for the heritability
of ASD traits in unaffected individuals (Robinson et al., 2011;
Lundström et al., 2012) and it has been suggested that “at least
some of the genetic and environmental factors associated with
ASD are the same as those that cause individual differences in

autism-like behavior below the clinical threshold.” (Robinson et al.,
2013). If indeed autistic traits are represented on a continuous
spectrum that extends into the unaffected population then the
sexual dimorphism inASD characteristics should as well. In other
words, if there is a sexual dimorphism of core ASD symptoms
in individuals with an ASD diagnosis, then these sex differences
would likely also manifest as different distributions of ASD
traits in the unaffected population. For example, Matsuyoshi
et al. (2014) examined sensitivity to eye gaze direction in 128
unaffected adults (64 females), a task in which individuals with
ASD display robust deficits (see Senju and Johnson, 2009 for a
review). The investigators found that individual differences in
autistic traits predicted performance in this task in male but not
female participants suggesting that direct-gaze perception may
not constitute an autistic endophenotype in both sexes. Lai et al.
(2012) studied four key cognitive domains including mentalizing
and emotion perception, executive function, perceptual attention
to detail and motor function in 128 male and female adults with
and without ASD (32 per group). They found that deficits in
mentalizing and facial emotion perception in individuals with
ASD compared to controls were similar in both sexes. However,
attention to detail and dexterity involving executive function
were found to be impaired only in male ASD participants.
The authors suggested that performance in the social cognitive
domain is equally impaired in male and female individuals
with ASD, whereas sex differences are observed in non-social
cognitive domains. These findings lend support to the notion
of sex differences in the disease phenotype and associated traits
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in the “normal” population and represent compelling reasons to
consider sex differences when studying ASD traits in affected and
unaffected samples.

In a previous cross-sectional study of 84 children with
ASD and 142 neurotypical children between the ages of 5
and 17, we provided strong support for severe multisensory
deficits in audiovisual speech perception during childhood and
a subsequent recovery around 12 years of age in children with
an ASD (Foxe et al., 2015). These large and consistent deficits
in audiovisual gain between 5 and 12 years of age could not
be explained by unisensory speech perception deficits alone
or differences in eye-gaze as assessed with eye-tracking. These
findings raise important questions about the neural mechanisms
underlying these observed deficits, their possible heritability
and link to biological sex. An advanced understanding of
sex differences in ASD may benefit our understanding of the
genetic, neurobiological and environmental factors involved in
the development of ASD. Basic research on sex differences in
ASD has practical implications for therapeutic intervention and
may inform clinicians to delineate more personalized treatments
for this diverse disorder.

In the current study we assessed sex differences in the
perception of auditory, visual and audiovisual speech presented
in varying levels of noise in typically developing children
between the ages of 5 and 17 years of age. We also explored
possible sex differences in speech perception in neurotypical
adults. We finally examined sex differences in speech perception
performance in a sample of ASD children between 8 and 17 years
of age.

Methods

Participants
Our first analysis involved 102 typically developing children
in the age range from 5 to 17 years of age. The 55 male
participants in our sample had a mean age ofMage = 12.02 years
(SDage = 3.2) and a mean full IQ (FIQ) of MFIQ = 112.02
(SDFIQ = 12.01). The 47 females were on average Mage = 11.36
(SDage = 3.55) years of age with a mean FIQ of MFIQ =

107.19 (SDFIQ = 15.95). The data of these participants represent
a subset of a larger sample and were selected because these
participants were assessed with the Wechsler Abbreviated Scales
of Intelligence (WASI) and therefore allowed the inclusion of
FIQ as a covariate. An additional analysis was carried out in a

TABLE 1 | Sample demographics.

Males Females

n AGE VIQ PIQ FIQ n AGE VIQ PIQ FIQ

TDCH 55 12 (3.2) 113.4 (12.8) 107.5 (13) 112 (11.9) 47 11.4 (3.6) 109.7 (16.4) 103.9 (14.5) 107.2 (15.5)

TDAD 28 26.2 (4.31) – – – 28 25.3 (4.2) – – –

ASDCH 58 10.8 (2.2) 98.5 (20.6) 106.2 (17.6) 102.4 (19.2) 15 11.9 (2.4) 103.3 (16.1) 104.9 (13.5) 104.4 (13.6)

TDCH, TD children; TDAD, TD adults; ASDCH, ASD children; n, sample size. Scores in cells represent means and standard deviations. IQ- scores were obtained in 48 male and 10

female participants with ASD. No IQ- information was obtained from adults.

sample of 28 male (Mage = 26.16; SDage = 4.31) and 28 female
(Mage = 25.34; SDage = 4.23) neurotypical adults between 20
and 39 years of age. Finally, we analyzed sex differences in a
sample of 58 male (Mage = 10.79; SDage = 2.15) and 15 female
(Mage = 11.87; SDage = 2.36) children between 8 and 15 years
of age who had previously been diagnosed with ASD. It should
be noted that the samples of TD and ASD children reported
here overlap with the samples reported in Foxe et al. (2015).
A breakdown of the demographics of each of the subgroups is
presented in Table 1.

All participants were native English speakers. Participants
were excluded from this study if they had a history of seizures
or had uncorrected vision problems. TD children were excluded
if they had a history of psychiatric, educational, attentional
or other developmental difficulties as assessed by a history
questionnaire and were also excluded if their parents endorsed
six or more items of inattention or hyperactivity on a DSM-
IV checklist for attention deficit disorder (with and without
hyperactivity). Diagnoses of ASD were obtained by a trained
clinical psychologist using the Autism Diagnostic Interview-
R (ADI-R; Lord et al., 1994) and the Autism Diagnostic
Observation Schedule (ADOS-G; Lord et al., 2000). All children
had normal or corrected-to normal vision and audiometric
threshold evaluation confirmed that all children had within-
normal-limits hearing. The parents of all child participants
provided written informed consent in accordance with the
tenets of the 1964 Declaration of Helsinki. All procedures were
approved by the institutional review board(s) of the City College
of New York and the Albert Einstein College of Medicine.

Stimuli and Task
Stimulus materials consisted of digital recordings of 300 simple
monosyllabic words spoken by a female speaker. This set of words
was a subset of the stimulus material created for a previous
experiment in our laboratory (Ross et al., 2007a) and used in
previous studies (Ross et al., 2011; Foxe et al., 2015). These
words were taken from the “MRC Psycholinguistic Database”
(Coltheart, 1981) and were selected from a well-characterized
normed set based on their written-word frequency (Kucera and
Francis, 1967). The subset of words for the present experiment
is a selection of simple, high-frequency words from a child’s
everyday environment and is likely to be in the lexicon of children
in the age-range of our sample. The recorded movies were
digitally re-mastered so that the length of the movie (1.3 s) and
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the onset of the acoustic signal were similar across all words.
Average voice onset occurred at 520ms after movie onset (SD =

30ms). Thewords were presented at approximately 50 dBA FSPL,
at seven levels of intelligibility including a condition with no
noise (NN) and six conditions with added pink noise at 53, 56,
59, 62, 65, and 65 dB SPL. Noise onset was synchronized with
movie onset. The signal-to-noise ratios (SNRs) were therefore
NN, −3, −6, −9, −12, −15, −18 dB. These SNRs were chosen
to cover a performance range in the auditory-alone condition
from 0% recognized words at the lowest SNR to almost perfect
recognition performance with no noise. The movies were
presented on a monitor (NEC Multisync FE 2111SB) at 80 cm
distance from the eyes of the participants. The face of the speaker
extended approximately 6.44◦ of visual angle horizontally and
8.58◦ vertically (hairline to chin). The words and pink noise were
presented over headphones (Sennheiser, model HD 555).

The main experiment consisted of three randomly intermixed
conditions: In the auditory-alone condition (A) the auditory
words were presented in conjunction with a still image of the
speakers face; in the audiovisual condition (AV) the auditory
words were presented in conjunction with the corresponding
video of the speaker articulating the words. Finally, in the visual
alone condition (V) only the video of the speaker’s articulations
was presented. The word stimuli were presented in a fixed
order and the condition (the noise level and whether it was
presented as A, V, or AV) was assigned to each word randomly.
Stimuli were presented in 15 blocks of 20 words with a total of
300 stimulus presentations. There were 140 stimuli for the A
and AV conditions respectively (20 stimuli per condition and
intelligibility level) and 20 stimuli for the V condition that was
presented without noise.

Participants were instructed to watch the screen and report
which word they heard (or saw in the V-alone condition). If a
word was not clearly understood, participants were encouraged
to make their best guess. An experimenter, seated approximately
1m distance from the participant at a 90◦ angle to the participant-
screen axis, monitored participant’s adherence to maintaining
fixation on the screen. Only responses that exactly matched the
presented word were considered correct. Any other response was
recorded as incorrect.

Eye Tracking
Eye movements were recorded using an EyeLink 1000 system
(SR Research, Ontario, Canada), at a sampling rate of 500Hz.
As described previously (Foxe et al., 2015), a small target sticker
was placed on the participants’ forehead, allowing the system to
compensate for head movements of up to 20 cm. In order to
prevent larger head movements the children had to place their
heads on a comfortable chin rest. The eye tracking system was
calibrated using a nine-point calibration before each set of 5
blocks of stimuli (or more often if necessary). Using the default
settings, saccades and fixations were defined by the EyeLink
system. Data were collected for 90 (59 male, 41 female) typically
developing and 68 (58 male, 10 female) ASD participants. In the
typically developing group, three datasets had to be removed (all
female), while for ASD 6 datasets had to be removed (3 male, 3
female).

Custom Matlab scripts (Mathworks, Natick, MA USA) were
used to analyze the Eye-tracking data. We determined the
proportion of fixations on the different parts of the speaker’s face.
This was accomplished by selecting three rectangular patches,
covering the whole face, only the mouth, or only the eyes and
determining the proportion of fixations within these patches.
Since lips and jaw move during speech production, the mouth
region was defined vertically from the bottom of the lower jaw to
just below the nose (the nasolabial angle of the philtrim). These
measures were taken from the still image of the speaker before
articulation started (i.e., with the mouth closed). The proportion
of fixations in the different groups was statistically compared
using a z-statistic for proportions (two-tailed), while numbers of
fixations were compared using a t-test for independent samples
(two-tailed). Data were analyzed for all conditions combined.

In addition to the statistical analyses, fixation distribution
maps were in accordance with previous studies (e.g., Frey et al.,
2011). These maps provide information about how consistent
fixation locations are between participants and throughout the
different trials. A value of 1 indicates that all participants fixated
the same location during each fixation. Lower values indicate that
participants either are not consistent in where they look or fixate
different parts of the face in successive fixations. For example,
if there are two small objects of interest in a scene, which are
consistently fixated (equally often) by all participants, then the
fixation map will have two peaks with a height of about 0.5.

Analyses of Task Performance
Analyses of speech perception performance were carried out in
the subgroups of TD children, TD adults and ASD children. We
first investigated possible sex differences in speech perception
performance in typically developing children of the ages five
to seventeen. We submitted percent correct responses in the A
and AV conditions as well as AV-gain respectively to separate
repeated measures analyses of variance (RM-ANOVA) with
factors SNR (5 levels of signal to noise ratio), between- subjects
factor SEX (male, female) and Age (in years) as well as FIQ
(full IQ) as covariates. The conditions with NN and −3 dB SNR
were not included in the analysis to avoid possible ceiling effects
(Ross et al., 2011). However, in order to provide the reader with
an easy- to interpret characterization of the group differences,
we displayed A and AV speech perception performance as
well as AV-gain as it unfolded over all intelligibility conditions
(Figure 1). Since the speech reading condition (V) was only
presented without noise a separate univariate ANOVA was
carried with Sex as a main factor and Age and FIQ serving as
covariates. For all ANOVAs we assured the absence of violations
of assumptions of equality of variances and equality of covariance
matrices (Box test). Violations of the sphericity assumption of
the RM-ANOVA were corrected by adjusting the degrees of
freedom with the Greenhouse-Geisser correction method. All
results relevant to our hypotheses are reported in the main
text of the results section and the full statistical report can be
found in the tables. We expected significant main effects of
condition, SNR level, group and age as well as an interaction
between condition and SNR level replicating previous findings
(Ross et al., 2007a,b, 2011; Ma et al., 2009; Foxe et al., 2015).
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FIGURE 1 | Performance of male and female TD children. Estimated Marginal Means (at Age 11.72 and FIQ: 109.79) for TD males and females (ages 5–17) for

auditory (A), visual (D), and audiovisual (B) conditions as well as gain (C) controlled for the effect of age and FIQ under seven listening conditions.

Audiovisual enhancement (or AV-gain) was operationalized here
as the difference in performance between the AV and the A-
alone condition (AV – A). In a second step similar analyses were
carried out in the subgroup of neurotypical adults to determine
if possible sex differences persist into adulthood. Information
on IQ was not available and did not serve as a covariate in
this test. For the assessment of sex differences in ASD children
IQ information was only available for a small subset of ASD
females (see Table 1) and therefore only age was included as a
covariate.

Results

Sex Differences in TD Children and Adults
Auditory Alone
As reported previously (Ross et al., 2007a,b, 2011; Foxe et al.,
2015) and can be seen in Figure 1, performance in the A
condition showed a monotonous, close to linear increase
from near zero percent correct at the lowest SNR (males:
M = 0.71%, SD = 5.27%; females: M = 1.5%, SD = 2.26%)
to approximately 90% correct word identification when no
noise was added (males: M = 86.9%, SD = 2.45%; females:
M = 88.2%, SD = 9.6%). Visual inspection revealed that
females performed slightly better at intermediate SNRs. These
small differences in performance, however, only approached
significance [F(1, 98) = 3.77; p = 0.055; η

2
p = 0.037]. Both

covariates Age [F(1, 98) = 23.17; p < 0.001; η
2
p = 0.19] and

FIQ [F(1, 98) = 7.8; p = 0.006; η2
p = 0.07] had significant main

effects on performance. Age [F(3, 294.66) = 8.68; p < 0.001;
η
2
p = 0.08] and FIQ [F(3, 294.66) = 3.16; p = 0.025; η2

p = 0.03]
showed significant interactions with SNR. Under the restricted
range of SNR levels, SNR did not show an independent main
effect [F(3, 98) = 0.88; p = ns.]. We tested whether the effect of
sex was also present in our sample of healthy 28 adult men and
28 adult women between the ages of 20–38 years but could not
find statistical evidence for group differences [main effect Sex:
F(1, 53) = 0.001; p = ns.] (see Table 3). Even in the group of
adults, age had a significant main effect on performance [main
effect Age: F(1, 53) = 7.43; p = 0.009; η2

p = 0.12]. Interestingly,
the RM- ANOVA returned a significant interaction between
SNR and Sex [F(2.87, 152.33) = 3.55; p = 0.017; η

2
p = 0.06].

TABLE 2 | Auditory- alone performance as a function of Sex, Age, FIQ, and

SNR in TD children (5–17).

Source SS df MS F p η
2
p

TESTS OF BETWEEN-SUBJECTS EFFECTS

Age 4023.306 1 4023.306 23.174 0.000 0.191

FIQ 1354.593 1 1354.593 7.802 0.006 0.074

Sex 654.207 1 654.207 3.768 0.055 0.037

Error 17014.012 98 173.612

TESTS OF WITHIN-SUBJECTS EFFECTS

SNR 270.603 3.007 89.998 0.881 0.452 0.009

SNR × Age 2667.699 3.007 887.233 8.683 0.000 0.081

SNR × FIQ 970.518 3.007 322.778 3.159 0.025 0.031

SNR × Sex 438.081 3.007 145.699 1.426 0.235 0.014

Error 30110.154 294.66 102.185

TABLE 3 | Auditory- alone performance as a function of Sex, Age, and

SNR in TD adults.

Source SS df MS F p η
2
p

TESTS OF BETWEEN-SUBJECTS EFFECTS

Age 1538.616 1 1538.616 7.514 0.008 0.124

Sex 13.14 1 13.14 0.064 0.801 0.001

Error 10852.64 53 204.767

TESTS OF WITHIN-SUBJECTS EFFECTS

SNR 4851.007 2.858 1697.483 11.424 0.000 0.177

SNR × Age 496.924 2.858 173.897 1.120 0.322 0.022

SNR × Sex 1668.784 2.858 583.947 3.930 0.011 0.069

Error 22506.15 151.462 148.593

However, a subsequent inspection of the age- corrected
performance revealed that interactions were not uniform across
SNRs.

Audiovisual
Visual inspection of Figure 1B reveals that speaker articulation
substantially improved speech intelligibility. Participants
correctly identified approximately 20% of the words at the lowest
SNR (males: M = 17.84%, SD = 10.6%; females: M = 22.32%,
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SD = 10.62%) and approximately 90% without noise (males:
M = 88.71%, SD = 8.83%; females:M = 94.25%, SD = 8.84%).
Females performed better across all SNR conditions which was
confirmed by a significant main effect of Sex with substantially
larger effect size than the group differences in the A condition
[F(1, 98) = 17.65; p < 0.001; η

2
p = 0.15]. Again, factors Age

[F(1, 98) = 72.14; p < 0.001; η2
p = 0.42] and FIQ [F(1, 98) = 9.79;

p = 0.002; η
2
p = 0.09] had significant main effects on

performance. The parametric variation of noise produced a
monotonic linear increase in performance between best and
worst listening conditions which was confirmed by a significant
main effect of SNR [F(3.45, 338.35) = 3.05; p = 0.023; η2

p = 0.03].
The RM-ANOVA did not return interactions other than between
SNR and Sex [F(3.45, 338.35) = 2.77; p = 0.034; η2

p = 0.027]. For
a full report, please refer to Table 4.

In TD adults there was no evidence for sex differences in
the AV condition [F(1, 53) = 0.23; p = ns.] and there was no
significant effect of factor Age [F(1, 53) = 1.24; p = ns.] (see
Table 5 for the full report).

Audiovisual Gain
Conforming with previous reports (Ross et al., 2007a,b, 2011;
Foxe et al., 2015), audiovisual gain showed an inverted u-
shaped curvilinear relationship with a maximum at intermediate

TABLE 4 | Audiovisual performance as a function of Sex, Age, FIQ and

SNR in TD children.

Source SS df MS F p η
2
p

TESTS OF BETWEEN-SUBJECTS EFFECTS

Age 25291.845 1 25291.845 72.139 0.000 0.424

FIQ 3431.731 1 3431.731 9.788 0.002 0.091

Sex 6188.091 1 6188.091 17.650 0.000 0.153

Error 34358.639 98 350.598

TESTS OF WITHIN-SUBJECTS EFFECTS

SNR 1252.243 3.453 362.696 3.054 0.023 0.030

SNR × Age 290.076 3.453 84.017 0.707 0.567 0.007

SNR × FIQ 402.776 3.453 116.659 0.982 0.409 0.010

SNR × Sex 1134.769 3.453 328.671 2.767 0.034 0.027

Error 40184.161 338.355 118.763

TABLE 5 | Audiovisual performance as a function of Sex, Age, and SNR in

TD adults.

Source SS df MS F p η
2
p

TESTS OF BETWEEN-SUBJECTS EFFECTS

Age 604.772 1 604.772 1.242 0.270 0.023

Sex 111.137 1 111.137 0.228 0.635 0.004

Error 25798.587 53 486.766

TESTS OF WITHIN-SUBJECTS EFFECTS

SNR 2027.801 3.808 532.460 4.243 0.003 0.074

SNR × Age 215.482 3.808 56.581 0.451 0.762 0.008

SNR × Sex 996.300 3.808 261.609 2.085 0.087 0.038

Error 25328.390 201.843 125.486

SNRs at −9 dB in male and −12 dB in female participants (see
Figure 1C). While substantial AV-gain was achieved at the lowest
SNR (17% in males, 21% in females), AV-gain decreased as AV-
performance approached ceiling. While AV-gain was very similar
in male and female participants at SNRs above −12 dB, it was
larger in females at the three lowest SNRs which was reflected in
a significant main effect of factor Sex on AV-gain [F(1, 98) = 5.39;
p = 0.022; η2

p = 0.05]. Factor Age had a significant main effect

on performance [F(1, 98) = 17.49; p < 0.001; η2
p = 0.15] whereas

FIQ did not [F(1, 98) = 0.91; p = ns.]. The RM-ANOVA also
returned a significant interaction between factors Age and SNR
[F(3.32, 325.32) = 3.81; p = 0.008; η

2
p = 0.037]. Please refer to

Table 6 for a full report. We found no evidence for differences
between males and females in our adult sample [F(1, 53) = 0.11;
p = ns.] (Table 7).

Speechreading
Females (M = 13.79%, SD = 7.82) performed significantly better
than males (M = 8.29%, SD = 7.79) under conditions where
only visual articulation was provided and when performance
was adjusted for the effect of age and FIQ [F(1, 98) = 8.59;
p = 0.001; η

2
p = 0.11] (see Figure 1D). The effect of age was

strong [F(1, 98) = 18.86; p < 0.001; η
2
p = 0.16], but the main

effect of factor FIQ did not reach significance [F(1, 98) = 1.95;

TABLE 6 | Audiovisual gain (AV-A) as a function of Sex, Age, FIQ, and SNR

in TD children.

Source SS df MS F p η
2
p

TESTS OF BETWEEN-SUBJECTS EFFECTS

Age 9140.233 1 9140.233 17.486 0.000 0.151

FIQ 474.202 1 474.202 0.907 0.343 0.009

Sex 2818.225 1 2818.225 5.392 0.022 0.052

Error 51225.099 98 522.705

TESTS OF WITHIN-SUBJECTS EFFECTS

SNR 1324.159 3.320 398.897 1.945 0.116 0.019

SNR × Age 2595.396 3.320 781.851 3.811 0.008 0.037

SNR × FIQ 428.268 3.320 129.014 0.629 0.613 0.006

SNR × Sex 1607.347 3.320 484.206 2.360 0.065 0.024

Error 66734.181 325.316 205.136

TABLE 7 | Audiovisual gain (AV-A) as a function of Sex, Age, and SNR in

TD adults.

Source SS df MS F p η
2
p

TESTS OF BETWEEN-SUBJECTS EFFECTS

Age 214.127 1 214.127 0.494 0.485 0.009

Sex 47.848 1 47.848 0.110 0.741 0.002

Error 22985.405 53 433.687

TESTS OF WITHIN-SUBJECTS EFFECTS

SNR 864.143 3.236 267.022 0.801 0.503 0.015

SNR × Age 921.229 3.236 284.662 0.854 0.473 0.016

SNR × Sex 1369.585 3.236 423.205 1.270 0.286 0.023

Error 57149.268 171.520 333.194
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FIGURE 2 | Performance of male and female ASD children. Estimated Marginal Means (at Age 11.01) for ASD males and females (ages 8–15) for auditory (A),

visual (D), and audiovisual (B) conditions as well as gain (C) controlled for the effect of age under seven listening conditions.

p = ns.]. Much to our surprise, we found that male TD adults
(M = 13.09%; SD = 8.1) performed better in the speechreading
condition than TD females (M = 8.14%; SD = 8.1) [F(1, 56) =

6.8; p = 0.027].

Performance Differences between ASD Males
and Females
Included in this analysis were 58 ASD males and 15 ASD females
between the ages of 8 and 15 years of age. The statistical analysis
was equivalent to the on in the report on TD children above.
Important to note here is that on the basis of the direction
of the sex effect in our TD sample and our relatively small
subsample of ASD females statistical tests were carried out
one-sided.

Auditory Alone
The graph depicting A performance in male and female
participants diagnosed with ASD (Figure 2A) shows that both
groups performed very similarly in this condition. This was
confirmed by the RM- ANOVA that returned no significant main
effect of factor Sex [F(1, 70) = 0.99; p = ns.]. Besides a significant
effects of factor Age [F(1, 70) = 7; p = 0.01, η2

p = 0.09] and an

interaction with SNR [F(2.59, 181.08) = 5.9; p = 0.001, η2
p = 0.08]

no other effect was observed. A full RM-ANOVA report can be
found in Table 8.

Audiovisual
In this test, the assumption of homogeneity of variances was
violated at the lowest SNR. We therefore conducted a test
including performance at −15, −12, −9, −6, and −3 dB
SNRs. Unlike the performance in the auditory alone condition,
sex differences were evident in the presence of visual speech
which was consistent at all SNRs except without noise, when
performance was near ceiling levels (see Figure 2B). The group
difference was confirmed by a significant main effect of Sex in the
RM- ANOVA [F(1, 70) = 3.48; p = 0.033; η2

p = 0.047]. Besides
significant effects of factors Age [F(1, 70) = 19.96; p < 0.001;
η
2
p = 0.22] and SNR [F(3.8, 265.38) = 12.34; p < 0.001; η2

p = 0.15]
no other sources reached our significance criterion. The complete
RM-ANOVA report can be found in Table 9.

TABLE 8 | Auditory- alone performance as a function of Sex, Age and SNR

in ASD children (8–15 years).

Source SS df MS F p η
2
p

TESTS OF BETWEEN-SUBJECTS EFFECTS

Age 846.352 1 846.352 6.998 0.005 0.091

Sex 119.245 1 119.245 0.986 0.162 0.014

Error 8465.783 70 120.940

TESTS OF WITHIN-SUBJECTS EFFECTS

SNR 426.352 2.587 164.812 1.487 0.001 0.021

SNR × Age 1692.133 2.587 654.118 5.903 0.000 0.078

SNR × Sex 306.663 2.587 118.545 1.070 0.178 0.015

Error 20066.097 181.083 110.812

TABLE 9 | Audiovisual performance as a function of Sex, Age, and SNR in

ASD children (8–15 years).

Source SS df MS F p η
2
p

TESTS OF BETWEEN-SUBJECTS EFFECTS

Age 13032.844 1 13032.844 19.962 0.000 0.222

Sex 2274.873 1 2274.873 3.48 0.033 0.047

Error 45702 70 652.892

TESTS OF WITHIN-SUBJECTS EFFECTS

SNR 5367.008 3.711 1446.307 12.346 0.000 0.15

SNR × Age 182.53 3.711 49.188 0.42 0.78 0.006

SNR × Sex 570.17 3.711 153.65 1.312 0.266 0.018

Error 30430.788 259.759 117.15

Audiovisual Gain
The overall difference between males and females with ASD was
also apparent in the graph depicting audiovisual gain for both
groups across SNRs (Figure 2C). The overall difference between
males and females was significant [F(1, 70) = 2.91; p = 0.047;
η
2
p = 0.04]. Factors Age [F(1, 70) = 14.06; p < 0.001; η2

p = 0.17]

and SNR [F(3.35, 234.54) = 4.15; p = 0.003; η2
p = 0.06] and the

interaction between Age and SNR [F(3.35, 234.54) = 3.29; p =

0.009; η
2
p = 0.045] were also observed to explain a significant
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TABLE 10 | Audiovisual gain (AV-A) as a function of Sex, Age, and SNR in

ASD children (8–15 years).

Source SS df MS F p η
2
p

TESTS OF BETWEEN-SUBJECTS EFFECTS

Age 6532.272 1 6532.272 14.062 0.000 0.167

Sex 1349.714 1 1349.714 2.906 0.047 0.040

Error 32516.205 70 464.517

TESTS OF WITHIN-SUBJECTS EFFECTS

SNR 2876.234 3.351 858.446 4.154 0.003 0.056

SNR × Age 2276.766 3.351 679.528 3.288 0.009 0.045

SNR × Sex 490.775 3.351 146.478 0.709 0.283 0.010

Error 48465.726 234.536 206.645

amount of variance in audiovisual gain. A full RM-ANOVA
report can be found in Table 10.

Speechreading
In the speechreading conditionmale participants with ASD (M =

4.9%, SD = 6.01) performed slightly (M = 4.05%, SD =

6.08) but not significantly better than females [F(1, 70) = 0.23;
p = ns.]. The bar graph in Figure 2D depicts performances in
speechreading corrected for age.

Eye-Movement Analyses
There were no differences in viewing behavior between female
and male participants in the TD (t(85) = −0.569, p = ns.) and
ASD (t(60) = −0.069, p = ns.) groups. Proportions of fixations
(Figure 3) on different parts of the face as well as number
of fixations were not statistically distinguishable between sexes
(Table 11). We also found no differences in the mean fixation
times between TD males (734ms) and TD females (678ms)
t(85) = 0.54, p = ns. and between ASD males (586ms) and ASD
females (549ms) t(85) = 0.44, p= ns.

Therefore, it is very unlikely that the behavioral results can be
explained by one group attending the stimuli less.

Comparison of Performances of Non-Adult
Subgroups
With this descriptive analysis we aim to provide the opportunity
for amore direct comparison of performance differences between
males and females and the association with diagnostic status.
For this, we averaged performance in each condition over the
lower five SNRs with the exception of V- performance which
was presented only without noise. We restricted the age- range
to 8–15 years but also included children for which we had no
IQ scores. We did not control for FIQ in this analysis because
we did not obtain IQ scores for all the females in our ASD
sample. We used a General Linear Model to establish estimated
performance scores that were corrected for age. Figure 4 (see
also Table 12) shows a bar graph depicting mean performance
for A, AV, and V conditions as well as ∗∗∗∗AV-gain for n = 98
typically developing children (n= 43 females, n= 55 males) and
n = 73 children diagnosed with ASD (n = 15 females; n = 58
males).

FIGURE 3 | Fixation maps for fixations during presentation of the

speech stimuli. Data for participants from all age ranges were combined.

Brighter colors indicate a higher consistency of fixations. The theoretical

maximum value is 1. This value can only be reached if all participants fixate on

exactly the same spot during all trials and during each fixation.

FIGURE 4 | Comparison between males and females by diagnostic

group. Estimated Marginal Means (at Age 11.02) for TD and ASD males and

females (ages 8–15) for A, V, and AV conditions as well as AV-A controlled for

the effect of age.

Visual inspection of the bar graphs reveals that, conforming
with our findings reported earlier, both ASD diagnosis and
gender were consistently associated with performance with
overall lower performance in association with ASD diagnosis
and male sex (with the exception of male performance in the
V-condition). These associations were most pronounced in the
AV condition. The graphs also suggest that the association
between ASD diagnosis and lower performance was more
pronounced in males than in females. In other words, the
difference between TD males and ASD males was larger
than the difference between TD females and ASD females
in all conditions except speechreading. While ASD females
still performed consistently lower than TD males, differences
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TABLE 11 | Comparison of Eye-Tracking between males and females by

diagnostic group.

TD males TD females ASD males ASD females

n 49 38 55 7

Number fixations 2.2 2.3 (p > 0.05) 2.4 2.5 (p > 0.05)

% Fixations face 93.0 87.7 (z < 0.9) 81.8 79.1 (z < 0.2)

% Fixations eyes 12.6 9.5 (z < 0.5) 12.9 10.1 (z < 0.3)

% Fixations mouth 46.0 49.5 (z < 0.4) 35.9 25.8 (z < 0.6)

TABLE 12 | Comparison between males and females by diagnostic group.

TD males TD females ASD males ASD females

n 55 43 58 15

A 17.97 (0.81) 20.45 (0.93) 15.33(0.7) 17.53 (1.11)

V 9.22 (1.21) 13.02 (1.28) 4.76 (0.83) 4.61 (1.38)

AV 44.81 (1.4) 47.86 (1.39) 33.28 (1.51) 42.43 (3.74)

AV-A 26.84 (1.52) 27.42(1.58) 17.94 (1.31) 24.9 (3)

Cell values represent mean performances and standard error of the mean (SE) at the lower

5 SNRs for A, V, AV conditions and AV-A.

to TD males appeared small. For a statistical verification of
these small differences a larger sample size for ASD females is
warranted.

Discussion

In this study, we assessed whether male and female participants
differed in their ability to benefit from visual speech when
target words were presented under varying background noise
conditions. We tested sex differences in a sample of TD
children and adults, and children diagnosed with ASD. In
the TD child sample, females were significantly superior in
recognizing speech in noise under auditory alone conditions
than were males. Even larger performance differences were found
under multisensory conditions, with the females benefitting
significantly more from the addition of visual speech than
the males, particularly under low intelligibility conditions (i.e.,
higher background noise). The females also performed better
under pure speechreading conditions. These sex differences in
children were fully absent in the sample of adult participants with
the exception of the speechreading condition, in which case the
males were slightly but significantly better at speechreading than
the females. We then tested whether male/female performance
differences were present in a sample of ASD children and
found that ASD females performed significantly better under
audiovisual conditions than ASD males, a difference that was
not apparent for the auditory-alone condition in which no
visual articulatory information was provided. Similarly, we
found no evidence for sex differences in the ASD sample in
speechreading, thus ruling out a purely unisensory account of
differences in multisensory gain. Further, eye-tracking data made
it clear that these sex differences were not due to different gaze
patterns.

Clearly, multisensory speech perception is an important
aspect of social communication. Therefore, possible answers to
the observed sex differences might be found in sex differences
in the development of social communication skills in general.
Indeed, there is an extensive literature on the development
of social communication in males and females which most
frequently shows that females display greater, or at least earlier,
development of skills in this domain. On average, females start to
talk earlier than males (Fenson et al., 1994) and score higher on
tests of verbal fluency (Hyde and Linn, 1988). Girls and women
exhibit more eye contact than males (Hall, 1985), show greater
ability to detect and understand emotional facial expressions
(Rosenthal et al., 1979; Happe, 1995; Baron-Cohen et al., 1997,
1999) and there is accumulating evidence that preadolescent
girls show relatively higher abilities in tasks assessing social
understanding such as inferring other people’s mental states
(Theory of Mind; Hatcher et al., 1990; Bosacki and Astington,
1999; Calero et al., 2013).

It has been suggested that differences in social communication
may have their origins at the earliest stages of development
during intrauterine exposure to sex hormones (Auyeung et al.,
2006, 2009; Chapman et al., 2006) thereby affecting brain
structure and function relevant to social communication. Female
newborns look longer at animated faces than mobile mechanical
objects whereas newborn males showed the opposite pattern
(Connellan et al., 2000). These genetic/epigenetic/hormonal
origins of sex differences may be further enhanced by differential
socialization, especially by parents (Stern and Karraker, 1989).
Mothers have more verbal communication with their daughters
than with their sons (Leaper et al., 1998) and parents
show preferential acknowledgement of their infant daughter’s
emotional displays than their son’s (Malatesta and Haviland,
1982). These factors may explain why female toddlers and infants
show greater nonverbal communication skills (Clarke-Stewart,
1973; Fenson et al., 1994), vocabulary acquisition (Huttenlocher
et al., 1991) and frequency of social initiations (Klein and
Durfee, 1978). The evidence for differences in integration abilities
betweenmales and females remains far from conclusive, although
women have been shown to be better at lip reading when target
words were presented in a sentence context (Johnson et al.,
1988; Watson et al., 1996). Similarly, some investigators have
reported increased sensitivity to the so-called McGurk effect in
women (Aloufy et al., 1996; Öhrström and Traunmüller, 2004).
The McGurk illusion refers to a rather dramatic multisensory
perceptual phenomenon whereby presentation of incongruent
visual articulatory inputs can greatly modify the speech sound
that is heard (McGurk andMacDonald, 1976; Saint-Amour et al.,
2007). Irwin et al. (2006) showed that women displayed greater
influence of visual speech on heard speech than men, but did not
find evidence for sex differences in speechreading abilities.

Apart from greater abilities in AV-speech perception in ASD
girls than ASD boys, our findings suggest that AV-benefit is
not as affected by ASD in females as in males when stratifying
performance by sex. Small relative decrements in AV-benefit in
ASD females compared to TD males may exist, but did not reach
statistical significance. ASD females do show lower performance
than their unaffected counterparts, but they appear to be affected
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to a lesser extent than their male peers. Given our evidence
for a sexual dimorphism in audiovisual speech perception in
the TD population, and the apparent role of audiovisual speech
perception for social communication (e.g., reading speech cues
from faces) one may be inclined to interpret these findings within
the framework of the EMB- theory. However, a closer look reveals
that our pattern of results does not entirely conform to the
EMB- theory. Although, to our knowledge, this prediction has
not been explicitly stated by EMB proponents, it is implicit in
the theory that if ASD brings about an increase or exaggeration
of a masculine phenotype then one would expect that the effect
of the disorder should have a greater impact on females than
on males since males with ASD approach the extreme end of
the proposed “maleness” spectrum and the difference between
affected and unaffected males might therefore be subject to a
ceiling effect. In contrast to this prediction, our data show larger
differences in males than in females. However, the interpretation
of our findings in light of the EMB theory should be exercised
with caution, since it is not entirely clear whether the ability
to read visual speech cues can be interpreted as an act of
“empathizing” as has been proposed for the ability to read
emotional expressions on people’s faces (Baron-Cohen et al.,
2005).

The pattern of our findings suggests a more parsimonious
model of the observed sex differences. AV-speech perception
can be regarded as an instance of language and social
communication for which, as discussed above, previous evidence
for a sexual phenotypic difference has been provided. The
ability to integrate visual speech might therefore have genetic
as well as environmental origins such as differential parental
socialization resulting in an earlier development of these abilities
in females and a sustained advantage into the late teenage
years (Ross et al., 2011) relative to age-matched males. This
developmental trajectory flattens toward early adulthood when
females reach their performance maximum which allows males
to “catch up” explaining the absence of performance differences
in adults. ASD imposes a developmental delay in both males
and females that resolves in the early teenage years rather than
an irreversible and sustained impairment (Foxe et al., 2015).
The fact that females with ASD are affected to a lesser extent
might be afforded by “protective factors” inherent in the female
genotype (Skuse et al., 1997; Skuse, 2000; Robinson et al., 2013).
Unfortunately, the exploration of the developmental course of
AV speech processing stratified by sex was not possible within
the framework of this study due to the low subject numbers
in our female ASD sample and should be subject to future
studies.

High-density recordings of electrophysiological brain activity
have revealed that the neural integration of multisensory inputs
is impaired in children with ASD (Russo et al., 2010; Brandwein
et al., 2013, 2015), and it is also the case that ASD children are
not as effective at deploying attention to a relevant unisensory
stream when there are competing multisensory inputs (Murphy
et al., 2014). These studies included only a small proportion
of female participants with ASD, precluding consideration of
the role of sex in these deficits. An important question then is
whether these deficits are equivalently seen in both male and

female participants with ASD, or if they are sexually dimorphic
as we see in the present study. These electrophysiological
studies presented simple stimuli of no obvious higher-order
communicative or social significance, and as such the findings
were interpreted as representing the breakdown of basic
sensory and attentional processes, although these could well
have cascading consequences for higher-order functions such
as multisensory speech perception. It is instructive that even
fundamental deficits in multisensory integration processes and
in the basic sensory processing of auditory tonal stimuli were
found to be related to the severity of clinical symptoms in ASD
children (Brandwein et al., 2015). This would suggest to us the
possibility that while impaired communication among sensory
cortices is part of the broader autism phenotype, protective
factors may serve to “rescue” multisensory speech processing
functions in females with ASD. Alternatively, it is also possible
that even basic multisensory integrative processing is spared in
females with ASD. Future work will be required to determine
the extent to which this sparing is observed for other types of
multisensory integrative processes, and whether it extends to
non-social processing.

A limitation of this study is that the generalization of our
findings from our ASD sample is only possible to the population
of high functioning individuals with ASD. Using tasks adapted
to individuals with low functioning ASD, future research may
determine whether sex differences can also be observed in this
population.

In conclusion this study provides evidence for sex differences
in the ability to integrate heard and seen speech under
noisy environmental conditions in a large sample of typically
developing children and teenagers between the ages of 5 and
17 years. These differences were absent in a sample of healthy
adults. We further show that multisensory speech processing is
less affected in ASD females than males. Our findings underline
the importance of considering sex differences in the search
for autism endophenotypes. An advanced understanding of
sex differences in ASD may benefit our understanding of the
genetic, neurobiological and environmental factors involved in
the development of ASD. Basic research on sex differences in
ASD has practical implications for therapeutic intervention and
may inform clinicians to delineate more personalized treatments
for this diverse disorder.
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