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Abstract: In the natural host, most of the synonymous codons of a gene have been evolutionarily
selected and related to protein expression and function. However, for the design of a new gene,
most of the existing codon optimization tools select the high-frequency-usage codons and neglect the
contribution of the low-frequency-usage codons (rare codons) to the expression of the target gene
in the host. In this study, we developed the method Presyncodon, available in a web version, to
predict the gene code from a protein sequence, using built-in evolutionary information on a specific
expression host. The synonymous codon-usage pattern of a peptide was studied from three genomic
datasets (Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae). Machine-learning models were
constructed to predict a selection of synonymous codons (low- or high-frequency-usage codon) in a
gene. This method could be easily and efficiently used to design new genes from protein sequences
for optimal expression in three expression hosts (E. coli, B. subtilis, and S. cerevisiae). Presyncodon is
free to academic and noncommercial users; accessible at http://www.mobioinfor.cn/presyncodon_
www/index.html.
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1. Introduction

In most organisms, 61 universal genetic codons encode for 20 standard amino acids, of which
18 are encoded by multiple synonymous codons. In all domains of life, a biased frequency of
synonymous codons is observed at the genome level. Many studies have proved that the presence of
synonymous codons in the gene coding regions is not inconsequential, and relates to the efficient and
accurate translation of the protein [1–3]. Therefore, codon optimization can affect protein expression
and function in the heterologous gene expression system [4–7].

Many methods, including JCat [8], Gene Designer [9], OPTIMIZER [10], Gene Composer [11],
COStar [12], and COOL [13] have been proposed to design heterologous genes that are expected
to be efficiently expressed in the host organism. Based on our experience, we concluded that these
methods are prone to select the high-frequency-usage codons and neglect the contribution of the
low-frequency-usage codons (rare codons) to the expression of the target gene. However, in the case
of some genes, single point synonymous codons can also affect the expression and function of the
target protein [4,14–16]; and some rare codons are conserved in the evolution and play an important
role to regulate protein folding and protein production [16–18]. Therefore, those methods have an
over-reliance on the prediction and usage of codons that are frequently selected in highly-expressed
genes. In the natural host, most of the synonymous codons of the gene have been evolutionarily
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selected and; therefore, in order to account for all the evolutionary variation, the codon usage pattern
should be learned from the natural genes [16,19].

To address the need for heterologous gene design, based on all used codons (the high- or
low-frequency-usage codons), a new web server application, Presyncodon, was developed to design
the heterologous gene for expression in the three frequently-used recombinant hosts (Escherichia coli,
Bacillus subtilis, and Saccharomyces cerevisiae). This big data gene prediction method was used to learn the
codon-usage pattern for a peptide as-derived from sequenced genomic data. Machine-learning models
were constructed by the random forest classification to predict a selection of synonymous codons (low- or
high-frequency-usage codon) for the target gene. Compared with the early version of Pyesyncodon,
which could only design the gene to be efficiently expressed in E. coli in local [20], this new version
could design new genes from protein sequences for optimal expression in three recombinant hosts
(E. coli, B. subtilis, and S. cerevisiae) on the web; and the training dataset has been updated with more
genomes. Therefore, this method will be easily and efficiently used to design genes for heterologous gene
expression in the three popular expression hosts (E. coli, B. subtilis, and S. cerevisiae).

2. Materials and Methods

2.1. Dataset

Three genomic datasets (E. coli, B. subtilis, and S. cerevisiae) were constructed, which contained
353, 62, and 20 genomes, respectively. All selected genomes were the complete genomes downloaded
from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/) on July 13th, 2016, and their genome accession
numbers are shown in Table S1.

In order to train the predicting models, three non-redundant gene datasets (E. coli, B. subtilis,
and S. cerevisiae) were also constructed. The software CD-HIT [21] was used to calculate the gene
clusters and remove the redundant genes in the cluster with protein sequences exhibiting over 40%
identity. For the aim to remove the peculiar genes that might evolve from the horizontal transfer,
the typical genes from those gene clusters that contained at least three homologous sequences were
selected. The required length of each sequence was over 100 codons. As a result, three gene datasets,
covering B. subtilis, E. coli and S. cerevisiae, were constructed with 8091, 11232, and 5905 genes from the
total 1461067, 256246, and 107820 genes, respectively.

2.2. Workflow

The general flowchart of the method is shown in Figure 1. Firstly, each gene in the constructed
gene database was split into window sizes of five and seven codons. Then a codon selection index
(CSI) for each set of genomic data (five and seven residues) was determined, which represented the
codon usage distribution for the middle amino acid and the average codon usage for each amino acid
in the fragment.
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The training gene sequences were translated, and were also split into window sizes of five or
seven amino acids, and searched against the corresponding CSI files. For each fragment, the matched
score (s), expected maximal score (m) of the target fragment, and the matched percent (p, p = s/m)
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against the CSI file were calculated by the method described in [20]. For a given cut-off level (c), if the
calculated matched percent of multiple fragments from the CSI file for a fragment was greater than the
cut-off level, the coding vector for the middle codon in the fragment was the arithmetic average of
those vectors encoding the selected multiple fragments. Here, the training label is the codon for the
middle amino acid.

All training labels and input vectors were collected, and the random forest classifier from “R”
statistics package (ver.3.4.0) [22,23] was used to train the predicting models with seven cut-off levels
(0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 1), two window sizes (5 and 7 residues), and 18 amino acids (containing
multiple synonymous codons). The dimensionality of the input features for each amino acid was the
codon number of the amino acid plus the window size. The number of trees of the key parameter of
the classifier for random forests was set to 10,000. For each organism, 252 models (252 = 7 × 2 × 18)
were constructed.

In order to increase the speed of target gene design, all possible fragments (a total of 2,880,000
(18 × 204) in case of the five residues’ long fragments and of 1152000000 (18 × 205) in case of the seven
residues long fragments) were searched against the corresponding CSI files, with four cut-off levels
(0.7, 0.8, 0.9, and 1). Input vectors were generated for each fragment and the synonymous codons
selection, based on the distribution of the middle residue in the fragment, was predicted for each
organism. The results were stored in the PostgreSQL database.

As the training vector only encodes for the middle codon in the fragment, the first and last
two codons of a gene could not be predicted by the above machine learning models. The codon usage
pattern was generated by measuring the codon-usage bias of the first and last two residues. Therefore,
the first and last two codons of a gene were designed as the most frequently used codons at these
positions in all genes (Table S2).

3. Validation

The performance of the predicting models, obtained from the two fragment window sizes
(5 and 7 amino acids) and cut-off level (c: 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 and 1), were evaluated by
ten-fold cross validation. As shown in Figure 2, the predicting accuracy of models obtained from the
window size of seven amino acids was higher than that of the models obtained from the window
size of five amino acids. Additionally, the classifier obtained with the larger cut-off level (c) achieved
higher accuracy than those obtained with smaller cut-off levels. Therefore, the codon-usage tendency
for each amino acid could be predicted by only one model, as obtained from the long-window-sized
amino acid fragments and characterized by a larger cut-off level (c). The first and last two codons were
selected statistically (Table S2).
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Figure 2. The prediction performance of the 18 classifiers for the 18 amino acids, with different
matched cut-offs and window sizes (left: Five amino acids; right: Seven amino acids) in E. coli,
B. subtilis, and S. cerevisiae. The x-axis is the matched percent and the y-axis is the prediction accuracy
of the 18 classifiers. Each open circle represents the prediction accuracy with one of the 18 classifiers.
The horizontal divisions (from top to bottom) in each box are the upper whisker, 3rd quartile, median,
1st quartile, and lower whisker, respectively. The cross line in each box is the mean prediction accuracy
of all 18 classifiers. All of the results were calculated based on a ten-fold cross validation.

4. Implementation

The software Presyncodon is designed as an adaptable, web-based interface that could be easily
used by scientists. This website was built using Linux (Centos ver. 6.5), Apache (ver. 2.2), PostgreSQL
(ver. 8.4.20), and Perl (ver. 5.10.1). The input of the user is the target protein sequence and the only
external parameter required is the selection of the target expression host (Figure 3). The waiting time for
optimizing a 100-amino acid sequence is estimated to be two minutes. Therefore, the method could be
easily used to design synthetic genes for heterologous gene expression in biotechnology. Based on this
method, we have successfully designed the genes of GFP [20], mApple [20], laccase, penicillin-binding
protein, alpha-1,4 glucan phosphorylase L-1 isozyme, pirin-like protein, and cadmium-binding proteins
from maize to be efficiently expressed in E. coli. Now, this version of Presyncodon could be used
to design the heterologous genes for expression in the three frequently-used recombinant hosts
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(E. coli, B. subtilis, and S. cerevisiae). In the next step, we will develop this optimizing method for
more expression systems. Therefore, this method could be easily used to design synthetic genes for
heterologous gene expression in biotechnology.
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