
molecules

Review

Recent Uses of N,N-Dimethylformamide and
N,N-Dimethylacetamide as Reagents

Jean Le Bras and Jacques Muzart *

Institut de Chimie Moléculaire de Reims, CNRS—Université de Reims Champagne-Ardenne, B.P. 1039,
51687 Reims CEDEX 2, France; jean.lebras@univ-reims.fr
* Correspondence: jacques.muzart@univ-reims.fr; Tel.: +33-3-26913237

Academic Editor: Michal Szostak

Received: 13 July 2018; Accepted: 31 July 2018; Published: 3 August 2018
����������
�������

Abstract: N,N-Dimethylformamide and N,N-dimethylacetamide are multipurpose reagents which
deliver their own H, C, N and O atoms for the synthesis of a variety of compounds under a number
of different experimental conditions. The review mainly highlights the corresponding literature
published over the last years.
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1. Introduction

The organic, organometallic and bioorganic transformations are extensively carried out in
N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMAc). These two polar solvents are
not only use for their dissolution properties, but also as multipurpose reagents. They participate in a
number of processes and serve as a source of various building blocks giving one or more of their own
atoms (Scheme 1).

  

Molecules 2018, 23, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/molecules 

Review 

Recent Uses of N,N-Dimethylformamide and  
N,N-Dimethylacetamide as Reagents 
Jean Le Bras and Jacques Muzart * 

Institut de Chimie Moléculaire de Reims, CNRS—Université de Reims Champagne-Ardenne, B.P. 1039,  
51687 Reims CEDEX 2, France; jean.lebras@univ-reims.fr 
* Correspondence: jacques.muzart@univ-reims.fr; Tel.: +33-3-26913237 

Academic Editor: Michal Szostak 
Received: 13 July 2018; Accepted: 31 July 2018; Published: 3 August 2018 

Abstract: N,N-Dimethylformamide and N,N-dimethylacetamide are multipurpose reagents which 
deliver their own H, C, N and O atoms for the synthesis of a variety of compounds under a number 
of different experimental conditions. The review mainly highlights the corresponding literature 
published over the last years. 

Keywords: N,N-dimethylformamide; DMF; N,N-dimethylacetamide; DMAc; amination; amidation; 
thioamidation; formylation; carbonylation; cyanation; insertion; cyclization 

 

1. Introduction 

The organic, organometallic and bioorganic transformations are extensively carried out in N,N-
dimethylformamide (DMF) or N,N-dimethylacetamide (DMAc). These two polar solvents are not 
only use for their dissolution properties, but also as multipurpose reagents. They participate in a 
number of processes and serve as a source of various building blocks giving one or more of their own 
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Scheme 1. Fragments from DM (R = H or Me) used in synthesis. 

In 2009, one of us reviewed the different roles of DMF, highlighting that DMF is much more than 
a solvent [1]. Subsequently, this topic has been documented by the teams of Jiao [2] and Sing [3]. For 
of a book devoted to solvents as reagents in organic synthesis, we wrote a chapter summarizing the 
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than a solvent [1]. Subsequently, this topic has been documented by the teams of Jiao [2] and Sing [3].
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For of a book devoted to solvents as reagents in organic synthesis, we wrote a chapter summarizing
the reactions consuming DMF and DMAc as carbon, hydrogen, nitrogen and/or oxygen sources [4].
This book chapter tentatively covered the literature up to middle 2015. The present mini-review focuses
on recent reactions which involve DM (DM = DMF or DMAc) as a reagent although some key older
papers are also included for context. Processes which necessitate the prerequisite synthesis of DM
derivatives such as the Vilsmeier-Haack reagents [5] and DMF dimethyl acetal [6] are not surveyed,
but a few reactions of the present review involve the in-situ formation of a Vilsmeier-type intermediate
(Vilsmeier-type reagents have been extensively used. Search on 26 June 2018 for “Vilsmeier” with
SciFinder led to 4379 entries). Color equations, based on literature proposals, are used to easily visualize
the DM atom origin. When uncertainty is expressed by the authors or suspected by us, the atom
is typed in italic. Mechanistic schemes are not reported, but Scheme 2 [7–35] summarizes different
proposed reactions of DM with the corresponding literature references, where DM acts as either a
nucleophilic or electrophilic reagent, or leads to neutral, ionic or radical species. The review is divided
in Sections depending on the DM fragment(s) which is (are) incorporated into the reaction product.

Molecules 2018, 23, x FOR PEER REVIEW  2 of 29 

 

reactions consuming DMF and DMAc as carbon, hydrogen, nitrogen and/or oxygen sources [4]. This 
book chapter tentatively covered the literature up to middle 2015. The present mini-review focuses 
on recent reactions which involve DM (DM = DMF or DMAc) as a reagent although some key older 
papers are also included for context. Processes which necessitate the prerequisite synthesis of DM 
derivatives such as the Vilsmeier-Haack reagents [5] and DMF dimethyl acetal [6] are not surveyed, 
but a few reactions of the present review involve the in-situ formation of a Vilsmeier-type 
intermediate (Vilsmeier-type reagents have been extensively used. Search on 26 June 2018 for 
“Vilsmeier” with SciFinder led to 4379 entries). Color equations, based on literature proposals, are 
used to easily visualize the DM atom origin. When uncertainty is expressed by the authors or 
suspected by us, the atom is typed in italic. Mechanistic schemes are not reported, but Scheme 2 [7–
35] summarizes different proposed reactions of DM with the corresponding literature references, 
where DM acts as either a nucleophilic or electrophilic reagent, or leads to neutral, ionic or radical 
species. The review is divided in Sections depending on the DM fragment(s) which is (are) 
incorporated into the reaction product. 

 

Scheme 2. Reactions of DM (R = H or Me). 

2. C Fragment 

Aerobic carbonylation under nickel/copper or palladium/silver synergistic catalysis occurred 
efficiently using the Me group of DMF as the C source, affording cyclic carbonylated compounds, via 
the directing group-assisted activation of a C(sp2)–H or C(sp3)-H bond (Equations (1) and (2) [36], 
Equations (3) and (4) [37]). Shifting from DMF to DMAc greatly decreased the yields (Equations (1) 
and (3)). 

 

Scheme 2. Reactions of DM (R = H or Me).

2. C Fragment

Aerobic carbonylation under nickel/copper or palladium/silver synergistic catalysis occurred
efficiently using the Me group of DMF as the C source, affording cyclic carbonylated compounds,
via the directing group-assisted activation of a C(sp2)–H or C(sp3)-H bond (Equations (1) and (2) [36],
Equations (3) and (4) [37]). Shifting from DMF to DMAc greatly decreased the yields (Equations (1)
and (3)).
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2. C Fragment 

Aerobic carbonylation under nickel/copper or palladium/silver synergistic catalysis occurred 
efficiently using the Me group of DMF as the C source, affording cyclic carbonylated compounds, via 
the directing group-assisted activation of a C(sp2)–H or C(sp3)-H bond (Equations (1) and (2) [36], 
Equations (3) and (4) [37]). Shifting from DMF to DMAc greatly decreased the yields (Equations (1) 
and (3)). 
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3. CH Fragment

Treatment of indole at 130 ◦C with suprastoichiometric amounts of CuI, t-BuOOH and AcOH
in DMAc under air afforded the corresponding C3-formylation product (Equation (6)) [39]. Such a
reaction also occurred with N-methylindole using CuI and CF3CO2H in DMAc under oxygen [40].
The CH fragment came from the NMe2 moiety [39,40]. In DMF, both procedures led to C3-cyanation
(see below, Equation (25)).
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- pyrimidines from t-BuOOH-mediated reaction between acetophenones, amidines and DMF
(Equation (15)) [47],
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6. NMe2 Fragment

This chapter is divided in sections corresponding to the type of function reacting with DM.

6.1. Aryl Halides

Refluxing chloropyridines in DM or DMAc afforded the corresponding aminopyridines
(Equation (28)) [25]. The amination of aryl chlorides and 3-pyridinyl chloride with DMF occurred
at room temperature in the presence of potassium t-butoxide and a carbenic palladium catalyst
(Equation (29)) [27].
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6.3. Alkenes

Hydrocarbonylation of terminal alkenes and norbornene followed by acyl metathesis with
DM occurred under Pd catalysis, CO pressure and in the presence of ammonium chloride or
N-methyl-2-pyrrolidone hydrochloride (NMP·HCl) (Equations (32) and (33)) [54]. From alkenes,
the selectivity towards linear and branched products depended on the catalytic system (Equation (32)).
DMF and DMAc afforded similar results.



Molecules 2018, 23, 1939 10 of 31
Molecules 2018, 23, x FOR PEER REVIEW  9 of 29 

 

 

 

6.4. Acids 

Copper, palladium and ruthenium catalysts associated to oxidants and DMF were used for the 
amidation of cinnamic acids [29] and carboxylic acids [55] (Equations (34) and (35)). N,N-
Dimethylbenzamide was one of the products obtained from the CuII-catalyzed oxidation of flavonol 
[56]. 

 

 
Metal-free conditions and DMF were used for: 

- the amidation of acids promoted with propylphosphonic anhydride associated to HCl at 130 °C 
(Equation (36)) [15], 

- the amination of acids employing a hypervalent iodine reagent at room temperature (Equation 
(37)) [35]. Mesityliodine diacetate was superior to the other hypervalent iodine reagents, while 
oxidants such as I2, t-BuOOH, NaIO4 or K2S2O8 did not mediate the amidation reaction [35]. 

6.4. Acids

Copper, palladium and ruthenium catalysts associated to oxidants and DMF were used
for the amidation of cinnamic acids [29] and carboxylic acids [55] (Equations (34) and (35)).
N,N-Dimethylbenzamide was one of the products obtained from the CuII-catalyzed oxidation of
flavonol [56].
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Metal-free conditions and DMF were used for:

- the amidation of acids promoted with propylphosphonic anhydride associated to HCl at 130 ◦C
(Equation (36)) [15],

- the amination of acids employing a hypervalent iodine reagent at room temperature
(Equation (37)) [35]. Mesityliodine diacetate was superior to the other hypervalent iodine reagents,
while oxidants such as I2, t-BuOOH, NaIO4 or K2S2O8 did not mediate the amidation reaction [35].
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6.5. Carbonylated Compounds

Reaction of 2-arylquinazolin-4(3H)-ones with TsCl and t-BuOK in DM provided the corresponding
4-(dimethylamino)quinazolines in good yields, especially in DMF (Equation (40)). These reactions
occurred via the formation of the 2-aryl-4-(tosyloxy)quinazolines [57].
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Various amides have been synthetized from aldehydes and DMF using t-BuOOH and a recyclable
heterogeneous catalyst—a carbon–nitrogen embedded cobalt nanoparticle denoted as Co@C-N600
(Equation (41)) [33]. The same transformation of benzaldehydes was subsequently reported using
Co/Al hydrotalcite-derived catalysts [58].
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6.6. Benzyl Amines

The recyclable Co/Al catalysts used above in DMF for the amidation of benzaldehydes also led to
benzamides from benzylamines and t-BuOOH (Equation (45)). These transformations would involve
benzaldehydes as intermediates [58].
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6.7. Nitriles

NaOH mediated, at room temperature, the efficient reaction of the CN group of 4-oxo-2,4-
diphenylbutanenitrile with DMF to afford the corresponding γ-ketoamide (Equation (46)) [63].
Such compounds were also obtained from the domino reaction of chalcones with malononitrile
and NaOH in DMF [63].
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Sulfonamides were synthetized:
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(47)ArSH

CuCl (1 equiv)
Cu(OAc)2 (1 equiv)

cinnamic acid (1 equiv)

12 examples, 46-90%  
or reaction of sodium sulfonates with N-iodosuccinimide and DMF pretreated with t-BuOK 
(Equation (48)) via, probably, sulfonyl iodides (Equation (49)) [65]. 

 

 

7. O Fragment 

DMF delivered its oxygen atom to 1,2-cyclic sulfamidates via nucleophilic displacement at the 
quaternary center to afford, after hydrolysis, an aminoalcohol (Equation (50)) [17]. 

 
DMF was also the oxygen source leading to an imidazolinone from the reaction with the Cu-

carbene complex and the borate salt depicted in Equation (51) [66]. 

 
The I2/CuO association allowed the α-hydroxylation of arones in abstracting, via the α-

iodoarone, the oxygen atom of DMF (Equation (52)) [18]. 

 

8. C=O Fragment 

With DMF as the CO surrogate, quinazolinones have been prepared at 140–150 °C 

- via C(sp2)-H bond activation and annulation using Pd/C [67] or Pd(OAc)2 [8], in the presence of 
K2S2O8, CF3CO2H and O2 (Equation (53)), 

or reaction of sodium sulfonates with N-iodosuccinimide and DMF pretreated with t-BuOK
(Equation (48)) via, probably, sulfonyl iodides (Equation (49)) [65].
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7. O Fragment

DMF delivered its oxygen atom to 1,2-cyclic sulfamidates via nucleophilic displacement at the
quaternary center to afford, after hydrolysis, an aminoalcohol (Equation (50)) [17].
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With DMF as the CO surrogate, quinazolinones have been prepared at 140–150 °C 

- via C(sp2)-H bond activation and annulation using Pd/C [67] or Pd(OAc)2 [8], in the presence of 
K2S2O8, CF3CO2H and O2 (Equation (53)), 

DMF was also the oxygen source leading to an imidazolinone from the reaction with the
Cu-carbene complex and the borate salt depicted in Equation (51) [66].
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- via C(sp2)-H bond activation and annulation using Pd/C [67] or Pd(OAc)2 [8], in the presence of 
K2S2O8, CF3CO2H and O2 (Equation (53)), 
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At 120 ◦C under CuBr2 catalysis, o-iodoanilines reacted with potassium sulfide and DMF, leading
to benzothiazolones (Equation (58)) [70].
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N-oxides, with also DMF, was catalyzed by PdII in the presence of ytterbium oxide as base and
tetrabutylammonium acetate, the latter mediating the N-O reduction (Equation (60)) [72].
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by the reaction of 2-iodo-1-(4-methoxyphenyl)ethanone (Equation (75)). Traces of water delivered the
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The formyl group of DMF was involved in the triflic anhydride-mediated domino reaction
depicted in Equation (77) [86].
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17. RC and O Fragment

Arynes, which are easily obtained from, for example 2-(trimethylsilyl)phenyl trifluoromethane-
sulfonate, undergone a [2 + 2] cyclization with DM giving a benzoxetene and its isomer, the ortho-
quinone methide (Scheme 3). Trapping of these intermediates provides various products, which
contain the formyl or acetyl CH part and the O atom of DM (Equations (86) [19], (87) [20], (88) [21] and
(89) [97]), or the HCNMe2 and O fragments of DMF (see Section 18).
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with α-chloro β-diesters (Equation (90)) [22], aroyl cyanides (Equation (91)) [23] or diesters of
acetylenedicarboxylic acid (Equation (92)) [24].
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21. H and C=ONMe2 Fragment

Semicarbazides have been synthetized from additions, mediated with (t-BuO)2 and catalytic
amounts of both NaI and PhCOCl, of the H and CONMe2 moieties of DMF to the extremities of the
N=N bond of azoarenes (Equation (95)) [100]. The role of NaI and PhCOCl is not clear and, furthermore,
exchange of NaI for imidazole led to formylhydrazines (Equation (96)) [100]. The corresponding
acetylhydrazine was not formed in DMAc (Equation (96)). The (t-BuO)2/NaI/PhCOCl/DMF system
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led to the addition of H and CONMe2 to the N=C bond of N-benzylideneaniline but with low yield
(Equation (97)) [100].
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23. C=ONMe2 and CH Fragment

Couplings between amidines, styrenes and fragments of two molecules of DMF in the
presence of t-BuOOH and a PdII catalyst provided pyrimidine carboxamides (Equation (100)) [105].
DMAc may also be the CH source as exemplified with the formation of the N,N-diethyl-2,4-
diphenylpyrimidine-5-carboxamide when N,N-diethylformamide was the source of the amide moiety
(Equation (101)).
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24. Reducing or Stabilizing Agent

DMF is a powerful reducing agent of metal salts, hence its use for the preparation of metal
colloids [106]. In wet DMF, PdCl2 led to carbamic acid and Pd(0) nanoparticles (Equation (102)) [107].
The latter have been associated with the metal-organic framework Cu2(BDC)2(DABCO) (BDC = 1,4-
benzenedicarboxylate), leading to a catalytic system with high activity and recyclability for the aerobic
oxidation of benzyl alcohols to aldehydes [108] and Suzuki-Miyaura cross-coupling reactions [107].
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- on copper for Sonogashira–Hagihara cross-coupling reactions (Equation (105)) [111],
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domino reaction involving the reduction of the nitro group followed by cyclisation into benzimidazoles
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under different experimental conditions (Equation (18)) [50].
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25. Conclusions

This minireview highlights recent uses of DMF and DMAc as sources of building blocks in
various reactions of the organic synthesis. We assume that new uses of these multipurpose reagents
will be reported.
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