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Abstract: Amyloid structures assemble through a repeating type of bonding called “cross-β”, in
which identical sequences in many protein molecules form β-sheets that interdigitate through side
chain interactions. We review the structural characteristics of such bonds. Single cell force microscopy
(SCFM) shows that yeast expressing Als5 adhesin from Candida albicans demonstrate the empirical
characteristics of cross-β interactions. These properties include affinity for amyloid-binding dyes,
birefringence, critical concentration dependence, repeating structure, and inhibition by anti-amyloid
agents. We present a model for how cross-β bonds form in trans between two adhering cells. These
characteristics also apply to other fungal adhesins, so the mechanism appears to be an example of a
new type of cell–cell adhesion.

Keywords: Candida albicans; Saccharomyces cerevisiae; biofilm; adhesin; protein conformation; AFM;
steric zipper; nanodomain

1. Introduction

We have recently discovered that amyloid-like bonds form between cells in fungal
biofilms [1,2]. These bonds show properties of cross-β aggregation, like the bonds formed
between amyloid proteins in neurodegenerative diseases [3–5]. These intercellular bonds
are in addition to the well-characterized interactions that cluster the adhesion proteins (the
adhesins) on yeast cell surfaces [6]. Among the functional consequences are discoveries
that some anti-amyloid compounds can prevent biofilm formation. We review the evidence
for amyloid-like cell–cell adhesion. This novel type of bond between arrays of adhesion
proteins has profound implications for the energetics and mechanical resistance of the cell–
cell bonds, and this discovery extends to roles in pathogenesis and biofilm formation. If
this new type of cell-to-cell bond formation proves to be general [6–9], there are important
implications for the treatment of invasive fungal infections and for cell adhesion and
histogenesis in other fungi and in animals [10–13].

2. Cross-β Aggregation and Amyloids

Amyloids are fibrous aggregates of proteins with a unique type of non-covalent bond-
ing called cross-β aggregation. In these structures, identical amino acids in parallel or anti-
parallel arrays form β sheets, and these sheets then adhere through amino acid side chain
interactions and interdigitations in a structure called a steric zipper (Figure 1A) [3,4,14].
Although individual β-sheets have poor stability in aqueous environments, stacks of
sheets stabilized by sidechain–sidechain interactions are extremely stable. Thus, stacked
β-sheets with steric zipper interactions are the structural basis of the amyloid fibrils of
many proteins. These cross-β interactions are a major subset of molecular interactions in
diseases that are characterized by inappropriate aggregation and phase separations [15].
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Most cross-β aggregates are insoluble and are often almost irreversible. Thus, they are
notorious as markers of neurodegenerative diseases (including Aβ fibrils in Alzheimer’s
disease, alpha-synuclein aggregates in Parkinson’s disease, prions in Creutzfeldt–Jakob
Disease and scrapie, and others [4,16,17]). Interestingly, as opposed to these pathogenic
amyloids, there are also functional amyloids, in which cross-β aggregates are essential for
function of proteins [18–22]. These include β-helical interactions in virus tail spikes, bacte-
rial curlins and Pseudomonas biofilm PAF proteins in biofilms of Gram-negative bacteria,
and in Gram-positive Staphylococcal PSMs [23–26]. In mammalian systems, melanosomes
are amyloid assemblies, as are condensing granules for some peptide hormone precursors
in the pituitary gland [19,27,28].
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yloid fibers from fungal adhesins: left to right are peptides Candida albicans adhesin Eap1, a tride-
cameric peptide from Als5, and a 644-residue fragment of Als5. Reprinted from [6]. 

Both pathogenic and functional cross-β aggregates have a set of characteristics com-
monly used for their identification as amyloid-like structures (Figure 1). These include a 
dependence on sequence (the sequence in each strand must be identical or highly similar), 
birefringence between crossed polaroids, binding of amyloidophilic dyes like Congo red 
and thioflavins, rigid fibers of 8–20 nm diameter visible by transmission electron micros-
copy, and a characteristic X-ray diffraction pattern in fiber diffraction [3,4]. Amyloid fibers 
are formed around ‘core sequences’ of five to seven successive amino acid residues that 
are identifiable through a variety of search algorithms that measure solubility, geometry, 
and/or sequence similarity [29–33].  

  

Figure 1. Amyloid structures. (A) Arrangement of β-strands in an amyloid fiber (a cross-β structure).
The figure shows two β-sheets with one of the identical residues in each strand marked with a ‘+’
in a circle. The residues are aligned in each strand. This cartoon is shown as part of an amyloid
fiber in the middle, and the characteristic “cross-β” fiber X-ray diffraction pattern is on the right.
(B) Amyloid fibers from fungal adhesins: left to right are peptides Candida albicans adhesin Eap1, a
tridecameric peptide from Als5, and a 644-residue fragment of Als5. Reprinted from [6].

Both pathogenic and functional cross-β aggregates have a set of characteristics com-
monly used for their identification as amyloid-like structures (Figure 1). These include a
dependence on sequence (the sequence in each strand must be identical or highly simi-
lar), birefringence between crossed polaroids, binding of amyloidophilic dyes like Congo
red and thioflavins, rigid fibers of 8–20 nm diameter visible by transmission electron
microscopy, and a characteristic X-ray diffraction pattern in fiber diffraction [3,4]. Amy-
loid fibers are formed around ‘core sequences’ of five to seven successive amino acid
residues that are identifiable through a variety of search algorithms that measure solubility,
geometry, and/or sequence similarity [29–33].

3. Fungal Adhesins, Amyloid Fibrils, and Cross-β Aggregates

Many fungal adhesins show these properties, and some can form amyloid fibers
in vitro (Figures 1 and 2). The Candida albicans Als adhesins are the best characterized,
but the list also includes the Saccharomyces cerevisiae Flo1 and Flo11 adhesins. Peptides
with the core sequences from these adhesins and many others can form amyloid fibers
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in vitro (Figure 1B) [34,35]. The Als and Flo adhesins themselves also form amyloid fibers
in vitro [6,34]. However, in vivo, the adhesins are covalently anchored to cell wall glycans,
and so they cannot form fibers the way that soluble proteins can. Instead, the adhesins
form surface patches or ‘nanodomains’ of ~50–100 nm in diameter, as visualized by atomic
force microscopy and confocal microscopy (Figure 2). These patches have the properties
of cross-β structures, including sequence dependence, thioflavin binding, birefringence,
and inhibition by anti-amyloid treatments. Nanodomain formation increases the avidity of
cell-to-cell interactions because the clustering of adhesins drives up the local concentration
of the binding sites on adhesins, so any ligands are likely to bind to any of many nearby
binding sites [6].
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Figure 2. Cross-β surface nanodomains on live yeast cells. (A) Confocal image of thioflavinT-
labelled nanodomains on yeast cells. Arrows point to bright spots at cell–cell adhesions. (B) A
map of V5-labelled Als5 in a 1µm square on the surface of a living yeast cell. V5-epitope-labelled
adhesin Als5 was expressed on the surface of Saccharomyces cerevisiae, then probed with an AFM tip
derivatized with anti-V5. Pixels are colored where the AFM detects a V5 epitope: blue for rupture
forces <150 pN and red for rupture forces ≥150 pN. After mechanical stimulation, the adhesins
are clustered. (C) Yeast cell embedded in a micro-porous membrane on an AFM stage. The cell is
expressing a V5-tagged version of Als5 on its surface, and the map of the area marked “1 = 1’” is
image B. Reprinted from [36].

4. Cross-β Bonding in Trans

In addition, recent AFM experiments with intact live cells reveal that cell-to-cell
bonds themselves show cross-β bond characteristics, which is consistent with amyloid-like
bonding between cells. In single cell force spectroscopy (SCFS), an individual live cell
is attached to an AFM tipless cantilever resulting in a so-called cell probe, which is then
lowered until it contacts another live cell trapped in a porous membrane and the AFM stage
(Figure 3). As the probe is then retracted away from the sample surface, adhesion forces
are recorded if any adhesive bond occurs between the cell probe and the targeted cell. Such
SCFS investigations have allowed for quantitative demonstrations of the strong adhesion
between Als5p-expressing cells. This cell-to-cell adhesion increases while successively
mapping the interactions between cells of the same pair as force activates the increasing
formation of adhesin nanodomains through β-aggregation-mediated clustering and the
subsequent formation of cell-to-cell bonds through similar cross-β aggregation [1,2].

For C. albicans Als5 adhesin, the cell–cell interactions show amyloid-like properties
(i.e., the interaction depends on the presence of the amyloid core sequence 325IVIVATT331

on both interacting cells (Figure 3A vs. Figure 3B) [2]). Like amyloid formation, cell–cell
adhesions are dependent on high local concentrations of the amyloid core sequences,
and therefore there must be high concentrations of the adhesins on the cell surfaces.
Acute concentration dependence is a defining characteristic for cross-β structures because
multiple identical sequences form the β-strands that comprise the β-sheets, and multiple
β-sheets need to interact through steric zippers. Thus, the concentration dependence is due
to the need for enough molecules to constitute multiple β-sheets, an assembly necessary
to stabilize the cross-β structure [3,4,14]. A supporting study shows that amyloid-like
β-interactions form in trans between an amyloidogenic peptide attached to the AFM tip
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and an Als5p molecule on the AFM stage surface. In these experiments, the same amyloid
sequence must be also present in both the peptide and the Als5 adhesin [6]. Additionally,
cell–cell binding is inhibited by treatments that disrupt cross-β amyloid-like bonds. Thus,
these data, along with previous findings that thioflavin-bright patches form at the sites of
cell–cell adhesion (Figure 2A), support a model in which amyloid-like bonds form in trans
between the cells (Figure 4).
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proteins. Two possible orientations are shown. In step 3, the cis-nanodomains associate in trans to form cell-to-cell bonds.
Again, two possible orientations are shown; either orientation is compatible with the data so far.

5. Biogenesis of Cross-β Bonds in Trans

A model for the biogenesis of these structures is illustrated in Figure 4. Initially, shear
force unfolds the partially structured T domains in Als proteins, exposing the amyloid core
sequences (1). These sequences then mediate assembly of adhesins into nanodomain arrays
on the surface of a cell in cis (2), nanodomains that can exist with either parallel-strand
β-sheets (right), or mixed parallel and anti-parallel strands (left). Finally, the nanodomains
interact in trans through homologous cross-β aggregation between two cells (3, orange–



Pathogens 2021, 10, 1013 6 of 11

brown, and blue). Steps 2 and 3 may generate different orientations of the arrays. Either
orientation or a mixed set of orientations would be consistent with the data so far.

Figure 4 shows only a single β-sheet layer; a model of two interacting sheets in a trans
array is shown in Figure 5A. In vivo the trans arrays are based on hundreds to thousands
of H bonds and steric zipper interactions between the cells, and so should be highly stable.
The zipper requires homologous interactions to maintain both the intra- and inter-sheet
associations, so sequence identity is key. Thus, these bonds are expected to be strong and
highly stable, as observed in assays in vitro [6,37,38]. These characteristics were recognized
and named ‘SRS adhesions’ for strong reversible specific two decades ago [37]. We now
know the molecular basis for these characteristics.
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nanodomain formation and cell–cell adhesion have halftimes of about 7 min, and this ob-
servation implies that nanodomain formation is a rate-limiting step [8,40,41]. 
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Figure 5. Two-sheet model cross β cell–cell bonding in trans. (A) A model showing the interaction of β-sheets in the cross-β
bonds between two cells, one cell in orange–brown and the other in blue. A β-sheet in front is outlined and brighter colored
than the sheet behind. (B) A model showing an origin for the 2 nm extension quantum observed when cells are separated.
In SCFM, as cells are separated (top arrow), the most stressed bond breaks, and the cross-β core sequence is stretched to its
limit (~2 nm for a 6 amino acid sequence). The cells remain associated through other bonds. Subsequently, the next-most
stressed bond will dissociate, and the process repeats to generate the successive 2 nm separation peaks observed in the
force–distance curves [2].

Formation of cross-β structures is slow, because of the need for extensive conforma-
tional changes and the entropic costs of alignment [39]. Furthermore, interacting proteins
need to remain in contact with each other during bond formation to ‘lock-in’ the cross-β
structures as they form [39]. Clearly, cell-to-cell bond formation is facilitated by prior
assembly of the cis nanodomains, which are already in the appropriate conformation. Both
nanodomain formation and cell–cell adhesion have halftimes of about 7 min, and this ob-
servation implies that nanodomain formation is a rate-limiting step [8,40,41]. Nanodomain
assembly is probably facilitated by prior non-amyloid interactions of the adhesins. These
interactions include hydrophobic effect clustering through the Tandem Repeats [42] and
Ig-domain binding to peptide epitopes in other Als molecules. Ig-domain ligands include
the three-residue sequence motif called τφ+ (tau, a residue common in turns; phi, a bulky
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hydrophobic residue; and +: Lys or Arg) [42]. Thus, initial hydrophobic effect leads to
binding of τφ+ motifs between adhesins, followed by formation of the cross-β aggregates.
Only this last step is inhibited by anti-amyloid treatments.

6. Other Adhesins

How general is this model of β-aggregation in trans for cell–cell adhesion? C. albicans
Als1 shares the same sequences of the amyloid core and T domains with Als5, rendering
their similarities highly predictable. Experimental studies have indeed confirmed that
both adhesins show the same characteristics of cell-to-cell binding initiated by shear-
mediated [6,38,43–45]. Further, cell-to-cell adhesion occurs with the highest probability
and strength when both cells express Als1 with the wild-type cross-β core sequence, while
cells that express the non-amyloid substitution V326N have reduced adhesion probability
and strength [38]. This points to a β-aggregation in trans as described above. As in Als5,
adhesin clustering and cell–cell adhesion are inhibited in the presence of thioflavin S or the
anti-amyloid peptide SNGINIVATRTV. Thus, Als1-mediated homophilic adhesion follows
the model for Als5 in its reliance on cross-β bond formation.

Data on the S. cerevisiae flocculins Flo1 and Flo11 also support the formation of cross-β
bonds in trans between expressing cells. Like the Als proteins, these adhesins also have
multiple binding modes. The flocculins are partially Ca2+-dependent, but they can be
activated by shear force in the absence of Ca2+ [42,46,47]. This result is consistent with the
idea that cation binding induces a conformational change that helps to expose amyloid-like
core sequences.

The Flo1 family has Ca2+-dependent lectin (glycan binding) activity mediated by the
N-terminal PA14 domain [46–48]. The glycan-binding N-terminal domain is followed by a
variable number of ~50 residue tandem repeats. These repeats show no sequence similarity
to the Als repeats, but as in Als proteins, the repeats are predicted to have anti-parallel
β-sheet structure, and the Flo1 repeats unfold under extension or shear force [6,49]. Unlike
the Als adhesins, each Flo1 repeat contains an amyloid core sequence with high frequency
of hydrophobic aliphatic residues. Thus, unfolding leads to exposure of many homologous
amyloid-core sequences. As expected for β-aggregation in trans, alleles with more repeats
have stronger binding [50,51]. Flocculation can be prevented or reversed by millimolar
concentrations of the amyloid dye thioflavin S [52]. Furthermore, Flo1-mediated aggregates
are birefringent between crossed polaroids, as are Als5 aggregates. A second activity of
Flo1 (its ability to invade agar) is also inhibited by thioflavin S or by Congo red. In addition,
Flo1-expressing colonies recognize other Flo1-expressing cells as ‘self’ in forming biofilms
and exclude cells that do not express Flo1 [53]. This ‘greenbeard’ property (the ability to
recognize individuals who will help to form a biofilm, and to exclude ‘cheaters’ who will
not adhere strongly and thus will not help form the biofilm) is consistent with the idea of
cross-β-dependent cell–cell bonding. It is unlikely to be based on the lectin activity of the
protein because all yeast cells are coated with the lectin ligand α-mannosides [53,54]. Thus,
the properties of Flo1-medated aggregation are like Als5 and are consistent with the idea
of cross-β bonds formed in trans between cells.

Flo11 is a S. cerevisiae adhesin with no sequence similarity to Flo1, but it also shows
properties consistent with cross-β bonding in trans. The Flo11 N-terminal domain (NTD)
can self-associate through homologous interactions of belts of Trp residues [55–57]. There
are potential amyloid core sequences in the post-NTD and C-terminal regions [34]. Like
Flo1 and Als adhesins, the ability to form cellular aggregates is induced by shear force.
Flocculation depends on both cells expressing Flo11, and so depends on homophilic
interactions [57–60]. The flocs are birefringent [6]. Thioflavin S and Congo red inhibit
flocculation and Flo11-mediated agar invasion. As in Flo1, these properties are consistent
with cross-β interactions between cells being critical for activity of the adhesin.

In our hands, these cell surface cross-β aggregates are not reversible, probably be-
cause aggregate disassembly and domain refolding are both thermodynamically unfa-
vored. Thus, the remodeling of these cell associations would probably require that trans-
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aggregates be shed from cell surfaces by proteolysis. In support of this speculation, dibasic
residues are common in known and potential adhesins with cross-β core sequences [7].
Proteolytic shedding would destroy the trans-cellular adhesions and would also gener-
ate extracellular amyloid-like structures made of the shed material. That outcome may
be desirable in biofilms where amyloids can become part of the matrix, as in bacterial
biofilms [7,24,25,61–64]. In support of this idea, other wall proteins also include cross-β
core sequences [32,65–67]. Among these, the glycosyl transferases Gas1, Gas3, Gas 5, Ygp1,
and Bgl2 can form intracellular β-aggregates, and form amyloids in E. coli when overex-
pressed in the Csg-curlin system [22,66–69]. There are also other putative adhesins that
show cross-β core sequences embedded in regions with low sequence complexity with
little stable structure. For these candidates, we have not yet evidence for cross-β bonding
in situ or for a biological activity or consequence.

Similarly, β-aggregation core sequences are present in mammalian adhesion molecules,
including integrins, CAMs and EpCAM, cadherins, and lectins, but currently none are
known to be functional [70]. There are intriguing hints about the mammalian synaptogenic
cell adhesion molecule APLP-1 [71]. Like the Flo adhesins, it clusters in a metal dependent
manner at sites of cell–cell contact. Fluorescence transfer experiments show close association
of APLP-1 molecules in trans across cell contacts. Two β-aggregation core sequences are
present in E2 coiled-coil domain of APLP-1, and as in the adhesins, this domain would need
to unfold to allow assembly of a β-aggregate. However, there is no evidence (yet) that the
β-aggregation core sequences are involved in APLP-1-mediated cell–cell binding in trans.

7. Summary

β-aggregation in trans as a cell–cell adhesion mode is newly discovered. In C. albicans
Als adhesins and S. cerevisiae flocculation, cross-β aggregates form after core sequences are
exposed by shear-stress-induced unfolding of protein domains. The result is formation
of inter-cellular aggregates and shear-resistant biofilms. Structural data probably awaits
further developments in cryo-EM technology that would allow structural determination of
molecular complexes in the intercellular space. Thus, the consequences of cross-β assembly
in trans are just now beginning to be clear, and discovering these consequences will lead to
new ways to think about cell adhesion and about biofilms.
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