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Purpose: Despite the successful progress next-generation sequen-
cing technologies has achieved in diagnosing the genetic cause of
rare Mendelian diseases, the current diagnostic rate is still far from
satisfactory because of heterogeneity, imprecision, and noise in
disease phenotype descriptions and insufficient utilization of expert
knowledge in clinical genetics. To overcome these difficulties, we
present a novel method called Xrare for the prioritization of
causative gene variants in rare disease diagnosis.

Methods:We propose a new phenotype similarity scoring method
called Emission-Reception Information Content (ERIC), which is
highly tolerant of noise and imprecision in clinical phenotypes. We
utilize medical genetic domain knowledge by designing genetic
features implementing American College of Medical Genetics and
Genomics (ACMG) guidelines.

Results: ERIC score ranked consistently higher for disease genes

than other phenotypic similarity scores in the presence of imprecise
and noisy phenotypes. Extensive simulations and real clinical data
demonstrated that Xrare outperforms existing alternative methods
by 10–40% at various genetic diagnosis scenarios.

Conclusion: The Xrare model is learned from a large database of
clinical variants, and derives its strength from the tight integration
of medical genetics features and phenotypic features similarity
scores. Xrare provides the clinical community with a robust and
powerful tool for variant prioritization.
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INTRODUCTION
Application of next-generation sequencing technologies have
brought great progress in diagnosing the genetic cause of rare
Mendelian diseases. More than 100 novel disease–gene
associations were identified per year from 2012 to 2016 on
average.1 However, the current diagnostic rate, which ranges
from ~28% in exome sequencing2 to 57% in the most
comprehensive family trio genome sequencing3 studies, is still
far from satisfactory, and there are still more than 3000
(~50%) known OMIM diseases with unknown genetic
causes.4 Thus prioritizing sequence variants explaining the
disease phenotypes becomes crucial for genetic diagnosis of
rare Mendelian disorders.
Several strategies have been developed to prioritize the

pathogenic variants associated with rare disorders. One group
of methods (e.g., MutationTaster,5 CADD,6 M-CAP,7

REVEL8) use genotype-only information (sequence and
genomic attributes) to provide in silico prediction of variant
pathogenicity. However, because each healthy person gen-
erally harbors about 100 loss-of-function deleterious variants,9

further consideration of genotype–phenotype association is
needed for clinical applications. To further prioritize the
variants, phenotype-driven methods (e.g., eXtasy,10 Exomi-
ser,11 Phen-Gen12) had been proposed to combine the results
of existing in silico prediction algorithms and a phenotypic
relatedness measure, for the scoring and ranking of disease
causative gene variants. However, even though these
phenotype-driven methods have gained wide applications in
clinical diagnosis, the diagnostic rate in real clinical settings is
unsatisfactory and very far from the numbers shown in
simulation studies.3 One potential reason for the discrepancy
could be the incompleteness, heterogeneity, imprecision, and
noise in disease phenotype descriptions. To overcome these
challenges, we developed a new robust phenotype similarity
score and a machine learning method (Xrare) jointly
modeling phenotypic features and multiple genetic features
including ACMG/AMP guideline-based features. ACMG/
AMP guidelines are standards and guidelines for the
interpretation of sequence variants released by the American
College of Medical Genetics and Genomics (ACMG) and the
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Association for Molecular Pathology (AMP).13 The use of
genetic features derived from ACMG/AMP guidelines allows
our model to capture domain expert knowledge reflecting the
best practice in medical genetics. For phenotypic features, the
challenge is in ensuring that the features are tolerant of
incompleteness (partial presentation of symptoms), impreci-
sion (presenting symptoms less specific than the ones
associated with the disease), and noise (presenting symptoms
unrelated to the disease). Two recent exome sequencing
studies14,15 with individual patient Human Phenotype Ontol-
ogy (HPO) phenotypes demonstrated that 48% of patients
had some phenotype noise and 25% patients had more than
50% noise if measured by HPO gene–phenotype exact
associations (Supplementary Table S1). This highlighted the
widespread existence of imprecise and noisy phenotypes in
clinical settings. To handle these difficulties, we developed a
new phenotype score called Emission-Reception Information
Content (ERIC). ERIC can robustly measure the phenotypic
similarity between imprecise and noisy patient phenotypes
and known phenotypes associated with a disease or a gene.
Through extensive simulations of spike-in synthetic genomes
with various phenotype noise levels and real clinical data sets,
we evaluated the variant prioritization performance of Xrare
in comparison with a wide range of currently popular
genotype-only and phenotype-driven methods and demon-
strated the improvement from our method in rare disease
diagnosis.

MATERIALS AND METHODS
Xrare model features
Xrare is a machine learning approach to disease-causing
variant prioritization based on a rich set of phenotypic and
genetic features. The full description of features in our
predictive model is described in Supplementary Methods and
summarized in Supplementary Table S2. Briefly, there are 51
features, including 6 population allele frequency–related
features, 5 gene-phenotype similarity scores, 15 ACMG/
AMP guideline-based features, 9 gene-level constraint scores,
12 existing in silico prediction scores of pathogenicity, 2
functional impact features of variants, and 2 database-related
gene-level features. In particular, ACMG/AMP features reflect
the current best practice in assessing pathogenicity of genetic
variants by combining multiple categories of evidence. ERIC-
based features, on the other hand, enable usage of phenotypic
information not only in the case when the target gene has
phenotypic annotations but also in the case when such
annotations are not available. In the latter case, we obtain
“predicted” phenotype similarity scores based on genes with
phenotypic annotations and related to the target gene in terms
of sequence similarity, pathway comembership, and other
forms of interactome data (Supplementary Table S3).

Xrare model training
The schematic overview of the Xrare model is shown in Fig. 1a.
We used 49,021 known pathogenic variants from ClinVar to
train and validate our Xrare model (Supplementary Table S4).

First, 41,590 variants identified by year 2011 were used to
derive ACMG/AMP guideline–based features, because effec-
tively implementing some guideline-based features (such as
PS1, PM1, PM5, PP2) requires a large number of known
pathogenic variants. Next, a gradient boosting decision tree
(GBDT16) algorithm implemented in XGBoost17 was applied
to learn the Xrare model based on training data derived from
6576 ClinVar variants identified in 2012–2015. GBDT, unlike
the linear model, is robust to multicollinearity when features
are redundant and highly correlated. More details in the
construction of training data and model implementation are
described in Supplementary Methods. Finally, 855 ClinVar
variants identified since 2016 were used to evaluate
performances. We also calculated the importance of all the
features using the “xgb.importance” function in XGBoost, as
shown in Fig. 1b and Supplementary Figure S1.
To prevent “data leakage” (double usage of information

in both the evaluation set and model training) and
model overfitting, we applied a series of strategies including
separating spike-in pathogenic variants by years (Supple-
mentary Table S4); distinct background genomes in feature
calculation, model training, and evaluation; choosing only
in silico prediction scores without strong publication
year bias (Supplementary Figure S2); and carefully excluding
known HPO phenotype associated genes before 2016 for
novel gene performance evaluations (details in “Discussion”).

Integration of gene–phenotype annotation from human,
mouse, and zebrafish
Measures of the similarity between two sets of phenotypes
(e.g., between the phenotypes annotated to a gene and the
phenotypes associated with a disease) usually depend on a
phenotype ontology, which is composed of a set of phenotype
terms hierarchically organized from general to specific
phenotype descriptions. In this paper we used the HPO18 to
encode phenotypes. Human phenotype annotations were
downloaded from the official HPO website. We also down-
loaded zebrafish and mouse gene–phenotype annotations
based on Uberpheno ontology19 (UPO), which is a cross-
species phenotype ontology including mixed phenotype
descriptions from human, mouse, and zebrafish. We con-
verted any UPO term not in HPO into an HPO term based on
the UPO structure (i.e., a non-HPO term was replaced by its
ancestral HPO term with the greatest information content). In
this way, 183,558 HPO terms were annotated to 8643 human
genes.

ERIC is a new measure of similarity between phenotype
terms
The poor performance of existing phenotype similarity
measures in the presence of imprecision and noise motivated
us to develop ERIC. The information content (IC) of a
phenotype term t is computed as:

IC tð Þ ¼ � log
n
N

� �
;
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where N denotes the total number of genes under
consideration, and n denotes the number of genes with
phenotype t. The ERIC similarity between t1 and t2 is
calculated as:

ERIC t1; t2ð Þ ¼ max 0; 2 ´ IC tMICAð Þ �min IC t1ð Þ; IC t2ð Þð Þ½ �;
where tMICA is the most informative common ancestor
(MICA) of t1 and t2. In addition, the ERIC score is set to
have a minimum value of zero.
Here we briefly describe the rationale for the ERIC score

formula. First, we define the distance between term t and its

ancestral term tancestor as:

Dist t; tancestorð Þ ¼ Dist tancestor; tð Þ ¼ IC tð Þ � IC tancestorð Þ:
Then we use this formula to calculate how much IC emitted

from t1 is received by t2:

ERIC t1 ! t2ð Þ ¼ IC t1ð Þ � Dist t1; tMICAð Þ � Dist tMICA; t2ð Þ
¼ 2 ´ IC tMICAð Þ � ICðt2Þ;

In addition, to make the score symmetric between two
phenotype terms, we replaced IC(t2) with the minimum of IC
(t1) and IC(t2) in this formula. In addition, the ERIC score is
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Fig. 1 Schematic overview of the Xrare model and most important features for predicting variant pathogenicity. a Schematic overview of the
Xrare model. The collected 49,021 pathogenic ClinVar variants were divided into three parts in terms of their publishing years: 41,590 variants identified by
2011 used for implementing American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guideline
evidence; 6576 variants spiked in synthetic genomes for model training; the remaining 855 variants identified since 2016 used for model evaluation. The
preexisting in silico computation scores of variants, population-level scores, and other ACMG evidence scores were used as features for machine learning.
Phenotype-related features came from gene–phenotype similarity Emission-Reception Information Content (ERIC) score and predicted gene–phenotype
associations. b The top 15 most important features from Xrare model. See Supplementary Figure S1 for all features.
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set to have a minimum value of zero, when the minimum Dist
(t,tMICA) of t1 and t2 is larger than IC(tMICA). Intuitively, this
at tMICA with a radius of IC(tMICA) are considered noise. The
final definition of ERIC similarity can be written as:

ERIC t1; t2ð Þ ¼ 0; if 2 ´ IC tMICAð Þ � min IC t1ð Þ; IC t2ð Þð Þ:
2 ´ IC tMICAð Þ �min IC t1ð Þ; IC t2ð Þð Þ; otherwise:

�

Other IC-based measures tested in the study, such as
Resnik,20 Lin,21 and Jiang-Conrath22 (JC) measures, are
calculated as:

SimResnik t1; t2ð Þ ¼ IC tMICAð Þ;

SimLin t1; t2ð Þ ¼ 2 ´ IC tMICAð Þ
IC t1ð Þ þ IC t2ð Þ ;

SimJC t1; t2ð Þ ¼ 1� DistJC t1; t2ð Þ=Max DistJC t1; t2ð Þð Þ

where DistJC t1; t2ð Þ ¼ IC t1ð Þ þ IC t2ð Þ � 2 ´ IC tMICAð Þ:

Similarity between phenotype sets
Best match sum23 (BMS) was used to calculate the similarity
between two sets of phenotype terms, the query phenotype set
T1 and the annotation phenotype set T2:

sim T1;T2ð Þ ¼
X
t12T1

max
t22T2

Sim t1; t2ð Þð Þ:

More details are described in Supplementary Methods.

Gene–phenotype associations predicted over interactomes
Because only a subset of genes have phenotype annotations
from HPO or UPO, we obtained phenotypic annotations for
the remaining genes utilizing ten interactomes to capture
different types of gene–gene interactions including informa-
tion from Gene Ontology (GO) terms, protein domains, gene
expression patterns, curated functional networks, and
sequence similarities (Supplementary Table S3). First, for
each of the ten interactomes, we obtained a predictor vector
defined as the weighted phenotype similarity score for each
gene–phenotype pair, using a subset of genes with phenotype
annotations as seed genes. Then GBDT method was used to
model the gene-phenotype score as predicted by the ten
weighted phenotype similarity score vectors. After the model
was trained, we obtained the predicted gene-phenotype
similarity scores (Pred_phen score in Supplementary Table S2)
for all genes. Details are described in Supplementary Methods.

Performance evaluation on variants in ClinVar since 2016
We synthesized 3420 patient genomes by inserting each of the
855 pathogenic variants identified since 2016 into 4 back-
ground genomes randomly selected from 400 healthy
genomes (internal 30× genome sequencing data from people
more than 50 years old and free of rare Mendelian disorders).
We set the genotype of the spike-in variant to heterozygote if
the variant is from a dominant disease gene, and homozygote

if the variant is from a recessive disease gene. Among the 855
pathogenic variants, 417 variants are from “novel” genes that
are not found to be associated with rare human diseases in
literature before 2016. To evaluate the performance in
different phenotype situations, phenotypes of a patient with
a pathogenic variant of a gene known to be linked to rare
diseases before 2016 were simulated by mixing different levels
of precise, imprecise, and noisy phenotypes. In total, we
created six phenotype simulation models: 1|2|0, 1|2|2, 2|2|0, 2|
2|2, 3|2|0, 3|2|2, where x|y|z means x precise, y imprecise, and
z noisy phenotypes for a simulated patient. Each of the
synthesized genomes randomly chose one phenotype simula-
tion model to use (see more simulation details in Supple-
mentary Methods). HPO phenotypes of novel genes not
linked to rare diseases before 2016 were manually curated in
terms of the clinical descriptions from the OMIM website,
which were used to evaluate the performance on novel genes.

Performance evaluation in real clinical data set
We also evaluated the performance of our method using two
recently published real clinical data sets with HPO phenotypes
and causal variants provided by clinicians. The first data set
consists of 45 clinically confirmed variants from a study
reanalyzing exome cases unsolved in the first round diag-
nosis.14 The second data set came from a study demonstrating
the better performance of clinical expert–driven pipeline than
other computational methods.15 In the clinical expert–driven
pipeline, clinical experts first manually curated a candidate
gene list based on the phenotypes of a patient, then, pathogenic
variants were selected from within the gene list through
manual evaluation of the results from a set of computational
prediction tools.

Code availability
The Xrare package is available as an easy-to-install docker
image at https://web.stanford.edu/~xm24/Xrare/.

RESULTS
ERIC score is robust to phenotype imprecision and noise
A robust phenotype similarity score should have two main
features: (1) imprecise/ancestral phenotypes should lead to
small changes in scores; (2) scores between random noise
phenotypes should be small. Resnik similarity is defined as the
IC of MICA, and ERIC reduces to Resnik similarity when two
phenotype terms have an ancestor–descendant relationship
(e.g., phenotype A and B in case I of Fig. 2a). Therefore, both
ERIC and Resnik should be more robust to phenotype
imprecision than JC and Lin, which have a penalty to
imprecise phenotypes based on the definitions of JC and Lin
(see “Materials and methods”). However, Resnik cannot
differentiate the similarities with ancestral (case I) from
neighboring (case II) phenotypes (Fig. 2a). The JC similarity
considers only the IC distance between two phenotypes and
no usage of the IC of MICA, thus it fails to differentiate deep
phenotypes (case II) from shallow phenotypes with broad
MICA (case III in Fig. 2a). Noise phenotypes are frequently
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unrelated, far from the true phenotypes, such as phenotype E
relative to A in case IV of Fig. 2a. The Lin, Resnik, and JC
scores are small values between the noise phenotype A and E,
which could still have a small residual effect on the final
performance of phenotype similarity. However, ERIC has a
built-in zero cut-off such that phenotype pairs outside of

certain distance are considered unrelated. In summary, these
design principles of ERIC make it robust against both noise
and imprecision.
To evaluate the efficiency of ERIC score, we simulated HPO

phenotypes of patients associated with target genes (see
patient phenotype simulations in Supplementary Methods)
and calculated the ranks of target genes in the whole genome
using ERIC and three existing alternative methods: Resnik,20

Lin,21 and Jiang-Conrath22 (JC). When imprecise phenotypes
are included, ERIC and Resnik are more accurate than JC and
Lin (Fig. 2b). When phenotypes are mixed with noise,
Resnik’s performance deteriorated dramatically to a level
lower than those of JC and Lin, while ERIC remains the best
performing method. With both imprecise and noisy pheno-
types, as expected in real clinical situations, ERIC offers
substantial improvement over existing alternatives. For
example, ERIC had approximately 10% more genes than
Resnik, JC, and Lin ranked at the top 1%.
Ranking candidate diseases based on a set of clinical

phenotypes before genotype information is obtained is usually
the first step of rare disease diagnosis. Thus, we carried out an
evaluation of ERIC’s performance in phenotype-only disease
diagnosis using data from DDG2P (Developmental Disorders
Genotype–Phenotype Database, https://decipher.sanger.ac.
uk). The data set consists of 1300 diseases and 24,743 HPO
pheno–disease associations from clinical samples. When
simulating the phenotypes, we extracted 50% of true HPO
phenotypes in the data set, added various levels of noise and
imprecision, and then compared the rankings of true diseases
among 7936 OMIM diseases. Similar to the pheno–geno
simulation results in Fig. 2b, we observed substantial
performance reduction in the Resnik, JC, and Lin methods
when phenotype noise is present (Supplementary Figure S3),
while ERIC remains relatively robust. For example, when 1.5×
noise is present, ERIC has more than 13.8%, 23.3%, and 25.7%
more diseases ranked at top 5 than JC, Lin and Resnik
respectively. When 1× noise and 50% imprecision are present
in the phenotype set, ERIC still has 49.3% diseases ranked at
top 5, while JC, Lin, and Resnik only have 35.7%, 29.4%, and
30.9% ranked at top 5, respectively.

Performance evaluation on known disease genes without
inheritance mode
We first evaluated the performance on known disease genes
without specifying the inheritance mode. Consistent with
previous studies,10–12 phenotype-driven methods such as
Xrare and Exomiser are far more effective than genotype-
only methods CADD, REVEL, M-CAP, and MutationTaster
in prioritizing known disease genes (Fig. 3a; more compre-
hensive comparison of genotype-only methods in Supple-
mentary Figure S4). Among existing phenotype-driven
methods (brief method comparison in Supplementary
Table 5), Exomiser hiPHIVE model has the best performance.
On the other hand, Xrare performs even better and ranks 23%
more causal variants at the top (i.e., top 1 rank) than the
Exomiser hiPHIVE algorithm. Wilcoxon signed-rank test for
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Fig. 2 Case illustrations and performance evaluation of Emission-
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demonstrating ideas of ERIC score. Four different phenotype cases (I to IV)
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and noise. The x-axis is the rank percentile of target genes among 8643
OMIM genes. The y-axis is the cumulative distribution function (CDF) of the
rank percentile.

ARTICLE LI et al

2130 Volume 21 | Number 9 | September 2019 | GENETICS in MEDICINE

https://decipher.sanger.ac.uk
https://decipher.sanger.ac.uk


rank numbers also demonstrated that Xrare has significantly
smaller rank numbers for known genes than Exomiser
hiPHIVE (P < 1.9e-15). We noticed that ACMG score
(Xrare_ACMG), simply using the ACMG/AMP guideline
evidence and combining them into a single weighted score,
performs better than other computational genotype-only
scores. This suggests the good power of clinical diagnosis
guideline-based features in evaluating pathogenic variants of
known rare disease genes. We also noticed that a method
using only phenotypic feature based on ERIC score,
Xrare_ERIC_RP, is better than Exomiser, suggesting the
advantage of our ERIC phenotype scoring method.

By investigating the performance in different phenotype
simulation conditions, we found that Xrare showed better
performance than Exomiser in almost every condition,
especially when the phenotypic information is imprecise
and the interference of phenotypic noise is high. For example,
Xrare shows 14% and 21% advantage over Exomiser hiPHIVE
and PhenIX at top 1 ranking for the phenotype condition with
one precise, two imprecise and two noisy HPO terms,
respectively (Supplementary Figures S5). To look further into
the improvement by ERIC, we compared the most important
feature ERIC_RP with the phenotype scores calculated by
Exomiser. ERIC_RP alone shows consistently better perfor-
mance (Supplementary Figure S6), confirming again the
usefulness of ERIC-based score in clinical settings.

Performance evaluation on novel genes without
inheritance mode
Next, we evaluated the diagnostic performance of our method
when the causative gene is a novel gene, namely a gene that
has not been associated with specific phenotypes in the
databases. It is seen that again Xrare has the best performance
among all methods. For example, Xrare has significantly
higher ranks than Exomiser hiPHIVE (P < 2.2e-16) and
detects 29% more novel genes at the top 10 than hiPHIVE
(Fig. 3b). Surprisingly, genotype-only methods generally
perform better than existing phenotype-driven methods,
suggesting that the strong genotype and phenotype features
associated with novel genes are not well utilized by these
phenotype-driven methods. It is also observed that Xrare with
ACMG score alone already performs quite well, reinforcing
the point that the guideline-based features are extremely
useful in evaluating the pathogenicity status of variants for
novel genes.

Performance evaluation with known inheritance mode
We also evaluated the performance when the inheritance
mode is explicitly known for a patient. Here we included
another method, Phen-Gen, in comparison, which requires
inheritance mode as input. Xrare showed consistently higher
efficiency than Exomiser and Phen-Gen in the dominant and
recessive model on known (Fig. 3c) and novel (Fig. 3d) genes.

0.0

0.2

0.4

0.6

0.8

1.0

9

TopN

C
D

F

0.0

0.2

0.4

0.6

TopN

C
D

F

b

Methods

Xrare
Xrare_ERIC_RP
Xrare_ACMG
Exomiser_PhenIX
Exomiser_hiPHIVE
eXtasy
MutationTaster
CADD
REVEL

Dominant Recessive Total

0.4

0.6

0.8

1.0

TopN

C
D

F

c
Dominant Recessive Total

1 3 5 7 5 10 15 20

3 6 9 3 6 3 69 9 3 6 9 3 6 9 3 6 9

0.0

0.2

0.4

0.6

0.8

1.0

TopN

C
D

F

d

Methods

Xrare
Exomiser–PhenIX
Exomiser–hiPHIVE
Phen−Gen

Known

Known

Novel

Novel

a

Fig. 3 Performance evaluation on synthetic genomes of patients from various simulation scenarios. a, b Without specifying inheritance mode;
(c, d) specifying inheritance mode; (a, c) for known genes; (b, d) for novel genes. Phen-Gen was not included in (a) and (b) for comparison because it
required specifying inheritance mode. Lines with triangle dots represent methods utilizing both phenotype and genotype information (Xrare, Xrare_ERIC_RP,
Exomiser PhenIX, Exomiser_hiPHIVE, eXtasy, and Phen-Gen), while lines with round dots represent prediction methods using only genotype information
(Xrare_ACMG, MutationTaster, CADD, and REVEL). Xrare_ERIC_RP and Xrare_ACMG represent the Xrare model using only the phenotype feature ERIC_RP
and only the genotype feature ACMG_score, respectively. CDF cumulative distribution function.

LI et al ARTICLE

GENETICS in MEDICINE | Volume 21 | Number 9 | September 2019 2131



The poor performance of Exomiser_PhenIX for novel genes is
probably because it is solely based on known human
phenotype annotations, and thus not suitable for this purpose.
There are dramatic performance differences between the
recessive and dominant mode, which is likely due to the two-
allele requirements for recessive genes. At least two candidate
pathogenic alleles (prefiltered by some criteria such as low
population allele frequency) in a gene are required in the
recessive mode. This would filter out most of the candidate
genes (~70–90%) where only single candidate allele can be
found in the gene.

Benchmarking on real clinical data sets
Finally, we evaluated the method performance using two
recently published real clinical exome sequencing data sets,
where the HPO-encoded phenotypes of individual patients
and causal pathogenic variants are provided. The first data set
consists of 45 clinically confirmed variants from a study
reanalyzing exome cases unsolved in the first round
diagnosis.14 Thus testing on this data set will allow us to
assess the performance of the methods in hard-to-solve
clinical exome cases. We found that Xrare has a 32%
advantage over hiPHIVE in detecting known genes at the

top 5 ranking and a 40% advantage for novel genes (Fig. 4a).
The next data set consists of 59 confirmed causal variants
from a recent study reporting the performance of a clinically
driven pipeline.15 Consistent with the reported findings, the
clinical expert–driven pipeline outperformed existing meth-
ods such as Exomiser_PhenIX, Exomiser_hiPHIVE, Muta-
tionTaster, and CADD. It also performs better than Xrare
model based only on phenotype ERIC-score or only on
ACMG score. However, the full Xrare model performs
significantly better than even the clinical expert–driven
pipeline, for example, it predicts almost 15% more causative
variants than the clinical expert–driven pipeline as the top 1
gene (Fig. 4b).

DISCUSSION
We presented a new machine learning method for variant
prioritization. First, a new phenotype similarity measure was
developed to handle the imprecise and noisy nature of clinical
phenotypes, and a gradient tree boosting approach was used
to extend gene–phenotype annotations to genes not yet
annotated in HPO. Second, to leverage current best practice in
clinical genetics, we defined and included ACMG/AMP
guideline–based genetic features for the training of our
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model. However, instead of using a fixed decision tree to
classify variants as in the current guideline, we used a gradient
tree boosting approach to combine all genotypic and
phenotypic features to predict the pathogenicity of a variant.
Based on the comprehensive evaluation of simulation
experiments and real clinical data, our method shows
significantly better performance than all previous methods,
including the clinical expert–driven methods, regardless of
whether the genes contributing to the genetic disease are
known or novel.
Our results demonstrated the importance of phenotype

score and clinical guideline features. ERIC_RP and ACMG_-
score are the first and second most important features for
prediction in the model, respectively (Fig. 1b). For known
genes, phenotype-driven methods such as Exomiser, Phen-
Gen, and Xrare all have good performances. Especially in real
clinical applications, phenotype-driven methods were gener-
ally demonstrated to be more efficient and powerful than
other methods.15,24 The 2015 ACMG/AMP guideline was an
important milestone for the clinical genetics community
because it provided a framework for major evidence
categories needed for Mendelian disease diagnosis. Thus even
a simple ACMG score integrating the guideline evidences
(Xrare_ACMG) had a decent performance for both known
and novel genes. Incorporating more refined score schema
(e.g., Sherloc25) could potentially further enhance the
performance of our model.
One common caveat in supervised machine learning

methods is the overestimate of performance due to unex-
pected additional information in the training data leaking into
the evaluation data. We used several approaches to prevent
data leakage in model training and performance evaluation.
First, we isolated sets of background or negative variants for
different purposes: feature calculation (1000 Genomes, ESP,
and ExAC), training (UK10K), and evaluation (400 indepen-
dent whole genomes). Second, we split pathogenic variants by
their publishing years. We found random splitting, as done in
many cross-validation style model training, significantly
reduces the performance in prioritizing novel genes (Supple-
mentary Table S6 and S7). Although random splitting shows
even better performance than year splitting for known genes
because of the larger number of training data, we observed a
dramatic decrease in novel genes (e.g., 57% vs. 4% ranked at
top 1). Third, we carefully chose the existing prediction scores
learned from known pathogenic variants. For example, we
found that the M-CAP scores of ClinVar variants showed very
different distributions across years (Supplementary Figure S2).
Thus M-CAP is excluded from our features. Fourth, during
evaluation, human phenotypes annotated to a gene firstly
identified in 2013–2015 were removed from our phenotype
annotation database to ensure that phenotypes of the gene are
truly unknown at the time. Fifth, since the gene–phenotype
associations extracted from rare human diseases were down-
loaded from HPO in 2016, we removed all phenotypes of
novel genes in the data set to ensure that the phenotypes of
novel genes in rare human diseases remain unknown.

There are a few limitations to our method. First, our current
model is focused on the HPO and UPO phenotype
annotations. The Monarch Initiative26 and HPO team are
continuing the development of HPO and integration of other
model organism phenotypes, which will keep improving the
diagnostic rate of HPO based methods. Thus the model
should be extended when more comprehensive phenotype
annotations are available. For example, incorporating more
expert-curated phenotype databases such as inborn error
metabolism database IEMbase27 into our model could
potentially further increase the diagnostic yield for specific
disease areas. Second, our current model is useful mainly for
the prioritization of variants near coding regions. Genome
sequencing usually led to increased rare disease diagnostic
rate in clinics,28,29 yet the identification of pathogenic
noncoding variants is a big challenge. Because the vast
majority of ClinVar pathogenic variants are in gene coding
regions, our model would be less powerful for noncoding
regulatory variants, even though phenotype score and a few
regulatory function prediction features like CADD were
included. Methods like Genomiser30 could be an inspiration
in this area. An extension of our model with more noncoding
pathogenicity prediction scores (e.g., EIGEN,31 LINSIGHT32)
and integrated regulatory information33 of gene expression,
chromatin accessibility from ENCODE and Roadmap Epige-
nomics data34 could allow better prioritization of all coding
and regulatory variants in Mendelian diseases.
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