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Abstract: III-nitride-based ultraviolet light emitting diode (UV LED) has numerous attractive
applications in air and water purification, UV photolithography, and in situ activation of drugs
through optical stimulus, solid state lighting, polymer curing, and laser surgery. However, the unclear
failure mechanisms and uncertainty reliability have limited its application. Therefore, a design of an
appropriate reliability test plan for UV LEDs has become extremely urgent. Compared to traditional
reliability tests recommended in LED lighting industry, the step-stress accelerated degradation test
(SSADT) is more cost-effective and time-effective. This paper compares three SSADT testing plans
with temperature and driving currents as stepwise increasing loads to determine an appropriate test
strategy for UV LEDs. The study shows that: (1) the failure mechanisms among different SSADT tests
seem to be very different, since the driving current determines the failure mechanisms of UV LEDs
more sensitively, and (2) the stepped temperature accelerated degradation test with an appropriate
current is recommended for UV LEDs.

Keywords: UV-LED; step-stress accelerated tests; degradation rate; failure mechanism consistency;
test strategy

1. Introduction

Ultraviolet (UV) light has been widely used in numerous applications including wastewater
treatment and reuse, counterfeit detection, lighting, fluoro-sensing, and more [1–4]. As the emitter of
ultraviolet radiation, the ultraviolet light emitting diodes (UV LEDs) exhibit significant advantages
compared to the traditional counterparts due to their high reliability and environmental friendliness,
especially in UV-A (315–400 nm) scenarios [4]. However, in practice, many UV LEDs exhibit extremely
short lifetimes due to inner defects existing in these packages, while the others work very well [5–7].
The problem caused by such an uncertainty in the operation lifetimes has become a serious obstacle to
the application of UV LED packages, and, therefore, needs to be tackled by using typical test techniques
related to reliability assessments and lifetime predictions [8–11].

Currently, the IES-TM-21 (Projecting Long Term Lumen Maintenance of LED Light Sources)
standard and its extension version IES-TM-28 (Projecting Long-Term Luminous Flux Maintenance of
LED Lamps and Luminaires) recommended by the Illuminating Engineering Society of North America
(IESNA) are the most commonly used lifetime prediction methods for LEDs. They propose a statistical
regression method to predict the long-term lumen maintenance of an LED light source. The collected
lumen maintenance data is based on 6000 h (or more) of testing following the IES-LM-80 standard.
In general, the luminous depreciation test requires a minimum of 6000 h testing period, which is
comparable, or even longer than the period for developing a new generation of LED lighting products.
This necessitates an urgent study on the development of accelerated degradation tests (ADTs) for LED
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packages and systems. At the package level, a number of statistic-based approaches are discussed for
lifetime estimation of LEDs with the consideration of a random variation in the experimental results
of ADTs. At the product level, a temperature-driven accelerated test method is developed to reduce
the testing time within 2000 h. In addition, this method serves as a quick and fast pass/fail luminous
depreciation qualification test for LED lamps and luminaires with an expected lifetime of 25,000 h.

The constant-stress accelerated degradation test (CSADT) and step-stress accelerated degradation
test (SSADT) are the two main kinds of tests frequently observed in reliability research studies [12,13].
For UV LEDs, the former is developed based on the assumption that their optical radiation power
degradations can be effectively accelerated by increasing driving currents (including both direct
currents and impulse currents) and environmental temperatures [14–19]. However, the test duration
of a CSADT test is highly dependent on the expected lifetime of devices under the test (DUTs) [20].
Moreover, in order to calculate the acceleration factor, at least two CSADT tests with different stress
levels have to be performed. Therefore, for device under tests (DUTs) with a long-expected lifetime,
the CSADT test period and cost are too much of a burden. To solve this problem, the SSADT technique
can be regarded as one effective alternatives, since it combines the effects of multiple stress levels in a
single test. The SSADT test has been already successfully employed in several electronics and LEDs for
lifetime predictions such as by He [21], Cai [22,23], Qian [24], Wang [25], Benavides [26], Tseng [27],
Hu [28], etc. However, applications of using SSADT in UV LEDs are rarely found in literature.

This paper investigates the test strategy of SSADT on the reliability assessment for UV LEDs.
The remainder of the paper is organized as follows: Section 2 describes the details of the DUT samples
and experiment designs with four different test conditions (including three SSADT tests and one
CSADT test). Section 3 explains the theory and models used to calculate the aging degradation rates of
the UV LEDs’ radiation power maintenance and analyze the aging temperature and current effects.
Next, the comparison and discussion on the experimental results and model predictions are performed
in Section 4 to figure out the best SSADT condition for UV LEDs. Lastly, the concluding remarks of this
study are summarized in Section 5.

2. Test Samples and Experiments

The UV LED sample tested in this study is produced by a commercial 3535 type UV-A LED from
the Lattice Power Corporation (Changzhou, Jiangsu Province, China), shown in Figure 1a, mounted on
a metal core print circuit board (MCPCB) via a eutectic die bonding process, as shown in Figure 1b.
The peak emission wavelength of the test sample is between 365 nm and 375 nm, and the rated driving
current is 350 mA.
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MCPCB (Metal Core Printed Circuit Board). 
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twice its rated current, as the accelerating condition for the test sample. The stepped testing period 

Figure 1. Illustrations of the test sample (a): UV-A LED package, and (b) UV-A LED mounted on an
MCPCB (Metal Core Printed Circuit Board).

Since the rated driving current of the selected test sample is 350 mA, we chose 700 mA, which is
twice its rated current, as the accelerating condition for the test sample. The stepped testing period
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in SSADT tests is determined based on our previous experience on the tests for LED products [24].
The lower and upper bounds of temperatures in the temperature based SSADT tests, i.e., 55 ◦C
and 85 ◦C respectively, are selected according to the current LED performance and reliability test
standards, such as IES-LM-80 and IES-TM-21 [29,30]. Temperatures lower than 55 ◦C are not used as
environmental temperatures in order to reduce the test period. On the other hand, temperatures higher
than 85 ◦C are also not used to avoid the occurrence of side failures caused by the self-heating effect of
UV LED chips. Under the guidance of the above parameters, four types of accelerated degradations
tests are performed in this study. Figure 2 shows the testing profiles of these tests, in which Tests A, B,
and C are SSADT tests whereas Test D is a CSADT test. Details of the tests conditions are given as
follows: (1) Test A is performed under a constant temperature of 55 ◦C and a stepwise current from
150 mA to 450 mA with an increment of 50 mA in every 504 h. (2) Test B is performed under a stepwise
temperature from 55 ◦C to 85 ◦C with an increment of 5 ◦C in every 504 h and a constant current of
350 mA. (3) Test C is performed under a stepwise temperature from 55 ◦C to 85 ◦C with an increment
of 5 ◦C every 504 h and a constant current of 700 mA. (4) Test D is performed under 55 ◦C and 350 mA,
which are exactly the maximum operation temperature and rated driving current, respectively.
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In total, 15 samples are tested up to 3360 h in each of the above-mentioned tests. According
to the multiplication rule specified in IES TM-21 standard, the expected lifetimes obtained from the
extrapolation along the radiation power maintenance decay curves of the UV LEDs are limited no
more than 5.5 times of the test period, which equals 18,480 h [30]. This is a long enough period as the
rated lifetime for a vast majority of currently available UV LED products. Furthermore, in the SSADT
tests (i.e., Tests A, B, and C), the degradation rate of the radiation power maintenances is supposed to
vary with the increase of stress levels. Therefore, in order to acquire an accurate degradation rate in
each stress level, at least four radiation power values are needed over the period of 504 h by using the
linear curve fitting method. The radiation powers are measured every 168 h during the entire SSADT
test. In addition, for comparison purposes, the measurement interval of the radiation powers is set as
168 h in the CSADT test (i.e., Test D) as well.

3. Theory and Modeling

Similar to the LEDs used in visible lighting, the degradation of radiation power maintenance of
UV LEDs is assumed to follow an exponential time-dependent relationship, which can be described by
Equation (1) [30].

P = βexp(−αt) (1)
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where P indicates the radiation power maintenance defined as the ratio between the radiation power
at a time t and its initial value, α is the degradation rate used for characterizing the degree of radiation
power degradation, and β is the pre-factor. Ideally, the β parameter should equal to 1, which is the
initial radiation power maintenance at time zero. However, in practice, it is extracted with a slight
offset due to the factors such as the measurement error and lateral failure mechanisms.

For an SSADT test, by assuming that the damages induced from different stepwise loading
conditions are not correlated with each other, Equation (1) can be generalized into consecutive
exponential time-dependent curve segments, as shown in Equation (2).

Pi =



β1exp(−α1t), 0 ≤ t ≤ t1

. . .
βiexp(−αit), ti−1 ≤ t ≤ ti

. . .
βnexp(−αnt), tn−1 ≤ t ≤ tn

(2)

where n is the total numbers of stepped stress levels, and αi and βi are the degradation rate and
pre-factor extracted under the ith stress level.

Certainly, the degradation rate of radiation power maintenances of UV LEDs will be affected
by both thermal and electrical stresses applied on them. Such effects can be described by a general
function given below [20].

α = exp
{

ln(γ0) −
Ea

kT
+ γ2ln(I) +

γ3ln(I)
kT

}
(3)

where I and T indicate the driving current and temperature, γ0, γ2, and γ3 are empirical constants, Ea

is the activity energy, and k is the Boltzmann constant. As indicated in Equation (3), it considers the
effects of temperature, current, and temperature-current interaction in the degradation rate.

It can be seen from Figure 2, the stepwise increments of temperature and current are not mutually
exerted during the SSADT tests. For those tests with stepwisely increased temperatures, Equation (3)
can be simplified as:

α = exp
{

a +
b
T

}
(4)

However, for those tests with step-wisely increased currents, Equation (3) can be simplified as:

α = exp
{
a + bln(I)

}
(5)

In Equation (4) or Equation (5), a and b are fitting parameters and the degradation rates
(i.e., α parameter) can be extracted from their experimental results of Tests A, B, and C. The extracted
α parameters from the different tests are compared to determinate a proper SSADT test plan for the
UV-A LEDs used in this study.

4. Results and Discussions

Initial radiation powers measured from a batch of samples before the SSADT test are plotted
in Figure 3 to reveal the statistical character of the test samples. These initial radiation power
measurements vary between 520 mW to 580 mW, and can be considered to follow a two-parameter
Weibull distribution. The radiation power maintenances, calculated by the ratio in between the real-time
radiation power and its initial value, of test samples from Tests A, B, C, and D are then plotted in the
sub-graphs of Figure 4, in which the left and right ordinates represent the radiation power maintenance
and stepped test condition, respectively. By assuming the radiation power maintenance measurements
at each time point, and following the two-parameter Weibull distribution, their median values and error
bars are calculated and plotted by red dots and vertical red bars, respectively. The entire degradation
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curves of radiation power maintenances in Tests A, B, and C is formed by connecting a couple of
degradation curve segments extracted sequentially under the stepwise increasing load conditions.
It can be seen that the degradation trends of these entire degradation curves are observed nearly
continuously even though the continuity is not taken into account in Equation (2). Based on these
radiation power maintenance measurements, the degradation curves are extracted by Equation (2)
using the least square method, and plotted in red dashed lines in Figure 4 as well. It can be seen that
the median values of the radiation power maintenances are in good agreement with the degradation
curves in all of the four accelerated degradation tests. This proves that Equation (2) is adequately
accurate to describe the degradation trends of radiation power maintenances of the test samples under
different test conditions.
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Based on the experimental results in Figure 4, the degradation rate α and pre-factor β of the test
samples under each pair of temperature and current stress level in Tests A, B, C, and D are extracted
and shown in Table 1. For those samples in Test C, the extracted β parameters are increased to about
1.5 after the aging temperature goes up to 75 ◦C, which implies that additional failures occur as
illustrated in Figure 5. This coincides with the evidence that the silicone encapsulant of the test sample
is seriously cracked at the end of Test C, as shown in Figure 6. Such a failure is possibly caused by
overloaded thermal stress in the body of silicone encapsulant, and can be observed in all samples
after Test C. Furthermore, the β parameter extracted from Test A shows an increasing trend when the
driving current increases to 450 mA. This implies 450 mA could be the highest current for the test
samples to conduct an SSADT. If the current is further elevated, additional failures such as encapsulant
cracks might happen in those samples. Nevertheless, within the whole period of Tests A, B, and the
first half of Test C, it is believed that the failure mechanism remains consistent, since the extracted β
parameters are not significantly varied.

Table 1. Degradation model parameters extracted from all four tests.

Test ID T (◦C) I (mA) α β

Test A

55 150 9.294 × 10−5 1.00
55 200 5.546 × 10−5 0.98
55 250 7.473 × 10−5 0.99
55 300 5.791 × 10−5 0.96
55 350 8.670 × 10−5 1.03
55 400 1.009 × 10−4 1.07
55 450 1.189 × 10−4 1.13

Test B

55 350 1.683 × 10−4 0.99
60 350 6.555 × 10−5 0.93
65 350 6.790 × 10−5 0.93
70 350 6.228 × 10−5 0.92
75 350 4.202 × 10−5 0.88
80 350 6.597 × 10−5 0.93
85 350 9.194 × 10−5 1.00

Test C

55 700 4.683 × 10−4 0.97
60 700 2.033 × 10−4 0.86
65 700 3.380 × 10−4 0.97
70 700 1.804 × 10−4 0.78
75 700 5.204 × 10−4 1.52
80 700 5.278 × 10−4 1.50

Test D 55 350 6.857 × 10−5 0.93
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Figure 7 plots the relationship in between extracted α parameters and the aging currents/
temperatures obtained from Tests A, B, and C and their fitted curves to Equation (4)/Equation (5),
respectively. As shown in Figure 7, the outliers, which significantly deviated from the trend,
are described by Equation (4)/Equation (5) and detected with studentized residuals by the following
steps. These outliers are eliminated in the curve fitting process.

1. Transform Equation (4) and Equation (5) to a linear relationship, which is shown in the
formula below.

y = C1x + C2 (6)

where C1 and C2 are model constants, y indicates ln(α), and x indicates the 1/T or ln(I) depending on
the certain equation.

2. Calculate the studentized residual of each y by using Equation (7).

ri =
ei

σ
√
(1− hii)

(7)

where e, ς, and hii are calculated by the following equations.

ei = abs(y− y′), σ =

√∑n
i=1 e2

i
n− 2

, hii =
1
n
+

(
xi − xavg

)2

∑n
j=1

(
x j − xavg

)2

where y′ indicates the estimate of y, n indicates the sample size, and xavg is the mean of all x values.
3. Find out the y values with studentized residuals higher than a threshold (which equals to 2 in

this study), and indicate them as the outliers.
From Figure 7, it can be seen that the fitted curves to α parameters agree with the experimental

values very well in all the SSADT tests (i.e., Tests A, B, and C). The resulting fitting parameters of
these curves are given in Table 2. It is found that Tests B and C result in completely different fitting
parameters of Equation (5). This can be attributed to the fact that different failure mechanisms might
arise from the very beginning because of the large discrepancy in driving currents between these two
SSADT tests.
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Figure 7. Extracted degradation rates from the SSADT tests and the fitted curves to Equation (4) and
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Table 2. Fitting parameters of the degradation rate model obtained from different SSADT tests.

Test ID Relevant Model a b

Test A Equation (5) −14.27 0.85
Test B Equation (4) −6.17 −1172.23
Test C Equation (4) 8.24 −5532.46

With the extracted parameters shown in Table 2, the degradation rates α of radiation power
maintenances of the samples aged at 55 ◦C and 350 mA are predicted by using Equation (4)/Equation (5),
and displayed in Table 3. Moreover, these predicted α parameters are compared with the experimental
α parameter extracted directly from the test results of Test D (i.e., 6.857 × 10−5). The error in Table 3
indicates the offsets in between the prediction and experimental α values. Among the three SSADT
tests, the best prediction of the α parameter is given by Test B with an error of −14.1%, which is
followed by Test A with an error of 34.4%. A common feature is that the driving current applied on
these two SSADT tests is moderate and close to that applied on Test D. In contrast, with an overdrive
current as high as 700 mA, Test C gives a prediction of α parameter with a huge error. Such a large
positive bias is attributed to the additional failures (such as encapsulant cracks shown in Figure 6)
observed during Test D. These additional failures drastically reduce the external quantum efficiency of
the UV LEDs, and, therefore, lead to an exaggerated degradation on radiation power maintenances.
Therefore, a conclusion can be drawn that a good SSADT test strategy for UV-A LEDs should consist of
stepwise increasing temperatures with an appropriate driving current.
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Table 3. Prediction results of the degradation rates by the SSADT tests.

Test ID α Error

Test A 9.223 × 10−5 34.4%
Test B 5.886 × 10−5 −14.1%
Test C 1.787 × 10−4 160.9%

5. Conclusions

In this paper, three SSADT tests by considering both effects of aging temperature and driving
current and a CSADT test are performed to determine a proper test strategy for UV LEDs.
The degradation rates of UV LEDs aged under different conditions are calculated by fitting the proposed
models and their failure mechanisms are also analyzed. The results indicate that: (1) the failure
mechanism remains unchanged all through each SSADT test except for the end of over-driving the
current test in which a serious rupture is observed on silicone encapsulant among all test samples.
(2) The degradation rates of test samples aged at 55 ◦C and 350 mA are predicted from SSADT
tests and, compared to the CSADT test result, in which Test B provides the best prediction accuracy.
(3) Since we found the driving current plays a more determinative role in the SSADT test planning,
it is recommended that the SSADT test for UV LEDs should be carried out by stepwise increasing
temperatures with an appropriate driving current. This driving current could be determined from
350 mA to 450 mA, according to this research.
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