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Abstract: Wireless Sensor Networks (WSNs) had been applied in Internet of Things (IoT) and in
Industry 4.0. Since a WSN system contains multiple wireless sensor nodes, it is necessary to develop
a low-power and multiband wireless communication system that satisfies the specifications of the
Federal Communications Commission (FCC) and the Certification European (CE). In a WSN system,
many devices are of very small size and can be slipped into a Universal Serial Bus (USB), which is
capable of connecting to wireless systems and networks, as well as transferring data. These devices
are widely known as USB dongles. This paper develops a planar USB dongle antenna for three
frequency bands, namely 2.30–2.69 GHz, 3.40–3.70 GHz, and 5.15–5.85 GHz. This study proposes
a novel antenna design that uses four loops to develop the multiband USB dongle. The first and
second loops construct the low and intermediate frequency ranges. The third loop resonates the
high frequency property, while the fourth loop is used to enhance the bandwidth. The performance
and power consumption of the proposed multiband planar USB dongle antenna were significantly
improved compared to existing multiband designs.

Keywords: multiband planar; USB dongle antenna; wireless sensor networks

1. Introduction

The increasing use of portable devices with low-power integrated circuits and wireless
communication has paved its way to a new generation of wireless sensor area networks. Simultaneously
there is a trend towards the miniaturization of devices. In wild band use, this would refer to wireless
networks that consist of several small body sensor units with a central control unit. Therefore,
Chen et al. [1] used a micro-control unit design that covers all of the wireless body sensor nodes and
manages a low power usage. Moreover, Chen et al. [2] proposed a reconfigurable filter to adjust the
different biomedical signal inputs in order to optimize system performance.

Since the growth of use of wireless communication systems, processing requires a higher frequency
and a wider transfer band. The data type of Wireless Body Area Networks (WBANs) is no longer limited
to data in digits. With this, the new wireless communication specification and its power consumption
increased drastically. Chen et al. [3] proposed an efficient lossless compression design. By efficiently
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compressing the data, the transfer speed and the power consumption were improved. Thus, the WBAN
field could integrate a real-time health monitoring system that can continuously update the sensor
records through the Internet and has also become an important interdisciplinary domain.

The continuous development in wireless communications improves the efficiency of an antenna
by designing a smaller one that is more useful in terms of radiative properties. This led the way to
research on multiband antenna. The Multiple-Input and Multiple-Output (MIMO) system is one
typical case of the use of multiband antenna. Printed antennas have demonstrated that it can be useful,
not only as a communicating element, but also as a sensor or energy collector. With this, the multiband
antenna design has become an extensive subject. As a result, the use of a multiband antenna system on
mobile devices is a common trend [4].

In recent years, the more compact and more powerful devices are the major design trends.
Among those is the multiband antennas for Universal Serial Bus (USB) dongles that have been of
particular interest due to the ease of carrying them as well as their plug and play function. The common
USB dongle antenna design adopted the C-type line, combined with open or short stubs [4–6]. The stubs
can also generate the low band [7–10]. In [11–17], the multi-path coupling antenna design was described.
The main antenna and stubs are used to generate both the low band and middle band. The high band
needs two coupling stubs in order to generate a wider bandwidth.

The reduction of the volume of the antenna is under the constraint of its fundamental physical limits
in terms of trade-off between radiation performances and impedance bandwidth. Limitations in terms
of bandwidth and efficiency suggest an analysis with respect to fundamental limits. The Chu’s model
uses spherical modes to estimate the minimum stored energy around the antenna [18]. Equation (1)
shows the modified formula of the Q-factor and the antenna size [18,19]:

Q =
2ω ·max{Wm, We}

Pr + PΩ
≈ η

 1

(ka)3 +
1
ka

 (1)

where We is the stored electric energy, Wm is the stored magnetic energy, Pr is the radiated power,
PΩ is the power dissipated from ohmic losses, η is the radiation efficiency, a is the minimum radius of
the sphere enclosing the antenna, and k is the wave number (k = 2π/λ). It is very difficult to have a
wide bandwidth (low Q-factor) and at the same time have a good efficiency for miniature antennas.
Thus, the miniaturization of antennas causes them to suffer from both limited efficiency and low
bandwidth. Miniaturization of devices leads to the reduction of antennas, thus becoming an important
challenge. Otherwise, the radiation efficiency decreases when the size of the antenna is reduced.
For example, the meander line antenna is a small antenna that has a simple structure and can support
higher bandwidth, but these antennas have low radiation efficiency [20].

The important parameters of the antenna design are its operation frequency bands, radiation
efficiency, and peak gain. The first work estimated the radiation efficiency. Figure 1 shows a
schematic diagram of the communication system. The received power (Prx) is estimated using the Friis
transmission equation shown in Equation (2) where Ptx is the transmission power, Gtx is the transmission
antenna gain, Grx is the received antenna gain, λ is the free space wavelength, and R is transmission
distance [21]. Grx is the 3D average gains, defined in Equation (3). Using an omnidirectional antenna
to transmit the signal has a Gtx of 0 dBi. The receiver minimum input level sensitivity is −61 dBm,
which meets the specification of IEEE (Institute of Electrical and Electronics Engineers) [22]. If the
transmission port is an ideal isotropic antenna, the Grx gain must be larger than −17 dBi when the
frequency is 2.45 GHz. In addition, the transition range is 5 m with a transmission power of 10 dBm.
The minimum radiation efficiency must be larger than 2%, and it can be calculated using Equation (3).
However, the minimum radiation efficiency must be larger than 4% when the frequency is 2.45 GHz.
On the other hand, the minimum radiation efficiency must be larger than 10% when the frequency is
5.5 GHz.
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Figure 1. The schematic diagram of the communication system.
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Figure 1. The schematic diagram of the communication system.

Prx =
PtxGtxGrxλ2

(4πR)2 (2)

3D average gain = 10 log(radiation efficiency) (3)

The next main parameter is the peak gain. The ideal USB dongle antenna is an omnidirectional
antenna. In this study, the design goal is to have a peak gain within 0–4 dBi. This antenna is operated
on LTE (Long Term Evolution), which covers 2.30–2.69 GHz, 3.40–3.70 GHz, and 5.15–5.85 GHz bands,
5G system (5th generation system) that covers 3.40–3.70 GHz, and the LTE-U (LTE-Unlicensed) band
that covers 2.40–2.44 GHz and 5.15–5.85 GHz [23,24].

In this study, a planar antenna is designed to satisfy the conditions of low cost, miniaturized, and
multiband antennas, taking into consideration the size and its production. It is challenging to design a
multiband antenna as the structure gets smaller and smaller. The goal of this study is to design a triple
band antenna that has a 10% radiation efficiency at three operating frequency bands with a peak gain
within 0–4 dBi for each band.

The planar USB dongle is proposed in this work. The planar USB dongle antenna is a low power
device that satisfies the condition of a low power system design. The proposed design combines
one main feed antenna and three stubs in order to generate triple bands within a 10 mm × 10 mm
area. The main feed antenna is responsible for generating the low band and middle band. One stub
is incorporated to couple with the main antenna for the 2.30–2.69 GHz and 3.40–3.70 GHz bands.
The second stub is incorporated to generate the high band. Lastly, the third stub is incorporated to
increase the high band bandwidth in order to cover the 5.15–5.85 GHz band. Section 2 presents the
antenna design and optimization. The performance comparison of the proposed antenna to previous
works is presented and discussed in Section 3.

2. Antenna Design and Optimization

The structure of the planar USB dongle antenna proposed in this study is illustrated in Figure 2a.
The size of the main structure is 10 × 10 mm2, while the volume of the planar USB dongle antenna
assembly is 10 × 50 × 0.8 mm3. The detailed dimensions of the planar USB dongle antenna are listed in
Table 1.

The proposed antenna is designed on an FR4 substrate. Its measured relative permittivity and loss
tangent are 4.4 and 0.02, respectively. The antenna is operated on LTE, which covers 2.30–2.69 GHz,
3.40–3.70 GHz, and 5.15–5.85 GHz bands, and the 5G system (Sub 6 GHz spectrum), which covers
3.40–3.60 GHz bands. Otherwise, the LTE-U band of the 5G system that covers 2.40–2.44 GHz and
5.15–5.85 GHz is included in the design goal of this antenna.
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Figure 2. (a) The structure and (b) HFSS simulation model of the planar Universal Serial Bus (USB)
dongle antenna.

Table 1. Dimensions of the planar USB dongle antenna: (a) length and (b) width.

(a) Length.

Length (mm)

L 50.0
L1 10.0
L2 8.5
L3 0.7
L4 9.5
L5 5.5
L6 7.0
L7 0.5
L8 6.5
L9 1.5

(b) Width.

Width (mm)

W 10.0
W1 2.0
W2 5.0
W3 3.0
W4 1.0
W5 1.5
W6 0.5
W7 3.5
W8 2.5
W9 2.9

Figure 2b illustrates the simulation model that is constructed using the high frequency structure
simulator, ANSYS HFSS EM software. The design targets three bands: (1) The lower band that covers
2.30–2.69 GHz, (2) the middle band that covers 3.40–3.70 GHz, and (3) the upper band that covers
5.15–5.85 GHz.

The proposed multiband planar USB dongle antenna is constructed using two main antennas
(arm1 and arm2) and two stubs (stub1 and stub2). The design and optimization of the proposed antenna
involves four steps (Step 1–4). The first step (Step 1) uses an arm to resonate the modes in the lower
and middle bands. This arm is called arm1 and is shown in Figure 3a. The main antenna is specifically
labelled arm1 with a length of 21 mm. Its lower band resonates, which satisfies the resonated condition
of a quarter wavelength. Figure 3b shows the surface current distribution on arm1 at 2.45 GHz. On the
other hand, Figure 3c illustrates the middle band, which satisfies the resonated condition of a half
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wavelength. This is the second resonant mode of arm1. Figure 4 shows the simulation results of the
return loss with various L8 parameter values for arm1. In Step 1, the parameter L8 decides the total
length of arm1 and optimizes the frequency range of the lower and middle bands. The operation
frequency range is closest to the design goal when L8 is 6.5 mm. The impedance match is poor in
the lower band, which leads to a small operation bandwidth. The succeeding steps of the design can
improve on this by adding a stub.
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The second step (Step 2) of the design is to add an inductive stub, labelled stub1 as shown in
Figure 5. This can neutralize the capacitive circuit in order to enhance the bandwidth. The enhancement
of the bandwidth of the lower band is clearly illustrated in Figure 5, which shows the simulation results
of the return loss. The parameter W7 is an important parameter for stub1. Stub1 clearly enhances
the bandwidth of the lower band. Otherwise, that can impact the characteristic of the middle band.
Figure 5 illustrates the simulation results of the return loss with various W7 parameter values for stub1.
There are two modes on the spectrum of the middle band when W7 is at 3.1 mm, 2.9 mm, and 2.5 mm,
reducing the bandwidth of the middle band of the final structure. The bandwidth of the middle band
is not at its widest when W7 is at 3.5 mm, but it is at its best size for this design.

At the third step (Step 3), another main arm (arm2) is added in the circuit in order to resonate
the upper band. Figure 6 shows the structure of arm2 and illustrates that arm2 resonates the upper
band. This design satisfies the resonated condition of a quarter wavelength. The parameter L2 is an
important variable factor of arm2 to decide the frequency range of the upper band. Figure 6 illustrates
the simulation results of the return loss with various L2 parameter values for arm2. The operation
frequency range is closest to the design goal when L2 is 8.5 mm.
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Figure 6. The simulated return loss with various lengths of L2 (Step 3).

The fourth and last step (Step 4) incorporates an inductive stub (stub2) that can neutralize the
capacitive circuit to enhance the bandwidth of the upper band. The main function of stub2 is to tune the
upper band impedance for the proposed antenna. However, this also slightly affects the characteristic
of the middle band. The bandwidth of the upper band is at its widest when W9 is at 2.9 mm. Figure 7
shows the simulation results of the return loss with various W9 parameter values for stub2. The last
optimized result is shown as the red curve in Figure 7.
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The 10 dB bandwidth of the lower band ranges from 2.30 to 2.70 GHz, the middle band ranges
from 3.25 to 3.72 GHz, and the upper band ranges from 5.15 to 5.95 GHz. These simulated results fulfill
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the spectrum requirements of LTE bands and cover the 5G system (Sub 6 GHz spectrum). Otherwise,
these operation bands can cover the LTE-U band in the 5G system. The variation of impedance for
each step in the design process is shown in Figure 8. The imaginary part of the impedance is close to
zero ohm during the optimized processes.Sensors 2019, 19, x FOR PEER REVIEW 7 of 15 
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The surface current distribution of the planar USB dongle antenna is shown in Figure 9. Specifically,
Figure 9a,b illustrates the current distribution at 2.45 GHz lower band and 3.51 GHz middle band,
respectively. These results are not easy to differentiate, using the characteristics of the lower band
and the middle band. The surface current distributions are similar to the results shown in Figure 3
for arm1. However, there are conspicuous coupling effect on both stubs, stub1 and stub2. These two
stubs possess not only the function of impedance tuning but also the coupling effect. On the other
hand, Figure 9c illustrates the current concentration on the main antenna arm2 at 5.45 GHz upper band.
This result shows that the upper band is resonated by arm2. Moreover, Figure 9c shows that the design
satisfies the resonated condition of a quarter wavelength.
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and (c) 5.45 GHz.

3. Experimental Results and Discussion

Figure 10a shows the planar USB dongle antenna assembly that is fabricated on an FR4 substrate.
The proposed antenna was simulated using the EM simulator ANSYS HFSS. Figure 10b shows both the
measured S11 of the proposed antenna as well as the simulated results. The measured 10 dB bandwidth
of the lower band range is 2.27–2.79 GHz, the middle band range is 3.10–3.72 GHz, and the upper
band range is 5.10–5.92 GHz. The measured results were based on a 10 dB return loss threshold that
could cover an LTE inclusive of the 2.30–2.69 GHz, 3.40–3.70 GHz, and 5.15–5.85 GHz bands, as well
as the entire frequency bands of the 5G system (frequencies lower than 6 GHz). The LTE-U band for
the 5G system is included in WLAN, which the proposed antenna can support as well. As for the
simulated results, it clearly shows the same trend as that of the theoretical measured results. The three
operating bands work at 2.53 GHz, 3.41 GHz, and 5.51 GHz, with a bandwidth of 20.6%, 18.2%, and
14.9%, respectively.
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Figure 10. (a) Sample of the fabricated antenna; (b) comparison of the simulation results and the
theoretical measured results in terms of return loss.

Figures 11–13 illustrate the peak gain and radiation efficiency. Figure 11 shows a peak gain of
2.16–3.51 dBi with a radiation efficiency of 56.65–88.37% for the lower band. The middle band shows
a peak gain of 0.60–1.24 dBi with a radiation efficiency of 20.59–40.54%, as illustrated in Figure 12.
The upper band peak gain of 0.84–4.13 dBi with a radiation efficiency of 18.91–72.42% is shown in
Figure 13.
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To further investigate the radiation performance of the proposed antenna, a 3D far-field antenna
measurement system was adopted, with its photograph shown in Figure 14. The system is mainly
composed of an anechoic chamber, a vector network analyzer, position controller, and a central control
computer. The anechoic antenna chamber with a dimension of 7.3 × 3.7 × 3.7 m3 has the installed
pyramid-shaped absorbers inside the chamber to build a propagation environment without reflection.
All of the equipment is connected to the central control computer. By using the position controller,
it can rotate and precisely position the antenna at a specific angle by setting the values of the theta and
phi angles. The network analyzer Agilent E5071C that measures the frequency with a scope ranging
from 100 kHz to 8.5 GHz was used to measure the S parameters of the antenna, the gain pattern, and
the radiation efficiency of the antenna. The measured radiation patterns are at 2.45 GHz, 3.50 GHz,
and 5.40 GHz in the xy, yz, and zx planes and are plotted in Figure 15. The 3D normalized radiation
patterns are illustrated in Figure 16. Based on the measured radiation pattern, the proposed planar
USB dongle antenna shows similarities with an isotropic antenna.
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The operating frequency bands and radiation efficiency of the proposed antenna achieved the
target design goals in this study. The area of the proposed antenna is 10 × 10 mm2. The peak gain
is within the range of 0 to 4 dBi. The radiation efficiency of each frequency band is higher than 10%
and satisfies the design goal. Table 2 lists the performance comparison of the proposed antenna with
previously proposed antennas in terms of system ground size and antenna size [25–43]. Three types of
planar antennas were compared in Table 2, namely the tridimensional structure, single-sided planar
antenna, and double-sided planar antenna. In [27,42], the structure of the antenna is tridimensional.
The manufacturing process of a tridimensional antenna becomes more difficult as the size of the
antenna is reduced. The planar antenna is preferred for antenna design since there is no complex
welding and folding needed in the fabrication process of the planar antenna. There are two kinds
of planar antenna, the single-sided design and the double-sided design. The single-sided design is
simpler than the double-sided design. A single-sided planar antenna is used to design the proposed
antenna in this study with a 10 × 10 mm2 measured antenna size. Chung et al. [43] also proposed the
same size of antenna, 10 × 10 mm2. However, their proposed design had the antenna extended to the
back of the substrate, making it a double-sided planar antenna. The proposed design in this study is
simpler than the design in [43] with an advantage of having wider supported frequency bands.

Table 2. Comparison of the proposed antenna with previously proposed antennas in terms of system
ground size and antenna size.

Published Literature System Ground Size
(L (mm) * W (mm)

Antenna Size
(L (mm) * W (mm) Planar Antenna

Al-Khaldi et al. [25] 33 * 13 7 * 33 Yes (single sided)
Gonçalves et al. [26] 20 * 29 9 * 29 Yes (single sided)

Saini et al. [27] 44 * 25 20 * 18 No
Yang et al. [28] 54 * 15 50 * 33.55 Yes (double sided)
Chen et al. [29] 45 * 13 13 * 10 Yes (single sided)
Ullah et al. [30] 35 * 13 35 * 40 Yes (double sided)

Saxena et al. [31] 30 * 13.5 30 * 21.5 Yes (double sided)
Hsu et al. [32] 50 * 19 50 * 31 Yes (double sided)
Kou et al. [33] 40 * 11 40 * 29 Yes (double sided)
Li et al. [34] 18 * 8.7 18 * 25.3 Yes (double sided)

Pandit et al. [35] 21 * 7.3 21 * 16.7 Yes (single sided)
Swathi et al. [36] 40 * 17.5 40 * 27.5 Yes (double sided)

Tangthong et al. [37] 20.8 * 19.2 25 * 16.1 Yes (single sided)
Yu et al. [38] 35 * 10 35 * 25 Yes (double sided)

Kuma et al. [39] 24 * 5 24 * 25 Yes (single sided)
Kim et al. [40] 40 * 15 40 * 35 Yes (single sided)
Ali et al. [41] 22 * 8.3 22 * 16.7 Yes (double sided)

Wong et al. [42] 150 * 75 150 * 4 No
Chung [43] 35 * 10 10 * 10 Yes (double sided)
This study 40 * 10 10 * 10 Yes (single sided)

Table 3 lists the comparison of the proposed antenna design with previously proposed antennas
in terms of their supported frequency bands. The results of Table 3 show the difficulty in designing
a multiband antenna within a small area. The properties of the antenna must satisfy the conditions
and limits in communication systems. The coverage of the frequency bands is the first condition.
The following designs support three frequency bands [28,30,31,33–37,39–43]. The next property to
consider is the antenna size, where that in [43] and the proposed design in this study are the smallest,
as listed in Table 2. The measurement results of the peak gain that are within the 0–4 dBi range are
in [35,39,41] and this study. The peak gain is 5–7 dBi in [43] however its design is not omnidirectional
enough. The proposed antenna design in this study satisfies the requirements for both LTE operating
bands, 2.30–2.69 GHz, 3.40–3.70 GHz, and 5.15–5.85 GHz, and a 5G system (sub 6 GHz spectrum)
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operating band, 3.40–3.60 GHz. The LTE-U band of a 5G system is also included in the supported
frequency bands of the proposed antenna in this study.

Table 3. Comparison of the proposed antenna with previously proposed antennas in terms of supported
frequency bands.

Published Literature Lower Band (GHz) Middle Band (GHz) Upper Band (GHz)

Al-Khaldi et al. [25] 2.50–3.50 NA 5.00–5.50
Gonçalves et al. [26] 2.30–2.69 NA NA

Saini et al. [27] 2.30–2.70 3.40–3.60 NA
Yang et al. [28] 1.39–1.48 1.75–4.20 5.04–6.00
Chen et al. [29] 2.40–2.484 NA 4.70–5.825
Ullah et al. [30] 2.30–2.69 3.40–3.70 5.15–5.85

Saxena et al. [31] 2.30–2.62
2.63–2.90 3.30–4.80 5.50–8.02

Hsu et al. [32] 1.43–3.29 NA NA
Kou et al. [33] 2.21–2.53 3.20–3.83 5.41–8.37
Li et al. [34] 2.41–2.63 3.39–3.70 4.96–6.32

Pandit et al. [35] 2.35–2.53 3.20–4.26 5.24–6.06
Swathi et al. [36] 1.68–2.71 3.26–4.06 5.03–6.25

Tangthong et al. [37] 2.29–2.98 3.23–4.16 5.08–6.38.
Yu et al. [38] NA 3.20–3.90 5.75–5.85

Kuma et al. [39] 2.50–2.71 3.37–3.63 5.20–5.85
Kim et al. [40] 2.39–2.59 3.10–3.57 5.45–6.50
Ali et al. [41] 2.26–2.57 3.27–3.60 5.69–5.98

Wong et al. [42] 2.41–2.63 NA 5.15–5.85
Chung [43] 2.30–2.69 3.40–3.70 5.15–5.85
This study 2.27–2.79 3.11–3.72 5.10–5.92

4. Conclusions

A high-performance antenna has two main indicators. The first indicator is the function of the
antenna, namely its supported frequency bands, gain, and radiation efficiency. The second indicator
pertains to the structure of the antenna. The size of antenna needs to be as small as possible and under
its physical limited condition. Under Chu’s limits, the radiation efficiency and bandwidth are limited
by the size of the antenna. The Friis transmission equation can estimate the radiation efficiency that the
system needs under the conditions of the operational environment. The omnidirectional antenna is an
ideal mode for the USB dongle antenna; the ideal peak gain must be close to 0 dBi. Following the said
conditions enables the construction of an antenna design that works within its expected performance.
Moreover, manufacturing of the antenna must be simplified in order to reduce the cost.

A compact multiband planar USB dongle antenna has been designed to cover the LTE, 5G system
(Sub 6 GHz spectrum), Bluetooth, and frequency bands for WSNs. The radiation efficiency achieved is
10% for each band. The peak gain for each band is approximately 0–4 dBi. The main antenna has a
compact size of 10 × 10 mm2 and a volume of 10 × 50 × 0.8 mm3. The main advantage of the proposed
antenna is that it can support the triple band operation with a small size and simplified process for
manufacturing. The proposed antenna can support a 5G LTE system, which can be embedded in a
wireless communication device for WSNs applications.
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