
MethodsX 8 (2021) 101508 

Contents lists available at ScienceDirect 

MethodsX 

j o u r n a l h o m e p a g e: w w w . e l s e v i e r . c o m / l o c a t e / m e x 

Method Article 

A mathematical programming formulation for 

long-term infrastructure investment planning in 

Small Island Developing States 

Travis R. Atkinson 

∗, Paul V. Preckel , Douglas Gotham 

Purdue University, United States 

a b s t r a c t 

Mixed-integer programming is a common method used in electricity generation and transmission optimization 

models. However, the size of the problem can result in extraordinarily long run times. Solve time also increases 

exponentially with the number of variables to optimize. There is therefore a constant trade-off between a 

realistic representation of the network and computational tractability. Additionally, actual data and publicly 

available, real-world application are scare. This is particularly true for Small Island Developing States. This 

paper bridges these gaps by describing a customized mathematical formulation for co-optimizing generation 

and transmission infrastructure investments. Data from the island of Jamaica and program scripts are available 

for reproduction. Key customizations to a mixed-integer programming model for long-term generation and 

transmission infrastructure investment planning include: 

• Hours are treated as representative hour categories and multiplied by the number of hour types within a given 

period. 
• Simulated construction is limited to every other year. 
• While fossil fuel plants are treated as discrete variables, renewable energy plants are treated as continuous 

variables. 
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Specifications table 

Subject Area Energy 

More specific subject area Energy Modelling 

Method name Mixed-integer programming for electricity generation and transmission 

capacity investments 

Name and reference of original method Our approach to this problem is based on a combination of mathematical 

formulations for co-optimizing generation and transmission resources 

based on the following two papers: 

1 Krishnan V, Ho J, Hobbs BF, Liu AL, McCalley JD, Shahidehpour M, et al. 

Co-optimization of electricity transmission and generation resources for 

planning and policy analysis: review of concepts and modeling 

approaches. Energy Syst 2016;7:297–332 . 

(a) This paper provides the basic framework for the mathematical 

formulation used. However, the structure is general and lacked 

specificity of the actual use case. 

2 Sparrow FT, Yu Z, Gotham DJ, Bowen BH, Nderitu G, Wang J, et al. A 

Multi-Regional Electricity Trade Study for Southern African Power Pool. 

vol. Vol.2, Proceedings of the American Power Conference: 1998, p. 

715–20. 

(a) This paper was developed as a power pool model for several 

countries on the African continent and was not designed for use in 

a single country. However, it provided useful insights on how the 

general formulation above could be customized for use in the case 

of Jamaica. 

Resource availability Data and math programming script are available at: 

https://github.com/AtkinsTPhD/GTEP _ SIDS.git 

The GAMS software can be downloaded at: https://www.gams.com/ 

Method details 

The general outline of mixed integer programming for generation and transmission investment 

planning can be found in [ 1 , 2 ]. In this paper, the emphasis is on the specific customizations used to

operationalize these methods. 

Program set-up 

The program is implemented using the General Algebraic Modeling System (GAMS). While a “light”

version of GAMS can be downloaded from the official GAMS website, the size of this problem will

likely require the purchase of a GAMS license in order to utilize more advanced programming features

and solve large, complex problems. Additionally, because large programs can take weeks to run, 

setting tolerance levels for the optimization problem can help to reduce run-time but still obtain

useful results. Since the objective function used in this paper is in millions of dollars, an absolute gap

of one thousand dollars and a relative gap of 0.01% are used. 

Equations 

The general idea is to satisfy future electricity demand by building new infrastructure at least cost

in net present value (NPV) terms. Consequently, the objective function minimizes the operating and 

investment costs over the planning time horizon. 

min A ×
T ∑ 

t 

{ [ 

T O C t + 

∑ 

c 

( 

I c, t ×
∑ 

τ≤t 

x c,τ

) 

+ 

∑ 

k 

( 

I k,t ×
∑ 

τ≤t 

w k,τ

) ] } 

÷ ( 1 + r ) t (1) 

A represents the number years per period. Not only does pre-defining the number of years per

period reflect cases where construction takes place in more than a year, but it also reduces the size

of the problem. If seasonal adjustments are required, the objective function can also be preceded by

https://github.com/AtkinsTPhD/GTEP_SIDS.git
https://www.gams.com/
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Notation 

sets 

l transmission lines (directed by definition) 

g generation plants 

n, z nodes in network 

h hour types 

t, τ time-period index 

Subsets 

e existing generator (subset of g) 

c candidate generator (subset of g) 

f fossil fuel generator (subset of g ) 

i renewable energy generators (subset of g ) 

j existing transmission line (subset of l) 

k candidate transmission line (subset of l) 

Parameters 

B l susceptance of transmission line l (siemens) 

r discount rate ∈ ( 0 , 1 ) (fraction) 

y e,t 0 if existing generator is retired in period t , 1 otherwise (indicator) 

I c, t annualized investment cost of candidate generation plant ($ millions) 

I k,t annualized investment cost of candidate transmission lines ($ millions) 

F g fixed operating and maintenance (O&M) cost of generator g ($ per year) 

V g variable operating and maintenance (O&M) cost of generator g ($ per MWh) 

φh number of hours of hour type h (hours) 

P MAX 
g maximum generation capacity of generator g (MW) 

λg forced outage rate of generator g ∈ [ 0 , 1 ] (fraction) 

ψ g,h unforced outage rate of generator g for hour type h ∈ ( 0 , 1 ) (fraction) 

S MAX 
l 

maximum power flow across line l (MW) 

D n,h,t demand at node n for hour type h in year t (MW 

K t infrastructure investment budget in USD millions in year t ($ millions) 

q g,h availability factor of generator g in hour type h ∈ ( 0 , 1 ] (fraction) 

q 
peak 
g availability factor of generator during peak hours ∈ ( 0 , 1 ] (fraction) 

αt peak demand in year t (MW) 

R reserve margin ∈ ( 0 , 1 ) , i.e. share of installed capacity that must be available above 

peak demand (fraction) 

Z renewable energy (RE) target (fraction) 

T time period in which RE target becomes active (scalar) 

A number of years per period (scalar) 

Q i maximum cumulative capacity expansion for renewable energy generators (scalar) 

Infrastructure build variables 

x c,t 1 if candidate generator is built – these are binary variables for fossil fuel generators 

and continuous variables for renewable energy generators 

w k,t 1 if candidate transmission line is built – these are binary variables 

Variables 

P g,h,t Real power produced by generator g for hour type h in year t (MW) 

S l,n,z,h,t Power flow across line l from node n to node z, for hour type h in year t . (This will be 

negative if flows is from z to n ). (MW) 

θl, n,h,t Bus voltage angle for line l at node n for hour type h in year t (Radians) 

U t, l c Slack variable for use with big “M” method (MW) 
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Fig. 1. Typical hourly load in Jamaica. 
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a multiple representing the number of seasons per period. T O C t represents the total operating cost of

a generator in period t as specified by 

T O C t = 

[ ∑ 

e 

( F e × y e,t ) + 

∑ 

c 

( 

F c ×
∑ 

τ≤t 

x c,τ

) 

+ 

∑ 

g,n,h 

(
V g × P g,h,t × φh 

)] 

÷ 1 , 0 0 0 , 0 0 0 (2) 

In (2), F e and F c represent fixed operating and maintenance costs for existing generators ( e ) and

candidate generators ( c). These are measured in dollars per year. The parameter y e,t takes a value of

1 if an existing unit is available in period t and a value of 0 if the unit has been retired by period

. In real-world applications, this is a useful way to account for plans that already exist to retire

generation units. Generators are often described as “lumpy”, meaning that they can typically only be

built in fixed/discrete sizes. To capture this “lumpiness” in a model, candidate generators are treated 

as binary variables. The variable x c,τ is a build variable for candidate generators. When treated as

binary, x c,τ takes a value of 1 when a generator is built in period t and 0 otherwise. However, in

practice, it was found that it could take over a month to solve a single run of this model given the

size of the problem. Consequently, only fossil fuel generators are treated as binary; renewable energy

(RE) generators are treated as continuous variables. This was deemed reasonable because it not only

reduced run-time, but RE generators are typically modular, allowing for marginal increases in capacity 

sizes. For instance, it would not be impractical to marginally increase the capacity of a solar plant by

installing an additional solar panel. On the other hand, since natural gas plants are built in discrete

sizes, one would not expect only an additional MW of capacity to be added at a given time. Hence,

while the build variable for candidate generators is written as a single variable in (2) ( x c,τ ), in practice,

this is coded as two separate variables; one binary and the other, continuous. Ultimately in the case

of fossil fuel generators, 
∑ 

τ≤t x c,τ represents whether or that generator has been built by period t .

For RE units, 
∑ 

τ≤t x c,τ represents how much capacity has been built by period t . 

Continuing with (2), V g denotes the variable operating and maintenance cost of generator g. (Recall 

that e and c are subsets of g.). V g is measured in $/MWh. Here, V g represents all variable costs. That

is, operation and maintenance costs as well as fuel costs. Fuel costs for fossil fuel generators are

calculated as the product of the heat rate of the generator (mmBtu/MWh) and the forecasted fuel

prices ($/mmBtu). The parameter P g,h,t represents real power generation (MW) by generator g in hour 

type h in period t . Importantly, hours are not simulated individually. For a 24-hour period, hours are

grouped into hour-categories based on similar load levels. Fig. 1 illustrates the typical hourly load

for Jamaica. Based on the load curve, hours were grouped into five hour-categories: “off-peak night”

(hr. 1–6), “off-peak day” (hr. 7–8), “average day” (hr. 9–18), “peak hour” (hr. 19–21) and “average 

night” (hr. 22–24). To obtain generation in MWh, P g,h,t is multiplied by the number of hours in each 

hour type φh . Categorization is necessary to make the program tractable and help balance the trade-

off between accurate results and computation time such that meaningful results can be obtained 
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hile running the program on a reasonably equipped, standard computer. This is a fairly standard

pproach that has been used in a variety of other models, notably the MARKAL [3] and TIMES [ 4 , 5 ]

odels. To preserve diversity among load levels, the script accompanying this paper distinguishes

our categories/hour types by season, week day types (e.g. weekday or weekend) and hour grouping

or the day (e.g. “peak hour”, “off-peak day”, etc.) The number of these instances of grouped hours is

ccounted for by the term A in Eq. (1) . However, this significantly increases the notation and number

f equations that would be required for use in this paper. Therefore, assume that each parameter

nd variable indexed by h is also indexed by seasons and day types. In the specific case used in the

ccompanying program file, “seasons” correspond with quarters based on the island’s historical load.

he resulting values are divided by 1 million to convert T O C t to millions of dollars, consistent with

he unit of measurement for the objective function (1) . 

Returning to (1) , I c, t denotes the annualized investment cost of candidate generator c in period

and I k,t represents the annualized investment cost of candidate transmission line k in period t .

nnualized costs are calculated as annual payments based on the overnight capital cost of the

nfrastructure. The variable w k,t is a binary variable representing the construction of candidate

ransmission line k in period t . Accordingly, 
∑ 

τ≤t w k,τ takes on a value of 1 if a candidate transmission

ine has been built by period t . 

As described previously, fossil fuel plants are modeled as binary variables (3) and can only be built

nce (4) . RE generators however, are modeled to be limited by some finite capacity (5) . (Note that all

enerators are already mapped to specific zones by definition.) The idea behind these constraints is

o simulate real physical restrictions on where new infrastructure can be built. For example, for hydro

esources used in this test case, previous studies had already determined the capacity of each river

o generate electricity. These are used to define the maximum allowable capacity at the location for

ach potential hydro generator. 

x f,t ∈ { 0 , 1 } ∀ c, t (3)

∑ 

t 

x f,t ≤ 1 ∀ c (4)

0 ≤
∑ 

t 

x i,t ≤ Q i ∀ c (5)

Likewise, candidate transmission lines are binary (6) and can only be built once (7) . These too, are

lready mapped to specific geographic zones/nodes in the network by definition. 

w k,t ∈ { 0 , 1 } ∀ k, t (6)

∑ 

t 

w k,t ≤ 1 ∀ k (7)

In [1] , a general constraint on power generation is presented. The main customization in this paper

re adjustments to generator capacity P MAX 
g based on forced λg and unforced ψ g,h outage rates and

he existence/retirement of plants Operationa l g,t (8) . Here, Operationa l g,t = y e, t for existing units and

perationa l g,t = 

∑ 

τ≤t x c, τ for candidate units. Note that ψ g,h is indexed on h . This is because, for

eak hours, ψ g,h = 0 . This accounts for the fact that planned, precautionary maintenance is usually

onducted outside of peak hours. 

0 ≤ P g, h,t ≤ P MAX 
g ×

(
1 − λg 

)
×

(
1 − ψ g,h 

)
× q g,h × Operationa l g,t ∀ g, h, t (8)

Another customization is the reserve margin constraint to ensure resource adequacy. In (9) , q 
peak
g 

epresents the availability factor for a generating unit during peak hours. This is a value between 0

nd 1. ∑ 

g 

P MAX 
g × q 

peak 
g × Operationa l g,t ≥ αt × ( 1 + R ) ∀ t (9)
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In terms of transmission constraints, power flow across existing lines S j,n,z,h,t are limited by 

transmission capacity S MAX 
j 

. Depending on the direction of power flow between node n and node z,

flow will be denoted as negative or positive. Additionally, line losses are already explicitly accounted

for in electricity demand. Furthermore, power flow is modeled as direct current, not alternating

current. 

−S MAX 
j ≤ S j,n,z,h,t ≤ S MAX 

j ∀ j, n, z, h, t (10) 

Using notation already defined, (11) defines the power flow constraint for candidate transmission 

lines. 

−
∑ 

τ≤t 

w k,τ × S MAX 
k ≤ S k,n,z,h,t ≤

∑ 

τ≤t 

w k,τ × S MAX 
k ∀ k, n, z, h, t (11) 

Bus voltage angles θl,n,h,t , measured in radians, do not exceed pi (set to 10 decimal places). 

−π ≤ θl,n,h,t ≤ π ∀ l, n, h, t (12) 

Power flow is also defined as the product of suseptance, B l , and difference between bus voltage

angles at each node connecting an existing transmission line. 

S j,n,z,h,t = B j ×
(
θ j,n,h,t − θ j,z,h,t 

) ∀ j, n, z, h, t (13) 

For candidate transmission lines, the “Big-M” method is used to avoid creating a non-linear 

problem. Here, M is a large constant and U t,k is a slack variable defined by (15) and (16) . 

S k,n,z,h,t = B k ×
(
θk,n,h,t − θk,z,h,t 

)
+ 

( ∑ 

τ≤t 

w k,τ − 1 

) 

M + U t,k . . . ∀ k, t n, z (14) 

U t,k ≥ 0 ∀ t, k (15) 

U t,k ≤ 2 ×
( 

1 −
∑ 

τ≤t 

w k, τ

) 

× M ∀ t, k (16) 

Consequently, if 
∑ 

τ≤t w k,τ = 0 , Eq. (14) is non-binding. However, if 
∑ 

τ≤t w k,τ = 1 , then (14) is

binding, U t,k = 0 . 

In this paper, demand must be always be satisfied. (Minor modifications to the model can account

for load shedding). In (17), total generation φh ×
∑ 

g P g,h,t and net inflows φh ×
∑ 

n ( S l,n,z,h,t − S l,z,n,h,t ) 

sum to demand D n,h,t φh at every point in time. 

φh ×
[ ∑ 

g 

P g,h, t + 

∑ 

n 

(
S l,n,z,h,t − S l,z,n,h,t 

)] 

= D n,h,t × φh ∀ n, h, t (17) 

Finally, renewable energy targets are common energy policies in Small Island Developing States. 

To represent this, total renewable energy generation φh ×
∑ 

i,n,h P i,n,h,t is constrained to surpass some 

fraction Z of total demand φh ×
∑ 

n,h D n,h,t . This constraint holds for each period t starting from a

pre-defined date T . 

φh ×
∑ 

i,n,h 

P i,n,h,t ≥ Z × φh ×
∑ 

n,h 

D n,h,t ∀ t ≥ T (18) 

These equations and attending discussion of the procedure describe the customized application 

of mixed-integer programming to long-term generation and transmission expansion planning in the 

context of a Small Island Developing State. Key differences between this model and the models by

[ 1 , 2 ] are summarized below: 

Krishnan et al. [1] outline a generalized model sufficient for understanding broad GTEP 

optimization but lacks the specificity of a more real-world application. First, Krishnan et al. [1] model

new generation as capacity. Furthermore, no distinction is made between renewable energy (RE) 

investments and fossil fuel investments. In our model, only RE generation investments are treated 
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s continuous variables while fossil fuel generation investments are treated as binary. The purpose

f doing this is to more accurately reflect the investment decision faced by the decision maker and

he modularity of wind and solar installations [6] . Second, our model begins with an existing set

f generators and transmission corridors that determine the initial network topology. Optimizing

ver an entirely new set of generation and transmission infrastructure as illustrated by Krishnan

t al. [1] would yield a lower cost solution. This is because, instead of relying partially on existing

nfrastructure, which may have been sub-optimal to begin with, the model would be free to find an

ptimal solution unconstrained by decisions made prior to the start of the planning horizon. Third, our

odel introduces new constraints. These are the reserve margin constraint ( Eq. (9 )) and the renewable

nd a renewable portfolio standard ( Eq. (18 )). Of note, the renewable portfolio standard is a binding

onstraint, suggesting that the optimal solution would have a lower total cost if this constraint was

xcluded. However, this constraint is important in the SIDS context given the ambitious renewable

nergy goals SIDS tend to have. 

The model presented in this paper also differs from the model by Sparrow et al. [2] in key ways.

n particular, a major gap in the Sparrow et al. model is that it ignores power flow constraints; it

s formulated as a transportation model. Our model takes the approach of Krishnan et al. [1] and

ncludes specific power flow constraints that reflect Kirchhoff’s laws Eqs. (12 )–( (16) ) and therefore

ffer a more realistic representation of power flow across the network. This is of importance for

ituations where the transmission structure is complex, including many loops, tighter transmission

imits, etc. Sparrow et al. [2] also optimize generation and transmission expansion across several

ations in a power pool. Our model focuses on a closed network (i.e. an island). This is more suited

o the focus of the paper on power planning for Small Island Developing States. 

This paper not only delineates the general method, but it provides specific details on (1) setting

p the GAMS environment for successfully reproducing these results, (2) particular customizations too

engthy to describe in a general research publication and (3) issues encountered in previous versions

f the model before arriving at a final version that can be shared publicly. Except for indivisibilities

ssociated with binary investment variables, this is a convex program. It is solved using a branch and

ound method with a relative tolerance between the upper and lower bound on the objective value

f 0.01%. The solution can therefore only be guaranteed within this tolerance level. It is possible to

et the tolerance level to zero to achieve global optimality. However, even in that circumstance, it is

ot possible to guarantee uniqueness of the optimal solution beyond the objective value; there may

e alternative configurations of generation and transmission investments, as well as generation and

ower flows, that results in equally good solutions. 

The result of the modified method illustrated in this paper is a model that balances a real-world

epresentation of an island network with manageable run times while generating meaningful results.

he modifications to this model reduced run times from over two months to a few weeks using a

omputer with a 9 th generation Intel® i7 processor at 2.6Ghz with 16 GB of RAM on a 64-bit Windows

perating system. Once data is available, the model can be scaled and applied to a different country or

ontext. These alternative contexts can be larger, more topologically complex, and policy alternatives

an be extended to include emissions targets, taxes, etc. Hour categories is another dimension that can

e extended. When extending hour categories, the important feature to maintain is the diversity in

oad being grouped across time, space or another dimension. The model is therefore scalable, flexible,

nd useful for long-term planning while minimizes computation time. 

upplementary material and/or additional information 

rogram complications and failed attempts 

Initially, the model formulation was indexed on years, allowing for new infrastructure to be built

n any year during the planning horizon. However, the addition of a renewable portfolio constraint

ncreased the run time from just over a week to longer than a month. This influenced the decision

o allow new infrastructure to be built only every other year and demonstrates how each successive

onstraint substantially increases model complexity. 
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There were also failed attempts to incorporate energy storage in the model procedure to more

effectively account for a future with potentially higher renewable energy resources. These failed 

attempts were due, in part, to the treatment of hour types in the model. Explicitly modeling hours vs

hour types may help to resolve this, but risks increasing computation time exponentially. This is an

area of possible future research. 
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