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Abstract: Equine Piroplasmosis (EP) is an infectious disease caused by the hemoprotozoan parasites
Theileria equi, Babesia caballi, and the recently identified species T. haneyi. Hereby, we used a multiplex
PCR (mPCR) targeting the 18S rRNA gene of T. equi and B. caballi for the simultaneous detection of EP
in Egyptian equids and examined the presence of T. haneyi infections in Egypt. Blood samples from
155 equids (79 horses and 76 donkeys) collected from different governorates of Egypt were examined
by mPCR and PCR targeting T. hayeni. The mPCR method revealed a prevalence of T. equi of 20.3%
in horses and of 13.1% in donkeys and a prevalence of B. caballi of 1.2% in horses. B. caballi was not
detected in donkeys in the current study. The mPCR method also detected coinfections with both
species (2.5% and 1.3% in horses and donkeys, respectively). Additionally, we report the presence
of T. haneyi in Egypt for the first time in 53.1% of the horse and 38.1% of the donkey tested samples.
Coinfection with T. haneyi and T. equi was found in 13.5% of the samples, while infection with the
three EP species was found in 1.9% of the samples.

Keywords: equids; Babesia caballi; Theileria equi; Theileria haneyi; multiplex PCR; cPCR; 18S rRNA
gene and sequencing

1. Introduction

In rural areas of many developing countries, including Egypt, there is a huge reliance
on working equids, which include horses, donkeys, mules, and ponies. These animals
play important roles in sustaining the livelihoods of millions of people by providing
support in industries that include agriculture, construction, tourism, mining, and public
transport [1,2]. The health and welfare of domesticated equids are often overlooked
in rural areas. Although equids can be affected by a myriad of diseases that include
amongst others, African Horse Sickness, Epizootic Lymphangitis (EZL), Tetanus, Rabies,
Trypanosomiasis, and Piroplasmosis, there is a general lack of knowledge regarding the
identification, management, and prevention of infectious diseases [3].

Equine piroplasmosis [EP] is one of the infectious tick-borne diseases (TBDs) of equids,
caused by the hemoprotozoan parasites T. equi, B. caballi [4], and the newly identified
species T. haneyi [5]. There are over 30 species of ticks that have been described as vectors
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of T. equi, B. caballi, or both, including the genera Hyalomma, Rhipicephalus, Dermacentor,
Amblyomma, and Haemaphysalis [6]. In Egypt, three species of ticks have been detected
in equids, i.e., Hyalomma dromedarii, Hyalomma excavatum, and Rhipicephalus annulatus [7].
However, investigations on vector competence for T. haneyi has not been reported [8].
Infection with T. equi and B. caballi can cause severe economic losses in the equine industry
due to the cost of treatment, especially for acutely infected horses, which, in the absence of
appropriate treatment, can die [2]. It was found that T. haneyi rarely causes clinical signs in
field horses [9], even in splenectomized horses experimentally infected with T. haneyi using
the intravenous (IV) route [5,10]. Horses infected with T. equi remain persistently infected,
while those affected by B. caballi are infected for an extended period [11].

Phylogenetic analysis of published T. equi and B. caballi 18S rRNA (SSU rRNA) gene
sequences have led to the identification of five T. equi genotypes (A, B, C, D, and E) and two
B. caballi genotypes (A, B) globally. The genotype B of B. caballi was reclassified into two
subgenotypes called genotype B1 and genotype B2 [12,13], but genotype B2 was renamed
as genotype C [14–16]. Theileria haneyi was first detected in a horse at the U.S.– Mexico
border, near Eagle Pass, Texas [5,10]. Phylogenetic evidence places this species into a clade
distinct from that of T. equi [5], and this species also lacks the equi merozoite antigen 1
(ema-1) gene that occurs in T. equi, explaining the failure of a diagnostic cELISA test based
on recombinant T. equi ema-1 antigen in detecting T. haneyi [9].

The control and treatment of EP in non-endemic countries depend mainly on serologi-
cal and molecular techniques [17]. In Egypt, the national tick control program recommends
the use of acaricides like doramectin to reduce tick exposure [18,19]. The diagnosis of EP
based solely on clinical signs is not specific, and differentiation between the EP causative
agents is not possible based on clinical signs alone [20]. Microscopical examination (ME) of
blood films has limited utility due to its low sensitivity, particularly in carrier animals with
low parasitemia [21]. In addition, these diagnostic tools cannot identify and genetically
characterize species of Babesia and Theileria infecting equids. In Egypt, the diagnosis of
EP is based on ME and/or small-scale surveys using conventional PCR (cPCR) for the
diagnosis of each species separately [22–25]. Moreover, serological diagnosis (IFA and
ELISA techniques) is used mainly in the case of chronically infected animals [20,23,24]. The
effective treatment of EP, therefore, depends on the ability to differentiate between T. equi
and B. caballi [26]. Thus, accurate and sensitive diagnostic methods that can differentiate
between T. equi, B. caballi, and T. haneyi in animals that have mixed infections are required
as a step toward implementing adequate control measures. To overcome the diagnostic
drawbacks faced in Egypt, more sensitive and specific DNA amplification methods like
PCR followed by sequencing of the amplicons could be used, especially in the prepatent
phase infection of piroplasms [27].

Although uniplex (u) PCR assays are effective in the detection of single-species infec-
tion, they are time-consuming and expensive when applied on many samples that may
have mixed infections [28]. The reverse line blot (RLB) assay has overcome this problem
to a large extent by allowing the simultaneous detection of multiple parasite species in a
single sample [29], but RLB requires expertise and specialized equipment, and the protocol
is very labor-intensive [28]. Multiplex PCR (mPCR) is a single, lower cost, and technically
less challenging approach that is able to amplify two or more target loci from one or more
organisms using a mixture of specific primer pairs in a single reaction. Thus, mPCR could
be a favorable tool for the diagnostic and epidemiological evaluation of TBD in endemic
regions [28,30]. Therefore, the current work aimed to study the prevalence of EP using
mPCR to detect T. equi and B. caballi simultaneously, targeting the 18S rRNA of both species.
In addition, the current research addressed, for the first time, the detection of T. haneyi in
Egypt through the examination of blood samples by conventional PCR (cPCR) followed by
amplicon sequence comparison with South African and American T. haneyi isolates.
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2. Results
2.1. Molecular Detection of Equine Piroplasmosis
2.1.1. Multiplex PCR for the Simultaneous Detection of T. equi and B. caballi

Multiplex PCR detected single T. equi infections in 26 (16.7%) (95% CI, 10.1–22.5%)
equids, 16 (20.3%) (95% CI, 11.1–29.1%) horses, and 10 (13.1%) (95% CI, 5.5–20.6%) donkeys
at the expected amplicon size of 430 bp (Figure 1). Similarly, a single infection with B. caballi
was detected in one horse (1.2%) (95% CI, −0.1–3.6%) with an expected amplicon size
of 540 bp (Figure 1). Co-infections with both parasites were found in two horses (2.5%)
(95% CI, 0–5.9%) and one donkey (1.3%) (95% CI, 0.1–3.8%), with an overall prevalence
of 1.9% (95% CI, 0–4.0) (three equines) (Table 1). Statistically, there was no significant
difference in EP infection among horses and donkeys on the basis of mPCR data (p > 0.05);
however, the difference between single T. equi and B. caballi infections was statistically
significant (p < 0.05) as T. equi infection was more prevalent.
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Figure 1. Multiplex PCR for the simultaneous detection of T. equi and B. caballi using a 2% agarose
gel stained with SYBR safe; M: DNA ladder, lane 1: T. equi (430 bp) and B. caballi (540 bp) positive
control DNA, lane 2: mixed infection with T. equi and B. caballi, lanes 3 and 4: sample infected with
T. equi, lane 5: sample infected with B. caballi, and lane 6: negative control.

Table 1. Results of mPCR for the detection of T. equi and B. caballi.

Tested Animal No.

Positive mPCR

EP
Single Infection Co-Infection (T. equi and

B. caballi)T. equi B. caballi

No. (%, 95% CI) No. (%, 95% CI) No. (%, 95% CI) No. (%, 95% CI)

Horses 79 19 (24.1%,
14.7–33.5%)

16 (20.3%,
11.1–29.1%) 1(1.2%,0.1–3.6) 2 (2.5%, 0–5.9%)

Donkeys 76 11 (14.4%,
6.5–22.2%)

10 (13.1%,
5.5–20.6%) 0 1 (1.3%, 0.1–3.8%)

Total equine 155 30 (19.3%,
13.1–25.5%)

26 (16.7%,
10.1–22.5%) 1(0.6%, 0–1.8%) 3 (1.9%, 0–4.0)
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2.1.2. Conventional PCR Analysis for the Detection of T. haneyi in Egyptian Equids

Theileria haneyi was detected in 71 (45.8%) (95% CI, 37.4–53.6%) equids; 42 (53.1%)
(95% CI, 40.4–62.1%) of these samples were derived from horses, and 29 (38.1%) (95% CI,
27.2–49.0%) from donkeys (Table 2). The positive samples gave the expected amplicon size
of 238 bp (Figure 2). Statistically, there were no significant differences in infection with
T. haneyi between horses and donkeys on the basis of the cPCR data (p > 0.05).

Table 2. Results for T. haneyi by cPCR and coinfection with T. equi and B. caballi in horses and donkeys determined by
using mPCR.

Animal No. of Tested Animals

Positive

T. haneyi T. haneyi and T. equi T. haneyi, T. equi and
B. caballi

No. (%, 95% CI) No. (%, 95% CI) No. (%, 95% CI)

Horses 79 42 (53.1%, 40.4–62.1%) 3 (4.5%, 0–9.0%) 2 (2.5%, 0–5.9%)

Donkeys 76 29 (38.1%, 27.2–49.0%) 18 (26.8%, 16.1–36.7%) 1 (1.3%, 0.1–3.8%)

Total equine 155 71 (45.8%, 37.3–53.6%) 21(13.5%, 8.8–18.8%) 3 (1.9%, 0–4.0%)
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Figure 2. Conventional PCR of T. haneyi using a 1.5% agarose gel stained with SYBR safe; M: Ladder, lane 1: negative
control, and lanes 2–7: T. haneyi positive amplicon.

2.1.3. Coinfections with T. haneyi (cPCR), T. equi, and B. caballi (mPCR)

The analysis of the mPCR and cPCR results of the 155 samples tested indicated that
3 horses and 18 donkeys were co-infected with both T. haneyi and T. equi. Additionally,
co-infections with all three parasites (T. equi, T. haneyi, and B. caballi) were observed in
two horses (95% CI, 0–5.9%) and one donkey (Table 2). Co-infections with T. haneyi and
B. caballi were not observed.

2.2. Comparative Analysis and Sequence Conservation of the 18S rRNA Amplicons among
Different Isolates

The 360-bp fragment of the T. equi 18S rRNA gene was amplified and sequenced
from nine selected positive samples. The identity percent among the different Egyptian
amplicons from T. equi and B. caballi is shown in supplementary Tables S1 and S2. Blast
analysis indicated that the amplicon derived from the Egyptian isolates showed between
95.7 and 99% identity to previously published T. equi 18S rRNA gene sequences. In addition,
the amplified B. caballi amplicon (540 bp) from two selected positive sample was sequenced.
Blast analysis indicated that the B. caballi Egyptian isolate showed an identity percent
ranging from 98.1 to 99.3% to published B. caballi isolates.
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Comparative analysis showed that one T. equi Egyptian amplicon derived from one
horse with accession number MW659071.1 and two amplicons from donkeys with ac-
cession numbers MW659072.1 and MW659079.1 clustered with sequences from Chile
(MT463613.1) [31], Israel (MK932052.1) [13], China (MT093496.1) [31], Jordan (KX227
623.1) [32], and Nigeria (MN620483.1) [33], whereas only one Egyptian amplicon de-
rived from one donkey (MW659078.1) clustered with sequences from the State of Palestine
(KX227632.1) [32] and Nigeria (MN093917.1) [34]. In addition, three sequences derived from
horses (MW659073.1, MW659074.1, and MW659075.1) and two from donkeys (MW659076.1
and MW659077.1) clustered together in a separate group from the other sequences obtained
in the current study (Figure 3).
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Similarly, the B. caballi Egyptian isolates showed 98.1–99.3% sequence identity with
B. caballi sequences from China, Brazil, South Africa, Israel, Iraq, Turkey, and India. Com-
parative analysis of the B. caballi isolate (MW678758.1) from horses clustered with sequences
from China (MN907451.1), Brazil (KY952238.1) [35], and South Africa (EU642512.1) [12],
while a B. caballi isolate (MW678759.1) isolated from donkeys clustered in a separate clade
with sequences from Iraq (MN723592.1), Turkey (MN481269.1), and India (MF384422.1)
(Figure 4).
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2.3. Sequencing Analysis of a T. haneyi Hypothetical-Protein-Coding Gene

BLASTn analysis of the five T. haneyi Egyptian samples sequenced in this study
showed 100% sequence identity to published T. haneyi sequences from South African
isolates (MW591580-MW591586) [36] and to the published sequences of T. haneyi Eagle
Pass strain gene for a hypothetical protein (MT896770.1) (Figure S1). The comparative
analysis, based on amplicons derived from infected Egyptian horses (n = 2) (MW591694.1,
MW591695.1) and donkeys (n = 3) (MW591692.1, MW591693.1, MW591697.1), indicated
that the Egyptian T. haneyi sequences all clustered together with the reference T. haneyi
sequence and with sequences from South African isolates; T. equi genotype C (18S r RNA)
was selected as an outgroup (Figure 5).

Pathogens 2021, 10, x FOR PEER REVIEW 6 of 14 
 

 
Figure 4. Comparative analysis by the Maximum Likelihood method of B. caballi 18S rRNA gene. 
Egyptian equine B. caballi isolates are labelled with a triangle. A, B1, and B2 (C) mean different B. 
caballi genotypes. Eimeria sp. KT305929 gene was used as an outgroup. 

2.3. Sequencing Analysis of a T. haneyi Hypothetical-Protein-Coding Gene  
BLASTn analysis of the five T. haneyi Egyptian samples sequenced in this study 

showed 100% sequence identity to published T. haneyi sequences from South African iso-
lates (MW591580-MW591586) [36] and to the published sequences of T. haneyi Eagle Pass 
strain gene for a hypothetical protein (MT896770.1) (Figure S1). The comparative analysis, 
based on amplicons derived from infected Egyptian horses (n = 2) (MW591694.1, 
MW591695.1) and donkeys (n = 3) (MW591692.1, MW591693.1, MW591697.1), indicated 
that the Egyptian T. haneyi sequences all clustered together with the reference T. haneyi 
sequence and with sequences from South African isolates; T. equi genotype C (18S r RNA) 
was selected as an outgroup (Figure 5) 

 
Figure 5. Comparative analysis by the Maximum Likelihood method of T. haneyi gene coding for a hypothetical protein. 
Egyptian samples are labelled with a black triangle. SA: South Africa T. haneyi isolates. Theileria equi genotype C of South 
Africa was used as the outgroup. 

Figure 5. Comparative analysis by the Maximum Likelihood method of T. haneyi gene coding for a hypothetical protein.
Egyptian samples are labelled with a black triangle. SA: South Africa T. haneyi isolates. Theileria equi genotype C of South
Africa was used as the outgroup.



Pathogens 2021, 10, 1414 7 of 14

3. Discussion

Piroplasms are Apicomplexa tick-borne parasites distributed worldwide which are
responsible for piroplasmosis (theileriosis and babesiosis) in vertebrates. The aim of the
present study was to use molecular methods for the detection of the prevalence of EP in
Egypt caused by T. equi and B. caballi. We also aimed at detecting the occurrence of T. haneyi
in equids in Egypt, which was unknown. Importantly, the DNA sequence data generated in
this study also allowed for some genetic characterization of T. equi, B. caballi, and T. haneyi
Egyptian strains currently circulating in this country.

The prevalence of T. equi was higher than that of B. caballi, and this is consistent with
previous reports [37,38]. This phenomenon may be due to the increased susceptibility of
B. caballi to treatment compared to T. equi. In addition, the horse immune system may be
more efficient in eliminating B. caballi-infected erythrocytes than T. equi-infected ones, the
latter parasites having a long persistence [9,39].

The result of this study also indicate that the prevalence of coinfections with both
parasites (T. equi and B. caballi) in equids was 1.9%, which is lower than that detected in
Mongolia (7.7%) [40] and Iraq (5.15%) [41] using mPCR and in Cuba (20%) [21] and Nigeria
(2.7%) using nested PCR [9].

The observed difference in the prevalence of EP compared to other countries may
be due to the type of equids (race or working) examined, hygienic measures, differences
in environmental conditions—which can have a significant impact on tick activity—tick
control strategies, number of samples analyzed, and type of PCR used for molecular
diagnosis [24].

Blast analysis of the amplified fragments from T. equi and B. caballi showed sequence
identities between 96 and 99% to published sequences. While lower sequence similarities
may indicate distinct parasite species, it is important to note that the analysis was based on
small fragments of the 18S rRNA gene. However, initial epidemiological studies on South
African T. equi and B. caballi 18S rRNA gene sequences reported identities between 96.1 and
99.9% to the previously published T. equi sequence from South Africa (accession number:
Z15105) and between 96.9 and 99.9% to a published B. caballi sequence from South Africa
(accession number: Z15104). Phylogenetic analysis of the South African sequences and
subsequently of sequences from other parts of the world led to the identification of distinct
parasite genotypes, which may even represent distinct parasite species [36]. Therefore, the
sequences obtained in this study could represent Egyptian isolates that belong to theses
distinct parasite genotypes. However, amplification and sequencing of the complete 18S
rRNA gene would be necessary to confirm these identities.

Theileria haneyi was defined as a new species infective to equids [5] and has since
been reported to occur in several countries in North and South America, Africa, and
Asia [5,9,36,42]. In the current study, T. haneyi was identified in both horses and donkeys
in Egypt, and the sequence of the hypothetical-protein-coding gene was identical to the
published T. haneyi Eagle Pass reference sequence and to sequences from South African
isolates, confirming the presence of T. haneyi in Egypt, as reported here for the first time.

The results of the current study are in agreement with Sears et al., [10] who reported
that coinfection of T. haneyi and T. equi could be induced experimentally in horses, which
can explain the presence of the three parasites in naturally infected animals in our study.
That means there was no cross immunity induced by T. haneyi and other two equine
piroplasm (T. equi and B. caballi) and the infection with these two parasites does not protect
equines from the infection with T. haneyi and vice versa.

The prevalence of T. haneyi either as single or as a mixed infection with T. equi and
B. caballi was higher than that recorded for imported Argentine horses in Nigeria (2.7% and
0.6%, respectively) [9], and this observation may be explained by the factors mentioned
earlier that include environmental conditions, husbandry, and tick vectors. Differences in
sampling size and time of sample collection could also be contributing factors.

The application of new technologies with higher sensitivities and specificities could
better facilitate the diagnosis of EP in Egypt. A multiplex EP real-time PCR assay targeting
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the 18S rRNA gene was developed for the simultaneous, quantitative detection of T. equi
and B. caballi in field animals. Quantitative molecular genotyping assays for T. equi were
also developed and enable the rapid detection of distinct T. equi parasite genotypes. Future
studies in Egypt should focus on further characterizing the T. equi and B. caballi genotypes
that may be circulating within the different governorates, with a view to determining risk
factors in disease control. It has been noted that T. haneyi species classification was based
on differences in the equi merozoite antigen (EMA) multigene family, and the identification
of T. haneyi in South African horses infected with T. equi genotype C indicated that T. haneyi
may be a subgroup of T. equi Genotype C [5,36]. The identification of T. haneyi in Egyptian
equids is not surprising but warrants further investigation.

4. Materials and Methods
4.1. Collection of Field Samples

Blood samples were collected from 155 apparently healthy equids (79 horses and
76 donkeys) from different governorates in Egypt (Cairo 30◦2′0′′ N, 31◦14′0′′ E, Giza
29◦59′13.2′′ N, 31◦12′42.48′′ E, Monufia 30◦31′12′′ N, 30◦59′24′′ E, Faiyum 29◦18′30.14′′ N,
30◦50′38.78′′ E, Beni Suef 29◦4′0′′ N, 31◦5′0′′ E, Ismailia 30◦35′0′′ N, 32◦16′0′′ E, and Alexan-
dria 31◦10′0′′ N, 29◦53′0′′ E) (Figure 6).
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The equid samples were collected from the following places: the Police Academy
and Elzahraa-Stud in Cairo and the zoological garden Abattoir in Giza, National Research
Centre veterinary caravans to Almonofia, Al fayoum, Beni Suef, Ismailia, and Alexandria
governorates, Egypt. The blood samples were collected on EDTA-containing vials and
transferred to the laboratory in ice boxes. Blood spots were prepared by applying 100 µL
of blood on Whatman WB120410 FTA Elute Micro Card (GE Healthcare and Cytiva, North
Bend, OH, USA). Ethical clearance for sample collection from equids was obtained through
the Institutional Animal Care and Use Committee (IACUC) (Vet CU28/04/2021/297 and
28/04/2021).

4.2. DNA Extraction

Genomic DNA was extracted from FTA Elute Micro Card [43,44], following the manu-
facturer’s instructions.

Positive control DNA samples extracted from T. equi and B. caballi in vitro cultures
were provided by the OIE equine piroplasmosis reference lab located in Pullman, WA, USA.
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4.3. Molecular Detection of Equine Piroplasmosis by Three PCR Approaches
4.3.1. Multiplex PCR (mPCR) for the Detection of T. equi and B. caballi

Field samples were tested for the presence of equine piroplasmosis using a published
conventional mPCR assay designed for the simultaneous detection of T. equi and B. caballi
infections [40]. The 18S rRNA gene was used, targeting the 943–1300-bp region for T. equi
and the 562–1141-bp region for B. caballi [38,40]. Briefly, the universal forward primer Bec-
UF2 and species-specific reverse primers (Cab-R, B. caballi; Equi-R, T. equi) were combined
in reactions containing 3 µL of DNA sample, 12.5 µL of Sigma 2× JumpStart™ REDTaq®

ReadyMix™ (Foster City, California, USA), 5 µM of each primer, and 7.5 µL of nuclease-free
water in a 25 µL total volume. Primers sequences are shown in Table 3. The amplification
conditions were according to Abedi et al. [38], with minor modifications, which included
an initial denaturation for 5 min at 94 ◦C, followed by 35 cycles each of 94 ◦C for 1 min as a
denaturation period, an annealing period of 54 ◦C for 1 min, and an extension period at
72 ◦C for 1 min, with the addition of a final extension period of 7 min at 72 ◦C. The DNA
extracted from T. equi and B. caballi in vitro cultures was used as a positive control, and
the negative control was a no-template control (NTC). All amplicons were visualized by
2% agarose gel electrophoresis (Invitrogen, Waltham, USA).

4.3.2. Uniplex PCR (uPCR) for Confirmation of the mPCR Results for the Detection of T.
equi and B. caballi

Samples that tested positive for piroplasmosis using the mPCR assay were confirmed
by performing uPCR assays. For the amplification of T. equi parasite DNA, the primers
TBM and Equi-R were used, while the amplification of B. caballi was done using the primers
Bec-UF2 and Cab-R (Table 3). The reactions were set up as previously described, and PCR
amplification conditions were the same as those reported for the mPCR assay.

4.3.3. Detection of T. haneyi

For the detection of T. haneyi, instead of performing a nested PCR as done by Kno-
wles et al. [5], a gradient annealing temperature in PCR using the internal nested primers
described in Table 3 was used. The best annealing temperature was 56 ◦C, which was
chosen to complete the amplification process. Amplicons were visualized by 1.5% agarose
gel electrophoresis.
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Table 3. Oligonucleotide primers used in molecular diagnosis.

Parasite Primer Name Gene Name PCR
Type Amplicon Size Primer Forward Primer Reverse Reference

B. caballi B. caballi (diagnosis and
sequencing) 18S rRNA mPCR 540 bp

Bec-UF2
5-TCG AAG ACG ATC AGA TAC CGT CG-3

Cab-R
5-CTCGTTCATGATTTAGAATTG CT-3

[38,40]

T. equi
T. equi 1 (diagnosis) 18S rRNA mPCR 430 bp Equi-R

5-TGCCTTAAACTTCCTTGCGAT-3

T. equi 2
(sequencing) 18SrRNA uPCR 360 bp TBM

5′-CTTCAGCACCTTGAGAGAAATC-3′
Equi-R
5′-TGCCTTAAACTTCCTTGCGAT-3 [14]

T. haneyi Th int. (diagnosis and
sequencing)

hypothetical protein
gene of unknown

function
cPCR 238 bp Than_intfor

5′-GACAACAGAGAGGTGATT-3
Than_intrev
5′-CGTTGAATGTAATGGGAAC-3 [5]
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4.4. Sequencing and Sequence Analysis

Samples (T. equi n = 9; B. caballi n = 2 and T. haneyi n = 5) that gave strong positive
amplification reactions were selected for further sequencing and comparative analyses.
Briefly, amplicons were purified using the GeneDirex PCR clean-up and Gel Extraction kit
(Taiwan) according to the manufacturer’s instructions and sent for bi-directional sanger
sequencing to Macrogen ( Seoul, South Korea ) using ABI3730XL DNA Sanger sequencer
(ThermoFisher) (Waltham, MA, United States) All sequence data were edited using MEGA
7 software (https://www.megasoftware.net/download_form accessed on 2 January 2021).
Query coverage and the percent of identity among the compared sequences were cal-
culated by non-redundant National Centre for Biotechnology Information (NCBI) and
Clustal Omega (https://blast.ncbi.nlm.nih.gov/Blast.cgi accessed on 2 January 2021) and
(https://www.ebi.ac.uk/Tools/msa/clustalo/ accessed on 1 March 2021). In the present
study, samples were aligned with the reference sequences for 18S rRNA representing
T. equi (Z15105.1) [45] and for a gene coding a hypothetical protein of unknown func-
tion but specific for T. haneyi genome (MT896770.1 T. haneyi Eagle Pass strain) [5], avail-
able in the NCBI database. In addition, B. caballi gene sequence was kindly provided
by Lowell S. Kappmeyer [Animal Diseases Research Unit, USDA-ARS, Pullman, WA
99164-6630, US]. Moreover, the T. equi and B. caballi sequences of the present study were
compared with different 18S rRNA reference sequences collected from distinct geograph-
ical areas worldwide and available in GenBank (Tables S3 and S4) [46–54]. T. haneyi
sequences were compared with the sequence of a hypothetical-protein-coding gene of
T. haneyi Eagle Pass strain present in GenBank and with six T. haneyi South African (SA)
isolate sequences [36]. All sequence data were edited using MEGA 7 software. Query
cover and identity percentage among the compared sequences were calculated by NCBI
and Clustal Omega (https://blast.ncbi.nlm.nih.gov/Blast.cgi accessed on 16 March 2021)
and (https://www.ebi.ac.uk/Tools/msa/clustalo/ accessed on 23 February 2021). The
resulted sequences data were submitted to GenBank to get accession numbers for T. equi,
B. caballi, and T. haneyi Egyptian isolates.

4.5. Comparative Analysis

To assess the genetic diversity of hemoparasites within the study samples, species-
specific dendrograms were constructed using a phylogenetic tree prediction generated
by MEGA 7 (https://www.megasoftware.net/download_form accessed on 3 April 2021).
This dendrogram was constructed using the Maximum Likelihood method based on the
Kimura 2-parameter mode [55]. Egyptian T. equi and B. caballi isolates and the 18S rRNA
gene of T. equi and B. caballi of different reference sequences in GenBank were used for
comparative analyses, which were classified into genotypes A, B, C, D, and E for T. equi and
genotypes A, B1, and B2 (C). The 18S rRNA gene sequences of B. bovis (AY150059.1) [56]
were included in the dendrogram as outgroups for the T. equi dendrogram, while Eimeria
sp. cytochrome oxidase subunit I (COI) gene (KT305929.1) [52] was used as the outgroup
for the B. caballi dendrogram. Hypothetical-protein-coding gene of unknown function of
T. haneyi Egyptian isolates, South African isolate (SA) [36], and T. haneyi Eagle Pass strain
reference sequence [5] were used in T. haneyi’s dendrogram construction. Theileria equi
genotype C South Africa (EU888903.1) [12] was used as the outgroup.

4.6. Statistical Analysis

The chi-square (χ2) test was applied at a probability of p < 0.05 to compare infec-
tion rates between equids determined by mPCR and cPCR. Significant associations were
identified when a p value of less than 0.05 was observed [57].

5. Conclusions

The mPCR technique is a rapid diagnostic method for the simultaneous detection of
both T. equi and B. caballi, especially in mixed-infected cases. This study represents a first
report on the presence of T. haneyi in Egyptian equids and, specifically, in donkeys. Further

https://www.megasoftware.net/download_form
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.megasoftware.net/download_form
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investigations are required to determine the T. equi and B. caballi genotypes in Egypt and to
study the impact of the presence of T. haneyi either as a single or as a co-infecting agent
with other EP in disease control and how that can be involved in pathogen evolution.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10111414/s1, Table S1: Identity percent between T. equi Egyptian isolates analyzed
in the present study. Table S2: Identity percent between B. caballi Egyptian isolates analyzed in the
present study. Table S3: T. equi accession numbers of different 18s gene isolates used in dendrogram
construction and their references. Table S4: B. caballi accession numbers of different 18s gene isolates
used in dendrogram construction and their references. Figure S1: Alignment of the DNA sequences of
five T. haneyi Egyptian (Eg) isolates (GenBank accession no. MW591692:MW591695 and MW591697)
and six T. haneyi South African (SA) isolates of a hypothetical-protein-coding gene (GenBank accession
number MW591580: MW591586) [BioEdit software].
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