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Detection of distant evolutionary relationships
between protein families using theory of
sequence profile-profile comparison
Mindaugas Margelevičius, Česlovas Venclovas*

Abstract

Background: Detection of common evolutionary origin (homology) is a primary means of inferring protein
structure and function. At present, comparison of protein families represented as sequence profiles is arguably the
most effective homology detection strategy. However, finding the best way to represent evolutionary information
of a protein sequence family in the profile, to compare profiles and to estimate the biological significance of such
comparisons, remains an active area of research.

Results: Here, we present a new homology detection method based on sequence profile-profile comparison. The
method has a number of new features including position-dependent gap penalties and a global score system.
Position-dependent gap penalties provide a more biologically relevant way to represent and align protein families
as sequence profiles. The global score system enables an analytical solution of the statistical parameters needed to
estimate the statistical significance of profile-profile similarities. The new method, together with other state-of-the-
art profile-based methods (HHsearch, COMPASS and PSI-BLAST), is benchmarked in all-against-all comparison of a
challenging set of SCOP domains that share at most 20% sequence identity. For benchmarking, we use a reference
("gold standard”) free model-based evaluation framework. Evaluation results show that at the level of protein
domains our method compares favorably to all other tested methods. We also provide examples of the new
method outperforming structure-based similarity detection and alignment. The implementation of the new
method both as a standalone software package and as a web server is available at http://www.ibt.lt/bioinformatics/
coma.

Conclusion: Due to a number of developments, the new profile-profile comparison method shows an improved
ability to match distantly related protein domains. Therefore, the method should be useful for annotation and
homology modeling of uncharacterized proteins.

Background
Common evolutionary origin or homology is one of the
key concepts in biology. Homologous proteins usually
share similar three-dimensional shape and often perform
identical or similar molecular functions. Therefore,
detection of homology is now routinely used to make
inferences regarding structure, function or evolution for
the protein of interest. Protein sequence comparison is
the primary means for establishing homology. For clo-
sely related proteins, sequence similarity can be detected
even by an untrained eye, however, the similarity

becomes weak and difficult to distinguish from random
as the evolutionary distance increases. In many cases
not until three-dimensional structures become available
the homology between proteins can be established.
Comparison of multiple sequence alignments instead

of individual sequences can often facilitate inference of
remote homology relationships. This should not be sur-
prising, because in contrast to a single sequence, a set of
aligned related sequences can tell much more about the
conservation (functional or structural importance) of
individual positions or regions within the polypeptide
chain. For homology detection, multiple sequence align-
ments are generally converted into either of the two
numerical forms: position-specific sequence profiles or* Correspondence: venclovas@ibt.lt
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Hidden Markov Models (HMMs) [1-7]. The main differ-
ence between the traditional sequence profile and HMM
is that the latter incorporates position-specific insertion
and deletion probabilities.
At present, profile-profile or HMM-HMM comparison

represents arguably the most sensitive remote homology
detection strategy. Although over the years profile-pro-
file (HMM-HMM) comparison methods have improved
significantly, they still lag behind methods based on pro-
tein structure comparison. On the other hand, there are
a number of areas for potential improvement of such
methods, including the way profiles (HMMs) are con-
structed, profile (HMM) similarity is scored and statisti-
cal significance of that score is estimated. For example,
fixed gap opening and extension penalties, traditionally
used in profile comparisons, is a poor representation of
protein evolution. Thus, introduction of position-depen-
dent variable gap penalties might be expected to lead to
considerable improvement of profile-based methods.
Further development of statistical framework is another
promising area of improvement for both profile and
HMM-based methods.
Here, we present COMA (Comparison Of Multiple

Alignments), a new profile-profile search and compari-
son method that has a number of novel features. How-
ever, the two features that distinguish COMA from
other profile-profile comparison methods most, are
position-dependent gap penalties and a global score sys-
tem, which enables analytical solution of the statistical
parameters used in estimation of the significance of a
match. We show that at the protein domain level
COMA performs better than several other state-of-the
art homology detection methods.

Methods
Methods that aim to detect relationship between protein
families by comparing corresponding sequence profiles
include three main components: 1) profile construction
algorithm, 2) logic for profile comparison and 3) estima-
tion of statistical significance of the profile-profile align-
ment score. In this section we describe underlying
theoretical considerations and their implementation in
COMA.

Profile construction
Multiple sequence alignments are converted into profiles
similarly as in PSI-BLAST [8], but with new additions
and modifications as described below.
Filtering of high and low complexity regions
Sometimes multiple sequence alignments have stretches
of positions (columns) with highly divergent residue dis-
tribution, which means that the expected occurrence for
nearly all residue types is about the same. These
stretches, defined here as high complexity regions, often

indicate either misaligned or structurally unrelated
sequence regions and may negatively affect subsequent
comparison of profiles. Comparison problems may also
be caused by multiple alignment regions of low compo-
sitional complexity. These may include groups of col-
umns with short periodic repeats or very similar residue
distributions and often correspond to unstructured
regions of aligned sequences. To deal with both
extremes of compositional complexity, the SEG algo-
rithm [9] has been modified and adopted to work with
multiple alignments and profile positional vectors. By
default, COMA uses the modified SEG for filtering high
complexity regions prior to the construction of a
sequence profile. Optionally, low complexity regions can
be filtered as well.
Sequence weighting
As in PSI-BLAST, sequence weights are computed from
the reduced multiple alignment that is compiled for
every position of the input multiple alignment. However,
in contrast to PSI-BLAST, sequences from the multiple
alignment are included into the reduced multiple align-
ment only if the residues contributing to the corre-
sponding position are not at the sequence termini. This
is important, because in some cases, the reduced multi-
ple alignment may consist of only a single column, lead-
ing to the assignment of incorrect sequence weights and
subsequently to a dramatic deterioration of the overall
performance in profile comparisons. In COMA, more
stringent requirements for reduced multiple alignments
help to avoid such situations. After reduced multiple
alignments are compiled, sequence weights are calcu-
lated by the modified Henikoff & Henikoff sequence
weighting algorithm [10].
Initial scores and probabilities
Profile scores are calculated using an initial score table
such as that from BLOSUM [11] or PAM [12] series.
Here, we use a newly derived initial score table, con-
structed from multiple alignments obtained for ASTRAL
[13] sequences. The table is derived using a method
similar to that of Henikoff & Henikoff [11] and can be
easily recalculated for a different set of multiple
sequence alignments. Residue substitution frequencies
and background probabilities derived from the initial
score table are used to compute target probabilities
(estimated frequencies of each residue at a given profile
position) using the Tatusov pseudo count method [14].
Composition-based statistics
The alignment score obtained using explicitly defined
score table is related to its statistical significance [15].
Thus, each score table used for generating alignments
can be characterized by the statistical parameters of the
score distribution [16]. In COMA, the computed statisti-
cal parameter values for the initial score table are used
for composition-based statistics [17]. Once a profile is
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constructed, it is compositionally adjusted to have statis-
tical parameter values equal to those of the initial score
table. Such a compositional adjustment is needed to
normalize profile scores so that alignment scores would
follow the reference distribution.
Deletions and insertions
Comparison of profiles in many cases is bound to pro-
duce gapped alignments. Therefore, an accurate estima-
tion of insertion and deletion probabilities at every
profile position is a significant factor that affects align-
ment quality. Currently, profile-based methods such as
PSI-BLAST [8] and COMPASS [5] use constant gap
penalties, but that is a poor approximation of evolution
of protein families. In COMA, insertion and deletion
probabilities are allowed to vary along the length of the
sequence profile. Deletion is defined as gap(s) in a
sequence aligned against the residue(s) in another
sequence, while insertion corresponds to residue(s)
aligned against the gap(s). The probability of a deletion
at the position i of the multiple alignment is expressed
as 1-Σafa, where fa is the weighted observed frequency,
calculated for the residue a at the position i. An exhaus-
tive analysis of 4611 profiles showed that deletion prob-
abilities can be accurately approximated linearly. Thus
the generalized probability of a deletion at the profile
position i is described by the linear function whose
slope and intercept are determined from the probability
values at the boundary positions of the deletion. The
probability of an insertion at the profile position i is
defined as the weighted observed frequency for the gap
(f-) at the profile position i. Since the insertion always
corresponds to a residue, which occupies a profile posi-
tion, no generalization of probabilities of insertions is
needed.

Profile-profile comparison
In COMA, a pair of profiles is aligned using a modified
Smith-Waterman dynamic programming algorithm [18],
the score system and the position-dependent variable
gap cost scheme.
Score system
The score sia of the residue a at the profile position i is

defined as s Q pia a
i

a= ( )1 / log( / )p
, where Qa

i( ) is the

target probability of the residue a at the profile position
i, pa is the background probability of the residue a, lp is
the reference statistical parameter of ungapped align-
ments of protein sequences such that the target prob-

abilities Qa
i( ) sum to 1 [8,16].

Similar log-odds principle is used to construct a score
system for a pair of profiles. An individual profile is the
score table constructed for a single sequence using the
processed information from the multiple alignment. The

information from the multiple alignment is in part

expressed with the weighted observed frequencies fa
i( )

for the residue of type a at profile positions i. Weighted
observed frequencies are important measures of posi-
tional conservation and are also used to derive the tar-

get probabilities Qa
i( ) . Thus, we use both profile

quantities ( fa
i( ) and Qa

i( ) ) to define the target prob-

abilities when comparing a pair of profiles. Let Qa
i( )

denote the target probability of the residue a at the pro-

file position i of the first profile, and ′ ( )Q a
j the corre-

sponding target probability at the profile position j of

the second profile. Let fa
i( ) and ′( )fa

j be the observed

frequencies of the residue a at the profile positions i
and j of the first and second profile, respectively. We
say that two positions i and j of two distinct profiles are
more similar if the probability odds ratio
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where N is the normalizing term such that the back-
ground probabilities for a pair of profiles sum to 1:
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l in Equation 1 is a statistical parameter of profile-to-
profile ungapped alignments such that the target prob-
abilities of a pair of profiles (numerator of the odds in
Equation 1) sum to 1:

e p s e p ss
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where p(sij) is the background probability for a pair of
profiles or, in other words, probability of the score sij, sk
are the discrete values of sij and
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Having all terms defined, we can express the score sij
from Equation 1 as follows:
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Note that the statistical parameter l is solved from the
Equation 3 using the background probabilities in Equa-
tion 4 so that the target probabilities for a pair of pro-
files in Equation 1 sum to 1. To solve Equation 3,
scores sij are multiplied by 2c (to rescue a precision of c
bits) and rounded to the nearest integer value.
Correction of scores
Multiple sequence alignments, from which profiles are
constructed, may carry very different amounts of evolu-
tionary information. For example, the information
extracted in one case from three and in other case from
three hundred aligned diverse sequences cannot be con-
sidered to have the same value. Thus before the final
alignment of a pair of profiles, assuming that probabil-
ities do not change, scores sij are corrected as follows:
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where t(i) and t’(j) are the effective number of
sequences comprising a reduced multiple alignment at
the profile position i of the first profile and position j of
the second profile, respectively. Since the limit of the
sum ˆ ˆt ti j( ) ( )+ ′ is 2, the corresponding constant is
introduced in the numerator of Equation 6 to keep both
the corrected and original scores in a similar range. The
parameter l in Equation 6 is now solved from Equation
3 so that the corrected target probabilities of a pair of
profiles sum to 1. Using the correction scheme (Equa-
tion 6), the profile scores obtained from a “thin” align-
ment are down-weighted in comparison to the scores
from a “thick” alignment. In the general case the scores
of the “thin” profile are averaged over the observed
weighted frequencies of the “thick” profile using higher
weights, while the scores of the “thick” profile are aver-
aged over the corresponding frequencies of the “thin”
profile using lower weights. If one of the two profiles,
say the first, is constructed from a single sequence,

t̂ i( ) = 0 and then the log-odds of the first profile are
averaged over the observed weighted frequencies of the
second profile. Several other score correction schemes
have been tested, but the one in Equation 6 worked
best. In the extreme case, when both profiles are con-
structed from a single sequence, no correction is
applied.
In addition to “thickness”, the information content of

the profile position i is characterized by the expression of

relative entropy r Q Q pi
a

i
a

i
aa

( ) ( ) ( )= ( )∑ log 2 . Small

values of r(i) indicate uninformative and variable posi-
tions. Therefore, scores of the positions, having r(i) lower
than the specified threshold, are scaled down by the
adjustable factor (0.5 by default). The threshold is inver-
sely proportional to -log E, where E is the pre-calculated
E-value per hit. For compositionally similar profiles this
threshold will be low. Scaling down of the scores for
positions of low entropy is performed independently of
the effective number of sequences ("thickness”) compris-
ing corresponding positions.
Gap cost computation
Position-dependent gap costs for a pair of profiles are
defined by the insertion/deletion probabilities for every
position of individual profiles and by the limits within
which position-specific gap costs are allowed to vary.
The high scoring positions of the score system are
mostly conserved, and the probability for a gap to occur
there is low. In contrast, the positions of low scores
often match variable regions (e.g. loops in protein struc-
ture) where the probability of a gap becomes higher.
Thus, gap cost limits should be more stringent for high
scoring positions than for low scoring ones. Following
this logic, gap cost limits for the first and the second
profile are calculated using respectively the row and col-
umn maximum scores of the score system. For each
position of the score system, the number w of maximum
scores is recorded and their autocorrelation is calcu-
lated. Since the autocorrelation is a sum of the products,
the characteristic value of maximum scores for the cor-
responding position is calculated as the square root of
the autocorrelation value divided by the number of
summed products. This ensures that the characteristic
value is within the similar range as the maximum scores.
The final gap cost limit for the corresponding position is
computed as the square root of the autocorrelation
function of the characteristic values divided by the num-
ber of summed products. The goal of this procedure is
to make the gap cost limit for the corresponding posi-
tion dependent on the adjacent characteristic values.
The formal description of this logic follows below.
Let sij denote the score for the positions i and j of the

score system. Let ml
i

l

w( ){ }
=

−
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1
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default, w = ω = 4); ω (ω +1)/2 is the number of the
summed products. If the condition in Equation 8 is not
satisfied, A(i) is assigned to 0.
Similarly, we define the gap cost limit B(j) for the sec-

ond profile at the position j:
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Sometimes low positive scores in the score system imply
relatively low gap cost limits leading to high-scoring local
alignments, which may be poor because of the positive
expected score per aligned pair of positions [19]. In
COMA, to address this problem, the term z is added to
the multipliers within the autocorrelation functions in
Equations 8 and 9 so that the gap cost limits are widened:
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The parameter z in Equation 10 is introduced twice in
a two-step iterative protocol. In the first step, the term
z, inversely proportional to √H, is added to each of the
autocorrelated values. H is a statistical parameter of
entropy (see statistical significance below) and its low
values indicate low scores. By default, H is derived ana-
lytically for a pair of profiles (optionally, H may be com-
puted for every individual position of the score system,
thus increasing specificity at the expense of sensitivity).
In the second step, an initial alignment and its E-value
are computed. Based on this initial alignment, z is ree-
valuated as -y/(log E + x), where x and y are adjustable
parameters and E is the initial estimated E-value per hit.
This reevaluation implies narrowing of gap cost limits in
case of small initial E-values that indicate possibly
related profile pairs.
A gap cost at a certain position of the score system is

two-sided. It depends on both the deletion probability in
the first profile and the insertion probability in the sec-
ond (the deletion probability expresses probability for a
gap to occur in the same profile, while the insertion
probability - in the second). The final gap cost G(i) for
the first profile at the position i of the score system is
defined as a fraction of the size of the gap cost limit A(i)

at the position by the superposition of the deletion and
insertion probabilities:

G
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where D(i) is the deletion probability of the first profile
at the position i, I(j) is the insertion probability of the
second profile at the position j. Since the gap cost limits
A(i) by definition mean the costs of the deletions for the
first profile, a weight of the deletion probability D(i) of
that profile in the expression for G(i) is reduced by the
constant c (by default c = 0.6). The gap cost for the sec-
ond profile C(j) is computed in a similar way:
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where P(j) is the deletion probability of the second
profile at the position j, J(i) is the insertion probability of
the first profile at the position i.
If multiple sequence alignment is “thin”, the effect of

deletion and insertion probabilities may be dispropor-
tionally large. For example, consider a position of multi-
ple sequence alignment consisting of just two aligned
sequences where the second sequence contains a gap.
The insertion probability for that position would be
50%. To avoid such situations, the insertion/deletion
probabilities are adjusted by a factor of 1/(1 + exp(-t u
+ v)), where t is the effective number of sequences in
multiple sequence alignment at a given position, and u
and v are the adjustable parameters. When the align-
ment is “thick” (the effective number of sequences is
large), the factor approaches 1 and the adjustment
essentially has no effect.
All the heuristic parameters (x, y, u, v, c,...) were opti-

mized on the most structurally diverse and most diffi-
cult subset (200-300 profiles) of the dataset.

Statistical significance
An accurate estimation of statistical significance of the
alignment score is important as it tells whether aligned
sequence profiles (representing protein families) are
likely to be related or not.
We use analytical estimation of statistical significance.

The analytical approach was initially proposed [16] for
any score table used for ungapped sequence alignments
and meeting two necessary conditions: the mean of
scores must be negative and at least one positive score
must exist in the table. It was shown [20] that the distri-
bution of the optimal alignment scores using a score
table that meets these two conditions can be well
approximated by the extreme value distribution (EVD).
Furthermore, it was shown [19] that the limit of average
score per aligned pair of positions exists for gapped
alignments. This means that the theory can be extended
for gapped alignments and this has been demonstrated
in practice [8].
Statistical parameters
If the distribution of the optimal alignment scores is
approximated by EVD, the expected value E (the
expected number of alignment scores greater than or
equal to s per database search) can be expressed as fol-
lows:

E Kmne s= − , (13)

where m is a length of the query profile, n is a length
of the database. This expression of E-value and the cor-
responding P-value (P = 1-exp(-E)) are the ones used in
COMA to estimate statistical significance. Since the
score system used in COMA is amenable to the Karlin-
Altschul statistics, the statistical parameters are derived
as follows: the scale parameter of the distribution l, is
solved from Equation 3, where the scores sk are calcu-
lated from Equation 6, K is found by the formula given
in [16]. Using the definitions of the target and back-
ground probabilities in Equation 1, the parameter of
relative entropy H required to compute K is expressed
as follows:
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It follows from Equation 1 that the target probabilities

are equal to p s eij
sij( ) 
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and the log-odds in Equation 14 are equal to l sij. Using
the notations found in Equations 3 and 4, H is
expressed as:

H s p s ek k
s

k

k= ( )∑  . (15)

It is important to note that the search space m n used
in Equation 13 is valid asymptotically. Thus, the edge
effect (dependence of the expected alignment length on
the alignment score) is corrected by computing addi-
tional statistical parameters a and b [21].
Composition-based statistics and the global score system
In COMA, statistical parameters are computed for each
pair of profiles to be aligned. The exact values of solved
statistical parameters (l, H, K) may differ from pair to pair
of profiles leading to adverse effects such as different sta-
tistical significance values for identical scores. To deal
with this problem we apply composition based statistics
using a newly introduced global score system. The idea of
the composition-based statistics [17] is to transform a
score table (the score system in the case of profiles) so
that its statistical parameter lu* becomes equal to the
reference value of lu, where lu is the statistical parameter
of the distribution of ungapped alignment scores. For
sequences the reference parameter corresponds to the
known parameter of the residue substitution score table
used, e.g. one of the BLOSUM [11] or PAM [12] families.
For profiles, there is no explicitly defined alphabet of finite
size such as that for sequences (twenty different residues).
Here, to make such an alphabet for profiles, we com-

pile all unique profile vectors from the profile database
used for profile comparisons and construct a global
score system of profile vectors (Figure 1). Each cell (i, j)
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of the global score system contains the similarity score
sij of two profile vectors. Solving Equation 3 for the
parameter l gives us the value of the required reference
parameter lu. After the score system is constructed for
a pair of profiles, its scores are transformed so that the
parameter lu* of the score system becomes equal to the
reference parameter lu. Making use of the global score
system involved a non-trivial algorithmic approach (to
make it feasible, we introduced a two-level hash system
with the binary search structures), but it significantly
improved the performance of COMA.
Statistical significance of gapped alignments
The analytical theory of statistical significance estima-
tion has been developed only for ungapped alignments
[16]. Since there is no universal theory for gapped align-
ments, the statistical parameters of the score distribu-
tion of gapped alignments have to be estimated
empirically. Although in theory [22] it is possible to
derive analytical expressions of the statistical parameters
of gapped alignments, in practice this does not seem to
be feasible and, to our knowledge, so far has not been
implemented. The gap cost scheme in COMA is com-
plex, and the analytical approach in this case would not
be feasible as well.
On the other hand, it has been shown empirically that

the scores of gapped alignments are also distributed
according to EVD [8]. For profile-profile comparisons,
the score distribution might be slightly diverged from
EVD [23] due to specifics of the profile scoring and gap
introduction methods. However, for significance estima-
tion the most important is the tail of the distribution,
which can be accurately represented by EVD.
To derive the reference statistical parameters lg and

Kg for gapped alignments, we compiled a set of

unrelated COMA hits. This set comprises 160 513 hits
that fulfil all of the following conditions: (a) profiles are
from different SCOP [24] superfamilies, (b) COMA
alignment score is ≥ 60, and (c) TM-score [25] accord-
ing to the DALI [26] alignment evaluated in the local
mode is ≤ 0.17 (see “Results” for detailed description of
alignment evaluation).
Having compiled the set of unrelated hits, we then

derive the scale and localization reference statistical
parameters of the extreme value distribution, l and μ,
respectively, as follows. We progressively increase the
lower bound of the alignment score threshold for align-
ments to be considered, each time re-estimating the sta-
tistical parameters for the resulting set. In this way we
obtain a series of values for both l and μ that in general
show a significant variation (Figure 2). However, with
the increase of alignment scores, the statistical para-
meter values become fairly stable (for scores over 75),
allowing to select them as the reference values for
gapped alignments (l serves as lg, while μ is used to
calculate Kg). In other words, the empirically derived
reference values of l and μ are expected to accurately
describe the statistics of score distribution in the region
of higher scores (corresponding to the tail of EVD).
As a result of the composition-based statistics, the

parameter l u
* solved and scaled for a pair of profiles is

equal to the reference parameter lu of the global score
system: l u

* ≡ lu. Only in rare cases, e.g. because of low
absolute values of scores (thus indicating weak signal of
similarity if any), lu* and lu might be slightly different.
We then assume that the statistical parameter lu* of the
score system for the pair of the profiles to be aligned

Figure 1 The global score system of profile vectors. Each cell
within the global score system corresponds to the score sij
calculated using information from two profile vectors found at the
row and column positions i an j, respectively.

Figure 2 Estimation of statistical parameters for score
distribution of gapped alignments. (A) Obtained alignment score
distribution of unrelated hits; COMA scores are fitted to the extreme
value distribution considering only the hits with the score of at least
63 (the dashed line). (B) Estimation of the scale statistical parameter
l and (C) the localization statistical parameter μ . Standard errors of
the estimates are shown with error bars. The dashed line denotes
the level at which the fluctuation of the statistical parameters
becomes small.
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with gaps differs from the reference parameter lg*

exactly in the same ratio as lu* differs from lu. The
same principle is applied for estimation of the statistical
parameter Kg

* of the score system for the pair of profiles
to be aligned with gaps. However, in contrast to l, the
values of Ku and Ku are of ten different. Thus, Kg

* is cal-
culated by adjusting the empirically estimated Kg by the
factor Ku

*/Ku. The final expressions of lg* and Kg
* are as

follows:

   g u g u g u g uK K K K* * * */ , /= = (16)

Results
To evaluate COMA, we compared its ability to detect
remote relationships and produce accurate alignments
with that of other state-of-the-art profile-based methods.
We chose COMPASS [5] (version 2.42), another profile-
profile comparison method, HHsearch [6] (1.5), a
method based on HMM-HMM comparison, and PSI-
BLAST [8] (2.2.15), a widely used profile-sequence
method.

Test set
The assessment of distant relationships and correspond-
ing alignments can be best done having three-dimen-
sional (3D) structures of the test set proteins in hand.
Here, we used SCOP [24] (1.71) protein structures and
corresponding ASTRAL [13] sequences. Having focused
on distant homology we only considered sequences 20%
or less identical to each other. We also excluded
sequences of small and membrane protein classes (’g’
and ‘f’ respectively). As a result, we ended up with a
large statistical sample consisting of 4611 sequences
representing a wide variety of protein structures and a
challenging set for similarity detection. For each
sequence from this set, multiple alignments were built
by running up to 6 iterations of PSI-BLAST against the
NCBI non-redundant (nr) sequence database filtered to
the maximum identity of 70%. To prevent unrelated
sequences from entering the alignments, we ran PSI-
BLAST using a stringent (105) sequence inclusion
threshold and with low complexity filter turned on. The
resulting alignments were used in all-to-all comparison
for all methods except for COMPASS. Before running
COMPASS, alignment columns corresponding to gaps
in the first (query) sequence were removed, substantially
improving its performance.

Evaluation framework
Traditionally, homology detection methods have been
evaluated against a reference protein classification
scheme and reference alignments serving as “gold stan-
dard”. However, the more remote relationships are

considered, the less straightforward becomes the use of
“gold standard” classification schemes and alignments.
For example, the original hierarchical SCOP classifica-
tion scheme implies that protein domains assigned to
different folds are unrelated and therefore should be
considered as a false positive match in the benchmark.
Yet, by now, it is commonly accepted that there are
many evolutionary related proteins classified as having
different folds. Perhaps most obvious examples include
Rossmann-like domains, immunoglobulin-like b-sand-
wiches and b-propellers. Evolutionary relationships can
be found even at the highest hierarchy level, between
domains belonging to different SCOP classes (e.g. [27]).
Reference alignments usually have to be derived sepa-

rately, using some structure comparison method, e.g.
DALI [26]. However, different structure comparison
methods tend to produce structure-based alignments
that differ in coverage and/or accuracy. This problem is
essentially non-existent for closely related proteins, but
becomes very important in the cases of remote homol-
ogy, the area specifically targeted by profile-profile com-
parison methods.
Therefore, to bypass additional problems with refer-

ence classification and reference alignments we chose to
use exclusively the reference-free evaluation framework
based on structural models. In this framework, no other
information except for the pairwise sequence alignment
produced by the assessed method and 3D structures of
aligned protein domains is needed. Alignment is used to
generate a 3D model of the query sequence based on
the structure of the match. The questions of whether
the match is correct (are aligned protein structures simi-
lar?) and whether the alignment is accurate are automa-
tically answered by evaluating the obtained model
against the real structure. Such model evaluation frame-
work has been very effective in Critical Assessment of
Techniques for Protein Structure Prediction (CASP)
experiments lasting over a decade [28]. For assessment
of homology detection methods the reference-free eva-
luation initially was introduced as a way to take care of
exceptions within the “gold standard” SCOP classifica-
tion [6] and, more recently, validated as an entirely self-
sufficient evaluation framework [29].
Here, pairwise alignments obtained by every tested

method are converted into corresponding 3D models
using a standard MODELLER [30] (version 9.2) run. To
evaluate the quality of the models we use the template
modeling score (TM-score) [25], which is similar to
GDT_TS [31] and MaxSub [32] measures, but is
designed to be less dependent on the protein size. TM-
score generates a single value in the [0; 1] range indicat-
ing how close is the model to the reference structure
[25] (TM-score ≤ 0.17 implies a random match; TM-
score ≥ 0.4 indicates a statistically significant similarity;
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for identical structures TM-score = 1). Accordingly, in
our evaluation scheme the aligned pair of proteins is
accepted as a true positive match, if the TM-score is ≥
0.4 and a false positive match, if the TM-score ≤ 0.17.
Alignments producing intermediate TM-score values
(0.17 < TM-score < 0.4) are considered to represent
“unknown” relationships.

Evaluation of methods in all-to-all comparison
To measure the performance of all the evaluated meth-
ods, we performed all-to-all comparison for the test set
(4611 multiple alignments). Although in our evaluation
framework the alignment, produced by a method being
tested, by itself defines both the quality of the match and
the alignment accuracy, two different evaluation modes,
global and local, are possible. In a global mode, the align-
ment is evaluated with respect to the entire protein
domain. This is equivalent to asking how useful the align-
ment is for generating a structural model of that domain.
In a local mode, the alignment is evaluated within its
boundaries. This mode measures how well a particular
method can detect and align possibly short, but structu-
rally similar fragments, without the requirement that
these fragments come from overall similar domains. A
caveat of this mode is that very short alignments would
often score very high, independently whether the aligned
fragments are related or not. Therefore, in the local eva-
luation mode we only consider fragments that include at
least 15 aligned residues, the length that approximates
the transition from individual secondary structure ele-
ments into supersecondary structure motifs.
All-to-all comparison generates two matches between

proteins A and B (AB and BA), scores of which in gen-
eral may slightly differ. To reduce the redundancy, for
each evaluated method we only consider one of the two
matches producing a better statistical significance value.
In both evaluation modes for every aligned pair AB we
consider two models, A’ and B’ (A’ is a model of A built
using the structure of B as the template, and B’ is a
model of B built using the structure of A). Although the
same AB alignment is used to generate both A’ and B’,
their corresponding TM-scores in general differ, because
they correspond to different structure pairs AA’ and
BB’. Of the two TM-scores for the AB pair we take the
better one.
Figure 3 shows the results of both global (Figure 3A)

and local (Figure 3B) evaluation modes as Receiver
Operating Characteristic (ROC) charts. In a ROC chart
the number of true positives (TP) is plotted against the
number of false positives (FP) after matches are sorted
according to their statistical significance (e.g. by ascend-
ing E-values) for each method. The higher is the curve
(or the larger is the relative area under the curve), the
better is the performance of the method.

In the global evaluation mode, COMA is clearly better
than the other methods included in the comparison.
Within the high specificity range (low error rate) COM-
PASS is second, but in the lower specificity region
(~26% error) is overtaken by the HHsearch version that
uses secondary structure information. For the user of a
particular homology detection method, the most impor-
tant is the left-most region of the curve, because it

Figure 3 Performance of the evaluated methods according to
the ROC curves. A match is defined as a true positive if a
corresponding structural model gets TM-score ≥ 0.4, and a false
positive if TM-score ≤ 0.17. HHsearch was tested both with and
without (w/o ss) consideration of secondary structure information.
Numbers in parenthesis indicate relative area under the
corresponding ROC curve. (A) Global mode analysis, in which
alignments are evaluated in respect to the entire structural domains.
Empty squares mark approximate transition points, where false
positives start accumulating more rapidly. Corresponding E-values for
COMA, COMPASS, PSI-BLAST and HHsearch w/o ss are 0.01, 0.03,
0.0007 and 3e-6 respectively. HHsearch probability is 97.6% (B) Local
mode analysis; evaluation is done within the boundaries of aligned
segments; E-values at transition points for COMA, COMPASS, PSI-
BLAST and HHsearch w/o ss are 8e-6, 1e-4, 1e-5, and 0.65
respectively. HHsearch probability is 65.3%. Correlation between the
estimated and observed statistical significance values for each
method from the purely statistical perspective without differentiating
global and local modes is shown in Additional file 1, Figure S3.
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corresponds to the statistically most significant matches.
The significantly better performance by COMA in this
region becomes even more apparent when the same
data is plotted in a log-scale (Additional file 1, Figure
S1A). To make sure that this result is not specific to the
exact cutoff (TM-score ≥ 0.4) that we used as a criterion
of true positive we have also tried alternative definitions
(TM-score ≥ 0.35 and TM-score ≥ 0.45). In both cases
we obtained qualitatively similar results with COMA
being a top performer (Additional file 1, Figure S2A, C).
In addition, we sought an independent means to con-
firm that the TM-score criterion is indeed sufficient to
make a case for meaningful similarity of an aligned pair.
For this, we analyzed the non-redundant set of true
positives (according to the TM-score criterion) pro-
duced by all the evaluated methods. All pairs from the
same SCOP superfamily as well as those coming from
different superfamilies, folds or even classes, but produ-
cing DALI Z-score ≥ 2, were considered related. It
turned out that in the global evaluation mode TM-score
results are nearly perfectly reproduced by the combined
SCOP/DALI classification scheme (Additional file 1,
Table S1). In contrast, if only SCOP hierarchy is used
for classification, the discrepancy is much larger.
The local evaluation mode measures the quality of the

structural match predicted by the sequence alignment
with respect to the aligned region only. The results of
the local evaluation mode (Figure 3B; Additional file 1,
Figure S2B, D) of HHsearch are strikingly different from
those obtained in the global mode. Both versions of
HHsearch, in particular the one using secondary struc-
ture information, outperform other methods by a large
margin, except for the region of very high specificity,
where COMA detects the largest number of true posi-
tives (Figure 3B; Additional file 1, Figures S1B, S2B, D).
At the same time COMA, COMPASS and PSI-BLAST
all show relative performance qualitatively similar to
that of the global mode. Why then the HHsearch beha-
vior is so much different in the local evaluation mode?
The apparent reason for that becomes clear if we ana-

lyze the binned distribution of the length of alignments
that score as true positives in the local evaluation mode
for all the methods (Figure 4). Both versions of
HHsearch strongly favor relatively short alignments (up
to 40 aligned positions). In contrast, COMA and COM-
PASS, are both aimed at aligning longer segments.
COMPASS specifically avoids short alignments (length
<40). On the other hand, while COMA produces a sig-
nificant number of short accurate alignments, its
strength lies in generating long ones (over 180 aligned
positions).
Thus the combined analysis of the performance by

compared methods reveals the opposite preferences
towards the alignment length by HHsearch on one side

and COMA and COMPASS on the other side. It is
interesting to note that for all of the compared methods
the number of true positives is higher in local as
opposed to the global mode analysis (Figure 3; Addi-
tional file 1, Table S1 and Figure S4). The SCOP/DALI
criterion recaptures most of the true positives as defined
by TM-score in the local evaluation mode, yet the dis-
agreement is larger than in the global mode (Additional
file 1, Table S1). This should not be surprising, because
both SCOP and DALI are aiming at the global similarity
between protein domains. Taken together the data indi-
cates that 1) it is relatively easier to accurately align
similar fragments than entire domains and that 2) a
number of detected similar fragments are imbedded
within domains that are not globally similar.

Structure-based vs. profile-profile alignments
It is a common knowledge that structure-based align-
ments are in general more accurate than those based on
sequence (profile, HMM) comparison. Thus, we asked
whether and, if so, to what extent alignments produced
by individual methods in all-to-all comparison can be
improved by using structure comparison? To answer
this question, we realigned equal number of the top
matching domain pairs for each method with DALI [26]
and computed TM-scores for these alignments. Distri-
bution of the original TM-scores and those based on
DALI alignments are shown in Figure 5. One can see
that the TM-score distribution derived using DALI
structural alignments is strongly shifted towards higher
TM-score values in both evaluation modes. In other
words, DALI was able to improve significantly both the
coverage and accuracy of alignments. Interestingly, after

Figure 4 Distribution of true positives according to the
alignment length. The figure shows distribution of true positives
according to the length of corresponding alignments from the
30000 most significant hits found by each method. Only alignments
including at least 15 aligned residues have been considered.
Alignments over 180 in length are pooled together in the last bin.
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the realignment with DALI, the TM-score distribution is
similar for all evaluated methods, except for PSI-BLAST,
which remains significantly worse. These results indicate
that the quality of homology detection for all of the
evaluated methods (except for PSI-BLAST) is compar-
able. The observed differences in performance mostly
come from differences in the alignment coverage and/or
accuracy.
Although structure-based methods such as DALI,

often serving as providers of “gold standard” references,
overall outperform profile (HMM)-based methods, they
are not perfect either. Yet, in the reference-dependent
evaluation, any disagreement with the “gold standard” is
treated as an error. In contrast, using the reference-free
setting, we can directly find cases when structure-based
methods perform worse than the evaluated methods.
Figure 6 provides a couple of such examples.
In the first example (Figure 6A), we consider two

SCOP structures belonging to different folds that never-
theless have been identified by COMA as related at the
domain level. It aligned ketopantoate reductase
(d1ks9a2), a representative of Rossmann-fold (SCOP
fold: c.2), and the methyltransferase (d1uwva2; c.66)
RumA with statistically significant scores (E-value =
2.6e-3 and TM-score = 0.4262). DALI superimposed the
corresponding structures producing Z-score of just 2,
which is at the borderline of significance (structural
matches with DALI Z-score lower than 2 are considered
spurious [26]). Upon closer inspection, it turned out
that COMA and DALI aligned the Rossmann-fold

domain with different domains of RumA. COMA
matched it with the catalytic domain representing a
typical Rossmann-like SAM-dependent methyltranserase
fold [33,34], reproducing previously established relation-
ship. In contrast, DALI superimposed it with the iron-
sulfur cluster-containing central domain, which has a
different topology altogether [34]. Interestingly, when
the isolated catalytic domain of RumA is compared to
d1ks9a2, the resulting DALI alignment is assigned a
much higher Z-score of 4.9. The corresponding TM-
score = 0.4887 indicates that DALI has been able to
improve over COMA’s alignment, thus corroborating
the relationship detected by COMA. However, note that
this DALI result was obtained only due to a manual
intervention. Were the original DALI results and the
SCOP classification to serve as a reference, the distant
relationship detected by COMA should have been con-
sidered either as false positive or at least dismissed as
“unknown”.
The second example (Figure 6B) involves human psor-

iasin (d1psra_) and pike parvalbumin (d2pvba_), a pair
of clearly homologous proteins belonging to the same
SCOP superfamily (EF-hand; a.39.1). While COMA cor-
rectly assigns a significant E-value (2.2e-4) to their

Figure 5 Distribution of TM-scores for original and structure-
based alignments. TM-score histograms obtained for original
alignments in global (A) and local (B) evaluation modes without
division into TP/FP. The data is shown for the 14516 most
significant hits for each method (the number corresponds to
COMA’s hits up to Evalue = 0.01). Histograms in (C) and (D) show
TM-score distributions for the same hits as in (A) and (B)
respectively, but with TM-scores derived using DALI structural
alignments.

Figure 6 Examples of COMA performing better than DALI, a
structure-based method. (A) COMA and DALI, each aligns d1ks9a2
with d1uwva2, but with different domains, catalytic and central,
respectively. Coloring of d1ks9a2 and the catalytic domain of
d1uwva2 corresponds to the progression of polypeptide chain from
N-(blue) to C-terminus (red). (B) Homologous pair of EF-hand
proteins, human psoriasin (d1psra_) and pike parvalbumin
(d2pvba_).
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alignment, DALI considers this to be a spurious match
(Z-score = 1.9). Interestingly, both methods produce
similar alignments, but the alignment by COMA (TM-
score = 0.4725) is an improvement over DALI’s (TM-
score = 0.4234).
These two examples vividly illustrate the problems

associated with the use of structure-based classification
and/or alignments as “gold standard”. With further
improvement of homology detection methods the use
of “gold standards” is going to be even more
problematic.

Discussion and Conclusions
In general, there are two major features that distinguish
COMA from other sequence profile-profile comparison
methods. The first one is position-dependent gap penal-
ties. Although position-dependent gap penalties are
commonly used in HMMs, to our knowledge, this study
is the first one to implement them for comparison of
sequence profiles. The second novel feature is the con-
cept of the global score system. It enabled us to extend
the analytical theory of statistical significance estimation
developed for sequence comparisons into the compari-
sons of sequence profiles.
So far, a theory that could be as robust as that devel-

oped earlier for sequence comparisons [16] has been
missing for profile-profile comparisons [35]. An earlier
implementation of the analytical approach for sequence
profile-profile comparisons [5] employs a number of
simplifications in computing statistical parameters,
thereby affecting their precision. One of the fundamen-
tal prerequisites for application of the Karlin-Altschul
statistics [16] is the existence of the discrete score table.
Here, to satisfy this requirement for profile comparisons
we introduce a global score system that includes all the
profile vectors from a profile database. Although the
construction of the global score system has presented a
serious challenge at the implementation level it has been
successfully resolved. Thus, the introduced global score
system provides a foundation for the accurate analytical
estimation of statistical significance of ungapped profile
alignments and for composition-based statistics. Gapped
alignments, however, follow a different score distribu-
tion and, therefore, their statistical significance has to be
estimated empirically. In the case of gapped alignments,
we only focus on the tail of the score distribution,
which is the most important region for significance esti-
mation. In COMA, we fit it to EVD, but fitting to a
slightly different distribution [23] is also possible.
Although in COMA the statistical significance of

gapped alignments is estimated empirically, the resulting
gapped alignments depend, albeit indirectly, on the Kar-
lin-Altschul statistics. The dependence comes from the
compositional adjustment of scores and, by definition,

gap penalties, derived using the analytically solved statis-
tical parameter values. Since the precision of these
values strongly impacts the actual alignment of a profile
pair, we believe that this significantly contributes to
COMA’s performance.
Along with algorithmic improvements, an important

factor in the development of sequence profile-based dis-
tant homology detection methods is an effective evalua-
tion framework. Historically, profile-based methods have
been benchmarked against external “gold standard” pro-
tein classification schemes and reference structure-based
alignments. However, profile-based methods have
already advanced to a point, where very remote relation-
ships can be detected. Often these distant relationships
challenge the traditional hierarchical classification
schemes such as SCOP and/or structure-based align-
ments (Figure 6). This is in line with the emerging view
of “continuous” protein fold space and also with the
observation that there is no single structure-based
method that would always produce an optimal align-
ment (e.g. reviewed in [36]). In this study we used an
evaluation method that does not depend on any refer-
ence classification or reference alignments and only
requires the knowledge of protein 3D structures. In this
evaluation scheme we ask a single question: how useful
is the alignment between a query and a matching pro-
tein in reproducing the structure of the query. The clo-
ser are the protein structures and the more accurate is
the alignment, the better score is assigned for the
aligned pair.
Here, this general evaluation scheme has been applied

in two different modes, global and local, each targeting
different abilities of the evaluated methods. In a global
evaluation mode an alignment is evaluated in respect to
the entire protein domain. Therefore, in this mode not
only more accurate but also more complete alignments
are favored. Yet, a simple overprediction is not rewarded
either, because if aligned regions are not structurally
similar, their contribution to the total score is negligible.
In contrast, the local evaluation mode is not concerned
with the alignment coverage. It only measures how
effective is the method in detecting and accurately align-
ing structurally similar protein segments, which can be
very short.
It is obvious that there is an unavoidable trade-off in

performance, evaluated using these two different modes.
A method, optimized to produce very short accurate
alignments that include only the structurally most simi-
lar segments (e.g. individual secondary structure ele-
ments) will fare well in the local evaluation mode, but
would be very poor if evaluated at the domain level
(global mode). In contrast, a method that tries to extend
alignment into less structurally similar regions, may per-
form very well in the global mode, but will inevitably
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look worse if evaluated in the local mode. Certainly, for
different tasks, different modes may be desired. For
example, the accurate detection of short, structurally
similar fragments is of great value in protein structure
prediction by fragment assembly, regardless whether
these fragments are homologous or simply reflect simi-
lar conformational preferences. However, if the method
is to be used primarily for homology modeling or struc-
tural/functional annotation of protein domains, the
good performance in the global mode is more
appropriate.
COMA performs best at the protein domain rather

than at the fragment level. This may be linked to posi-
tion-dependent gap penalty scheme that allows the
extension of alignment into structurally similar regions
through sizeable variable regions (e.g. long loops). The
shape of the ROC curve in the global evaluation mode
shows that COMA is also good in distinguishing related
from unrelated matches, an important property from
the user’s perspective. This property may be attributed
to the new procedures of compositional adjustment of
scores and statistical significance estimation. In conclu-
sion, we hope that our new profile-profile comparison
tool will be useful in studies of protein structure, func-
tion and evolution.
The COMA software package and a web server are

freely available for academic use at http://www.ibt.lt/
bioinformatics/coma/. The standalone package also
includes programs for constructing the global score sys-
tem and computing/scaling its statistical parameters for
any profile database of interest.

Additional file 1: Supplementary table and figures. Supplementary
table provides the analysis of alignments defined as “true positives” by
the TM-score criterion using two independent schemes ("SCOP” and
“SCOP/DALI”). Supplementary figures provide supporting data for the
results of methods evaluation. Figures S1 and S2 display ROC curves
using correspondingly an alternative (log-scale) representation and
alternative definitions for “true positives”. Figure S3 provides a plot,
showing how good is the agreement between the expected and
observed P-values. Figure S4 represents evaluation results as Venn
diagrams.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
89-S1.pdf ]
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