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Abstract The ability to measure minute structural changes in neural circuits is essential for long-

term in vivo imaging studies. Here, we propose a methodology for detection and measurement of

structural changes in axonal boutons imaged with time-lapse two-photon laser scanning microscopy

(2PLSM). Correlative 2PLSM and 3D electron microscopy (EM) analysis, performed in mouse barrel

cortex, showed that the proposed method has low fractions of false positive/negative bouton

detections (2/0 out of 18), and that 2PLSM-based bouton weights are correlated with their volumes

measured in EM (r = 0.93). Next, the method was applied to a set of axons imaged in quick

succession to characterize measurement uncertainty. The results were used to construct a statistical

model in which bouton addition, elimination, and size changes are described probabilistically,

rather than being treated as deterministic events. Finally, we demonstrate that the model can be

used to quantify significant structural changes in boutons in long-term imaging experiments.

DOI: https://doi.org/10.7554/eLife.29315.001

Introduction
The repertoire of synaptic connectivity within neuronal networks is immensely increased through the

continuous formation and elimination of synapses (Chklovskii et al., 2004; Stepanyants et al.,

2002). Indeed, in vivo imaging studies over the last 15 years have shown that synaptic structures

remain dynamic throughout adulthood (Holtmaat and Svoboda, 2009; Trachtenberg et al., 2002).

This structural plasticity, i.e. the appearance, disappearance, and the morphological modifications of

synapses in the adult brain has been established as a fundamental underpinning of learning and

experience-dependent changes in neuronal circuits (Holtmaat and Caroni, 2016; Holtmaat and

Svoboda, 2009; Stepanyants and Chklovskii, 2005).

Synapses in the central nervous system are morphologically distinct structures, visible only in elec-

tron microscopy (EM). In light microscopy (LM) a synapse can be detected based on the presence of

a swelling on the axon, referred to as bouton, or a protrusion from the dendrite, known as spine. In

the cerebral cortex, the majority of excitatory synapses and a minority of inhibitory synapses occur

on dendritic spines (Gray, 1959). Spines can easily be detected, hence most studies of structural

plasticity have used manual or semi-automated tracking of these structures in time-lapse images to

infer circuit changes (Holtmaat and Svoboda, 2009). Yet, studies relying on tracking of dendritic

spines may not reveal the full extent of synaptic plasticity because synapses can also occur on den-

dritic shafts. On the other hand, a dendrite’s presynaptic apposition can be detected as an
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irregularity or swelling on the axon. Similar to dendritic spines, such axonal boutons have long since

been recognized as sites of functional connections between neurons (Van Gehuchten, 1904). There-

fore, the detection of these structures would provide a powerful means to analyze synaptic connec-

tivity (Markram et al., 2015; Meyer et al., 2010)

Many EM studies have revealed a variety of presynaptic morphologies and the arrangements of

vesicles, endoplasmic reticulum, and mitochondria therein (Harris and Weinberg, 2012). This is the

only method capable of verifying that LM observations of axonal boutons do indeed correspond to

synaptic contacts, but applying such a method every time is difficult across large volumes and impos-

sible at more than one time point. The few real-time imaging studies of presynaptic plasticity in vivo

used semi-automatic detection methods to track individual axonal boutons in LM time-lapse images

(Chen et al., 2015; De Paola et al., 2006; Grillo et al., 2013; Holtmaat et al., 2009;

Johnson et al., 2016; Keck et al., 2011; Majewska et al., 2006; Mostany et al., 2013; Qiao et al.,

2016; Stettler et al., 2006; Yang et al., 2016). Visually isolated axons were segmented, and axonal

boutons, as presumed synaptic contacts, were scored by virtue of their integrated fluorescence

(De Paola et al., 2006; Grillo et al., 2013). Based on arbitrarily defined thresholds, boutons are usu-

ally scored in a binary fashion, i.e. present or absent. However, due to jitter in fluorescence caused

by fluctuations in imaging conditions, binary scoring of boutons may lead to high false positive/neg-

ative rates.

Several computer-assisted methods aid axon segmentation (Acciai et al., 2016; Parekh and

Ascoli, 2013) and bouton detection (Song et al., 2016) in sparsely labeled tissue, but many chal-

lenges remain. The most difficult challenges to overcome are due to the limited resolution of two-

photon microscopy (mainly along the optical axis, z). For example, due to the high density of bou-

tons on cortical axons, boutons often lie in close proximity to one another and can appear fused in

microscopy images (Figure 1). In densely labeled tissue bouton detection is further confounded by

the fact that axons can also appear fused to one another which locally increases the integrated fluo-

rescence. Furthermore, spatially and temporally non-uniform expression levels and the variability in

axon caliber complicate the tracking of boutons over time. Such complications lead to inconsisten-

cies and bias in LM-based bouton detection methods. The bias will affect bouton density estimates,

while the inconsistencies, combined with binary scoring of boutons, will lead to an apparent increase

in the bouton turnover rate.

Here, we describe semi-automated methodology for bouton detection and tracking in images

acquired by 2-photon laser scanning microscopy (2PLSM) in vivo. We validate the results of the

method with correlative 3D EM of in vivo imaged axons, and by applying the detection method to

images acquired under various conditions that mimic the variability in time-lapse imaging. We quan-

tify variability in bouton detection and propose a statistical model to deal with the inherent uncer-

tainties of this LM-based detection method.

Results

LM-based bouton detection and measurement of structural changes
Here, we describe and evaluate a heuristic strategy that utilizes axon traces to detect and quantify

boutons in 2PLSM images taken through a cranial window in vivo. This procedure consists of the fol-

lowing major steps: (1) tracing axons in 3D, (2) optimization of traces, (3) generation of axon intensity

profiles, (4) detection of putative boutons based on the profiles, (5) normalization of intensity profiles

and calculation of bouton weights, and (6) matching putative boutons across time-lapse images.

Axons can be traced automatically or manually with various tools (Acciai et al., 2016; Parekh and

Ascoli, 2013). In this study, high density of labeled axons (Figure 1A) precluded the possibility of

automated tracing. Therefore, axons were traced manually by using NCTracer software

(Chothani et al., 2011; Gala et al., 2014), and traces were optimized as described in Materials and

methods. Following optimization, two intensity profiles were generated for each axon by convolving

specifically designed filters with the image at all trace node positions and scaling the results to unit

means. While various filters can be used to generate axon intensity profiles, in this study, we settled

on the following two: (1) a modified, multi-scale Laplacian of Gaussian filter (LoGxy) to detect puta-

tive boutons and (2) a fixed size Gaussian filter (G) to provide an estimate of axon intensity in the
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regions devoid of boutons (see Materials and methods for details). In the following we will refer to

such inter-bouton regions as axon shaft.
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Figure 2A and B show that distinct putative boutons can be identified as peaks in the LoGxy pro-

file plotted against node positions along the trace, ILoGxy sið Þ. This is because the LoGxy filter is

designed to sharpen boundaries between boutons by suppressing intensity in the regions immedi-

ately adjacent to boutons. In contrast, the G filter yields a smoother profile, IG sið Þ, which is not very

useful for resolving putative boutons that are in close proximity (arrows in Figure 2C), but is well

suited for estimating shaft intensity. For these reasons, LoGxy profiles were used to identify putative

boutons, while G profiles were used to determine intensities of axon shafts.

To automatically detect putative boutons in an LoGxy profile we used an algorithm that is similar

to the Backward-Stepwise Subset Selection method (Hastie et al., 2009). Here, a varying number of

foreground peaks, Nf , and a constant number of background peaks, Nb, was fitted to ILoGxy sið Þ by

minimizing the following objective function of peak positions, �f
j and �b

k , amplitudes, afj and abk , and

widths, sf
j and s

b
k (see Materials and methods for details):

Figure 1. Challenges in LM-based bouton detection and measurement. (A) Maximum intensity xy projection of an

image stack showing axons of fluorescently labeled neurons in superficial layers of mouse barrel cortex. High

density of labeled axons makes it difficult to automatically detect boutons and track their structural changes over

time. Scale bar is 20 mm. (B) A subset of labeled axons from the region outlined in (A). To improve visibility, image

intensity beyond five voxels from the axon centerlines was set to zero. Bouton detection and bouton size

measurement are confounded by large variations in fluorescence levels across axons. (C) Axons from (B) shown on

the zx maximum intensity projection. Horizontal scale bars in (B) and (C) are 5 mm. Vertical scale bar in (C) is 15 mm.

Lower resolution in z compared to xy is yet another challenge in bouton analyses. (D–F) Magnified views of the

highlighted boutons from (B). Close proximity of boutons on an axon (D), large range of bouton sizes (E), and

large range of bouton fluorescence levels (D–F), present additional obstacles to accurate bouton detection and

measurement. Scale bar in (D–F) is 1.25 mm.

DOI: https://doi.org/10.7554/eLife.29315.002
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Figure 2. Detection of putative boutons as peaks on axon intensity profiles. (A) Maximum intensity xy projection

of an axon segment showing multiple putative boutons. Yellow line is the optimized trace of this axon. (B) Putative

boutons visible in (A) correspond to peaks on the LoGxy intensity profile (black line). Foreground peaks (cyan lines)

and local background (red line) are fitted to the intensity profile as described in the text. The overall fit (thick

yellow line), which is the sum of foreground peaks and background, closely matches the intensity profile. (C) G

intensity profile is obtained by sliding a fixed size Gaussian filter along the optimized trace. Small or closely

positioned peaks cannot be resolved on the G profile (arrows). Peak amplitudes from the LoGxy profile and

background from the G profile are used to define bouton weights.

DOI: https://doi.org/10.7554/eLife.29315.003

The following figure supplements are available for figure 2:

Figure supplement 1. Optimization is required for trace-based bouton detection and measurement.

DOI: https://doi.org/10.7554/eLife.29315.004

Figure supplement 2. Trace optimization reduces variability in bouton detection and weight measurement.

DOI: https://doi.org/10.7554/eLife.29315.005
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We note that, though profile background was fit with a sum of spatially distributed peak func-

tions, constraints imposed on their widths (sb
k � 20 mm) ensure that the fit varies slowly along the

axon (red line in Figure 2B).

Following the detection of putative boutons, intensity of bouton j was defined as the sum of the

j-th foreground peak amplitude and background intensity at the peak location:

IBoutonj ¼ a
f
j þ
X

Nb

k¼1

abke

�
�
f

j
��b

kð Þ2
2 s

b
kð Þ2 (3)

Shaft intensity was estimated from the G profile by incorporating information about the positions

of detected putative boutons, Figure 2C. To that end, we initialized the above described peak

detection algorithm with the foreground and background peaks detected on the LoGxy profile, but

ran the algorithm on the G intensity profile. Shaft intensity for a given axon was defined as the fitted

background intensity on the G profile, averaged over trace nodes,

I
Background
i ¼P

Nb

k¼1

a
b;G
k e

�
si��

b;G
kð Þ2

2 s
b;G
kð Þ2

IShaft ¼ I
Background
i

D E

i

(4)

In this expression, index G in the superscripts of peak amplitudes, a, positions, �, and widths, s,

was added to emphasize that these quantities are calculated based on the G intensity profile. We

note that background intensity, IBackgroundi , is designed to vary smoothly along the axon (red line in

Figure 2C) and be independent of bouton density, providing a robust estimate of axon shaft

intensity.

Our goal is to use intensity profiles to extract structural information related to the physical sizes

of boutons. This task is hindered by the facts that axon intensity depends strongly on expression lev-

els of fluorescent molecules (Figure 1A) and microscopy conditions. Therefore, to measure unbiased

structural information, intensity profiles must be properly normalized. One may consider using

median (or mean) profile intensity or local shaft intensity for normalization. However, these types of

normalizations can lead to errors. For example, if density of boutons varies across axons, normaliza-

tion with the median (or mean) may bias boutons on higher bouton density axons towards lower

intensity values. Also, if density of boutons is sufficiently large, normalization with local shaft intensity

can lead to variability as the latter cannot be measured reliably between closely positioned boutons.

Our heuristic normalization approach is based on the idea that by convolving the LoGxy or G filter

with the image at a trace node position si along axon a in imaging session t, we obtain a quantity

that is proportional to three factors: Mt, a factor related to imaging conditions [e.g. laser power,

photomultiplier tube (PMT) voltage, and cranial window quality], �a;t, volume density of fluorescent

molecules, and Aa;tðsiÞ, a structural factor which has been linked to axon cross-section area (drawn

perpendicular to the xy projection of the axon centerline) convolved with the microscope point-

spread function (Song et al., 2016) and profile filter:

~I
LoGxy;G
a;t sið Þ ¼Mt�a;tA

LoGxy;G
a;t sið Þ (5)

In creating the LoGxy and G profiles (Figure 2) we rescale ~I
LoGxy

a;t sið Þ and ~IGa;t sið Þ to unit means in

order to minimize effects related to imaging conditions and expression levels, thus isolating struc-

tural information:

I
LoGxy;G
a;t sið Þ ¼

~I
LoGxy;G
a;t sið Þ
~I
LoGxy;G
a;t sið Þ

D E

i

¼ A
LoGxy;G
a;t sið Þ

A
LoGxy;G
a;t sið Þ

D E

i

(6)

It may be tempting to use putative bouton intensity, IBoutonj in Equation (3), which is detected

based on I
LoGxy

a;t sið Þ as proxy for bouton size. However, this may lead to bias as the denominators in

Equation (6) depend strongly on bouton density. To address this issue, we use axon shaft intensity

detected from G intensity profiles, IShaft in Equation (4), for normalization. The resulting quantity,
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referred to as bouton weight, wBouton
j , conveys structural information, which is effectively independent

of the above-mentioned bias,

wBouton
j ¼

IBoutonj

IShaft
(7)

Validation of LM-based bouton detection methodology with EM
Correlative light and electron microscopy (CLEM) was used to validate the described bouton detec-

tion procedure (Figure 3 and Figure 3—video 1). Four axon segments were selected for this analy-

sis (Figure 3A). The axon segments were imaged in vivo with 2PLSM, the brain tissue was fixed

shortly after, and subsequently imaged with EM (see Materials and methods for details). Putative

boutons in the 2PLSM stack of images were detected and quantified as described above

(Figure 3B). Axons in EM images were reconstructed in 3D (Figure 3C) and rendered in Blender

software for further analysis.

Putative boutons detected in 2PLSM images could be unambiguously matched with varicosities

identified in EM (Figure 3—video 1, asterisks in Figure 4A–D, and Table 1). We used positions of

the centers of matched boutons to register LM traces and EM centerlines with an optimal linear

transformation (Hastie et al., 2009). Average distance between the registered traces (Gala et al.,

2014) was small, 0.34 ± 0.17 mm (mean ± s.d.), confirming that the same set of axons was recon-

structed in LM and EM. A small discrepancy between registered traces may be attributed to non-lin-

ear distortion of tissue in the EM experiment and the relatively low z-resolution of LM. Overall, 16

boutons en passant and one bouton terminaux could be identified in EM. The bouton terminaux was

detected with our method, but was excluded from further analysis because it is not located on the

axon centerline. With the omission of this bouton, the LM-based procedure detected 18 putative

boutons with 0 false negatives and two false positives, both of which were small (1.1 and 2.2 in

weight, #18 and #19 in Table 1).

We tested the idea that 2PLSM intensity is correlated to the area of axon cross-section drawn

perpendicular to the xy projection of axon centerline (Song et al., 2016). We refer to such cross-sec-

tions as z cross-sections (third row in Figure 4A–D) to distinguish them from normal cross-sections,

which are drawn perpendicular to the axon centerline. For this, we calculated the normalized axon

intensity profile, I
LoGxy

a;t sið Þ=IShaft, and compared it to EM z cross-section areas including and excluding

mitochondrial z cross-section areas. Both z cross-section areas appear to be well correlated with nor-

malized intensity profiles. However, it is clear from visual inspection that the normalized intensity

profiles do not resolve small changes in axon cross-section, which is the result of limited resolution

of 2PLSM.

To examine the extent to which LM-based measurements provide information about bouton size,

we plotted bouton weight against bouton volumes including (Figure 4F) and excluding (Figure 4G)

mitochondrial volume. Normal axon cross-sections were used to identify bouton boundaries and cal-

culate bouton volume as described in Materials and methods (fourth row in Figure 4A–D and

Figure 4E). Bouton #7 (red box in Figure 4B) was excluded from these analyses, because it is

bounded on one side by the terminal bouton branch which biases weight measurement. The results

show high degree of correlation in both cases (Pearson’s r = 0.93), supporting the idea that LM-

based measurements can be used to quantify volumes of even very small varicosities (#3, 0.093

mm3). The results also provide support for the choice of filters, Equation (1), and the normalization

procedure, Equation (7), showing that the proposed method could overcome axon-specific differen-

ces in the expression levels and bouton density, capturing meaningful fine-scale structural

information.

It is important to emphasize that we did not attempt to find the best procedure for fitting the EM

data. It is possible that some other combinations of filter types, normalizations, and parameters

would lead to marginally better correlations. However, due to the small sample size, this would likely

be a case of over-fitting. The described procedure was designed based on theoretical considera-

tions, and the parameters were chosen based on the observed range of bouton sizes (see Materials

and methods). Nonetheless, we explored alternative filtering and normalization strategies. Fig-

ure 4—figure supplement 1 shows profiles derived from raw voxel intensities, and profiles obtained

with mean, Gaussian, and median filters of different but fixed sizes. Each of these profiles was nor-

malized by its median value. The figure makes it clear that some amount of filtering benefits bouton
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detection, as jagged unfiltered profiles can lead to false positives. Similarly, relatively large filters of

fixed size (e.g. 5 � 5 � 5 and R = 2) are not well suited for bouton detection as they often suppress

intensities of small boutons and merge closely positioned boutons. When the filter size is carefully

tuned (3 � 3 � 3 and R = 1), resulting profiles can look similar to those of multi-scale LoGxy,

although higher baselines in these profiles can make peak detection more challenging. Furthermore,

we examined the combined effect of filtering and normalization on bouton measurement by compar-

ing the amplitudes of profile peaks to corresponding bouton volumes. Multi-scale LoGxy profile

Figure 3. Correlative light and electron microscopy. (A) Maximum intensity xy projection of an image stack used

for CLEM analysis. White box demarcates the region imaged with EM. Colored lines are traces of four axon

segments chosen for EM reconstruction. Scale bar is 10 mm. (B) Region outlined in (A) is shown at 4x magnification

with background removed. (C) 3D EM reconstruction of the four axon segments shown in (B). Red areas mark

PSDs, and blue volumes outline mitochondria. Most varicosities identified in EM are clearly visible in 2PLSM

images (B). (D) Higher magnifications and different orientations of a subset of reconstructed varicosities shows that

structural swellings on axons may or may not be associated with PSDs and/or contain mitochondria. Numbers in

(B–D) enumerate distinct varicosities identified in EM.

DOI: https://doi.org/10.7554/eLife.29315.006

The following video is available for figure 3:

Figure 3—video 1. Illustration of correlative light and electron microscopy analysis.

DOI: https://doi.org/10.7554/eLife.29315.007
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normalized with shaft intensity as described above leads to the highest correlation compared to the

best considered alternatives (Figure 4—figure supplement 1E).

Effects of imaging conditions on bouton analysis
Next, we sought to evaluate the effects of various imaging conditions on bouton detection and mea-

surement. To that end, a set of fluorescently labeled axons was imaged seven times in a span of 80

Figure 4. Normalized intensity profile is correlated with axon cross-section area, while bouton weight is indicative of bouton volume. (A–D) Top row:

EM reconstructions of axons are shown next to the corresponding 2PLSM maximum intensity projections. Varicosities identified in EM are marked with

grey asterisks, and putative boutons automatically detected based on the intensity profiles are marked with green asterisks. Second row: Normalized

intensity profiles of the same axons plotted as functions of position along axon centerlines obtained in EM. Third row: z cross-section areas of axons,

including (black) and excluding (blue) mitochondria, are well correlated with intensity profiles. These cross-sections are drawn perpendicular to the

2PLSM xy projections of the axon centerlines. Fourth row: Normal cross-section areas showing the extents of boutons (green) based on criteria

described in Materials and methods. (E) Demarcated boutons shown in 3D (green). Bouton weights are highly correlated with their EM-based volumes

that include (F) or exclude (G) mitochondrial volumes. Grey regions in (B) highlight two spurious peaks in the normalized intensity profile, one resulting

from a close apposition of two axons and another caused by the presence of a terminal bouton. Such regions were annotated in 2PLSM images and

were excluded from all analyses. In addition, bouton #7 (red box in B, F, and G) was excluded from the correlation analysis because it is directly

adjacent to a branch point, which biases weight calculation.

DOI: https://doi.org/10.7554/eLife.29315.008

The following figure supplement is available for figure 4:

Figure supplement 1. Filter type, filter size, and profile normalization can affect bouton detection and measurement.

DOI: https://doi.org/10.7554/eLife.29315.009
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min with different laser power (LP) and PMT voltage (see inset in Figure 5A). In addition, in condi-

tion E, a thin layer of agarose was applied to the cranial window to mimic deterioration of window

quality which often accompanies long-term imaging experiments. In the following, we assume that

there is negligible structural plasticity of boutons throughout the duration of this short-term imaging

experiment, and therefore differences in bouton measurements can be attributed to the effects of

imaging conditions and measurement uncertainties. The inset in Figure 5B shows the maximum

intensity projections of an axon segment imaged in all seven conditions. This inset illustrates that

increasing (decreasing) LP and/or PMT voltage results in an overall increase (decrease) in intensity,

and therefore proper normalization procedure must be used to minimize the effects of such changes

on bouton measurements.

Putative boutons on 16 axon segments were detected in all conditions independently (400 puta-

tive boutons per condition on average). Custom software was used to match the same putative bou-

tons across conditions. Putative boutons detected in condition A were chosen to be the gold

standard, and precision/recall in bouton detection in the remaining conditions B-G were evaluated

as functions of bouton weight (Figure 5A and B). The results show that for 95% of putative boutons

of weight w > 2.0 both precision and recall equal one in all conditions. This number of unambigu-

ously detected putative boutons goes up to 99% for w > 2.5 and 100% for w > 3.1. For reference,

w = 2.0 corresponds to the weights of the two smallest varicosities identified in EM (#3 and #11 in

Table 1), and the weight of the next smallest bouton (#17) is w = 2.8. Therefore, all but very small

boutons can be detected with our method with high confidence.

To examine the effects of imaging conditions on bouton weight, we tested a subset of 290 puta-

tive boutons that were detected and matched across all seven experiments. Figure 5C shows bou-

ton weights in conditions B-G plotted against the corresponding weights in condition A. Although

Table 1. Comparison of LM-based and EM measurements.

Bouton IDs match those in Figures 3 and 4. The probability that a putative bouton belongs to the category of LM boutons,

P boutonjwð Þ was calculated according to Equation (9) with wthreshold = 2.0. Bouton #8 (grey) was excluded from the analyses as it is a ter-

minal bouton. Hyphens indicate that boutons, mitochondria, or PSDs were not detected in EM.

2PLSM measurements EM measurements

Bouton ID Putative bouton weight, w P(bouton | w) Bouton volume [mm3] Mitochondria volume [mm3] PSD surface area [mm2]

Axon 1 1 13.5 1.00 0.919 0.189 0.666

2 10.8 1.00 0.779 0.170 0.595

3 1.98 0.48 0.093 - 0.371

4 10.1 1.00 0.998 0.225 1.92

5 8.65 1.00 0.669 0.139 1.83

6 6.25 1.00 0.219 0.043 0.138

Axon 2 7 3.63 0.93 0.483 0.111 0.612

8 N/A N/A 0.574 - 2.75

9 5.57 1.00 0.372 0.027 1.28

Axon 3 10 9.54 1.00 0.632 0.182 0.645

11 1.99 0.49 0.102 - -

12 8.51 1.00 0.456 - 1.23

13 10.8 1.00 0.704 0.161 1.49

Axon 4 14 5.80 1.00 0.308 - 0.867

15 4.23 1.00 0.198 - 0.686

16 5.96 1.00 0.229 0.027 0.402

17 2.85 0.93 0.140 - -

18 1.14 0.01 - - -

19 2.19 0.65 - - -

DOI: https://doi.org/10.7554/eLife.29315.010
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axon intensities in conditions B and C are drastically different from A (see inset in Figure 5B), the

normalization procedure could correct for these differences (blue and red lines in Figure 5C). How-

ever, small ( » 7%) but significant bias was present in conditions D-G, which may have been caused

by bleaching due to prolonged imaging. Figure 5C also reveals a considerable amount of variability

in weight measurements. This variability, reflected in the R2 coefficients, was similar across all com-

parisons, including the imaging experiments performed under the same conditions (e.g. A and G,

cyan points). Therefore, bouton weight measurements are accompanied with uncertainty which is

inherent to the LM-based methodology. This uncertainty cannot be eliminated entirely, and hence, it

must be explicitly incorporated into models that derive biological information from bouton

measurements.

Figure 5. Probabilistic definition of an LM bouton based on measurement uncertainty derived from short-term imaging experiments. The same set of

axons was imaged 7 times within 80 min with various microscope settings and cranial window conditions (inset in A). Putative boutons detected based

on the first imaging session (condition A) were chosen to be the gold standard. Precision (A) and recall (B) in bouton detection were measured under

the remaining conditions, B-G. Both precision and recall increase with bouton weight. While for very small boutons (w < 2.0, dashed line) detection is

unreliable, agreement with the gold standard is achieved across all imaging conditions in 95% of boutons with weights greater than 2.0. Numbers of

boutons in the gold standard are indicated next to the data points in (A). Inset in (B) shows an example of one axon segment imaged in conditions

A-G. (C) Bouton weights under different imaging conditions are plotted against the gold standard weight. Best fit lines show no significant bias for

conditions B and C, however small, but significant reduction in mean bouton weight was observed in the remaining four conditions (all p < 0.03, two-

sample t-test). Abbreviations used in the inset of A: LP is laser power in mW, PMT denotes photomultiplier tube voltage in Volts, and WC is cranial

window condition, where ‘n’ stands for normal and ‘a’ indicates presence of a thin layer of agarose. Color code used in (A–C) is defined by the inset

table in (A). (D) CDFs for differences in bouton weights across imaging conditions. Data from all conditions were pooled. Different lines show CDFs for

various intervals of mean bouton weight. (E) Variance in bouton weight difference increases linearly with mean bouton weight (�2 linear regression with

var Dwð Þ ¼ a wh i, p = 0.33, a = 0.24 ± 0.01, mean ± s.d.). Error-bars indicate standard deviations obtained with bootstrap sampling with replacement. (F)

Red line shows the distribution of true bouton weight for a putative bouton of measured weight w = 1.5. Area under the curve to the right of

wthreshold = 2.0 gives P boutonjwð Þ = 0.12. Large putative boutons (e.g. blue curve, w = 3.0) have high probability of being LM boutons.

DOI: https://doi.org/10.7554/eLife.29315.011

Gala et al. eLife 2017;6:e29315. DOI: https://doi.org/10.7554/eLife.29315 10 of 20

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.29315.011
https://doi.org/10.7554/eLife.29315


Statistical framework for the analysis of structural plasticity of boutons
To model the variability observed in Figure 5C, we examined bouton weight differences for all pairs

of imaging conditions, Dw ¼ w1 � w2. Because such changes clearly depend on bouton size, we

looked at the statistics of Dw in various intervals of average bouton weight, wh i ¼ w1 þ w2ð Þ=2.
Figure 5D shows the cumulative distribution functions (CDFs) of bouton weight differences in eight

intervals of wh i. These distributions are not significantly different from Gaussian distributions, and

their variances are roughly proportional to the mean bouton weights, var Dwð Þ ¼ a wh i, Figure 5E.

Therefore, all CDFs shown in Figure 5D could be standardized by rescaling the weight differences

as Dw=
ffiffiffiffiffiffiffiffiffiffi

a wh i
p

, leading to distributions that are statistically indistinguishable from the Standard Nor-

mal CDF (all p > 0.05, one-sample KS test).

Based on this result, we propose a statistical model in which measured bouton weight, w, is the

sum of the true weight, w0, and a noise term, d. The latter is randomly drawn from a Gaussian distri-

bution with variance proportional to the measured weight, var dð Þ ¼ 1

2
aw:

w¼w0þ d; P dð Þ ¼ e�d
2=aw
ffiffiffiffiffiffiffiffiffiffi

paw
p (8)

Equation (8) quantifies uncertainties in bouton weight measurements, making it possible to

define bouton presence probabilistically. To that end, we impose a threshold on true bouton weight,

wthreshold, and refer to putative boutons with w0 > wthreshold, as LM (light microscopy) boutons. In the

following we set wthreshold = 2.0, which is motivated by several considerations. First, this value equals

twice the average normalized axon shaft intensity. Therefore, by using wthreshold = 2.0 we are only

including peaks that are substantially larger than the axon shaft intensity. Second, w = 2.0 corre-

sponds to the weights of the two smallest varicosities detected in EM (#3 and #11 in Table 1).

Finally, detection of putative boutons becomes unreliable for w < 2.0 (Figure 5A and B). We note

that as an alternative to choosing a single threshold value to define LM boutons, one could vary the

threshold in a certain range (e.g. 1–3) and report results as functions of this parameter.

The probability that a putative bouton of measured weight w belongs to the category of LM bou-

tons, P boutonjwð Þ, can be calculated based on the noise model of Equation (8):

P boutonjwð Þ ¼ 1

2
1þ erf

w�wthreshold
ffiffiffiffiffiffiffi

aw
p

� �� �

(9)

In this expression, erf denotes the error function. Shaded regions in Figure 5F illustrate these

probabilities for two putative boutons of measured weights w = 1.5 and w = 3.0. Note that even

when w is less than wthreshold, there is a non-zero probability that the detected peak is an LM bouton.

For large w (e.g. greater than 3), this probability approaches unity, and the LM bouton definition

becomes virtually deterministic.

LM bouton definition can be used to calculate the probabilities of bouton addition, elimination,

potentiation, and depression based on the measured weights in two imaging sessions (initial and

final), wi and wf :

P addedjwi !wf

� �

¼ 1�P boutonjwið Þð Þ�P boutonjwf

� �

P eliminatedjwi !wf

� �

¼ P boutonjwið Þ� 1�P boutonjwf

� �� �

P potentiatedjwi !wf

� �

¼ P boutonjwið Þ�P boutonjwf

� �

� 1

2
1þ erf

wf�wi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a wiþwfð Þ
p

 ! !

P depressedjwi !wf

� �

¼ P boutonjwið Þ�P boutonjwf

� �

� 1

2
1þ erf

wi�wf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a wiþwfð Þ
p

 ! !

(10)

We would like to clarify that LM boutons may or may not correspond to varicosities seen in EM

(Table 1), and the latter may not always be associated with postsynaptic densities (PSDs) and, thus,

functional synapses (Shepherd and Harris, 1998). Therefore, the relationship between an LM bou-

ton and a synapse is not deterministic and is likely to contain false-positives and false-negatives.

However, the number of such errors is expected to decrease with increasing w. For example, Table 1
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shows that all LM boutons of w > 2.2 correspond to EM varicosities, and all LM boutons of w > 2.9

are varicosities associated with PSDs.

Bouton changes can be resolved despite the uncertainty in
measurements
Next, we set out to determine if the above described bouton detection procedure can be used to

identify significant structural changes in long-term, in vivo imaging experiments. To that end, axons

of GFP labeled neurons were imaged in superficial layers of barrel cortex in five mice. Imaging was

performed at 4 day intervals over a 24 day period (seven imaging sessions). On average, 968 bouton

sites were detected on 20 axon segments in each animal and imaging session. These sites were

tracked over the duration of the experiment (Figure 6—figure supplement 1) to quantify bouton

addition, elimination, and weight changes as compared to the initial state of the circuit. The short-

term imaging experiment of Figure 5 was used as control. Here, conditions B-G were compared to

condition A, and the results were pooled.

Figure 6A shows the fraction of added LM boutons over time, as compared to the first imaging

session. Specifically, we only consider significant bouton addition events, i.e. those for which the

probability of addition according to Equation (10) is greater than 0.95. Analogous plots for the frac-

tions of significant bouton eliminations and significant bouton weight changes (potentiation and

depression combined) are shown in Figure 6B and C respectively. As was expected, the fractions of

significant changes in the short-term imaging experiment (red points in Figure 6) are at the chance

levels (dashed red lines). The latter was obtained with a bootstrap procedure in which the weights of

individual boutons were independently shuffled across conditions. In contrast, in the long-term imag-

ing experiment, the fractions of significant bouton additions, eliminations, and weight changes are

significantly larger than chance already by the second imaging session (after 4 days), and these frac-

tions continue to increase with time, consistent with the idea of gradual modification of the circuit.

Figure 6. Structural change in boutons can be resolved in long-term in vivo imaging experiments despite measurement noise. (A) Fraction of boutons

that are absent on day 0 and are present at a later time with joint probability of 0.95 or greater (significant bouton addition). Red point (error-bars are

too small to be visible) shows this fraction in images acquired within 80 min (conditions A-G). Black points show the results for a long-term imaging

experiment. Statistically significant fraction of added boutons is detected after 4 days (interval between imaging sessions), and this fraction grows with

time, consistent with the idea of gradual modification of the initial circuit. Similar trends were observed for the fractions of significant bouton

eliminations (B) and significant bouton weight changes. Dashed red lines in (A–C) indicate baseline circuit changes expected from the statistical model.

Error-bars indicate standard deviations based on Poisson statistics.

DOI: https://doi.org/10.7554/eLife.29315.012

The following figure supplement is available for figure 6:

Figure supplement 1. Matching boutons in time-lapse images.

DOI: https://doi.org/10.7554/eLife.29315.013
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These results illustrate that the described methodology can be used to quantify circuit changes,

despite the numerous challenges associated with long-term, in vivo imaging experiments.

Discussion
Detection of structural changes in boutons is hindered by various technical challenges and funda-

mental limitations of light microscopy. Unfortunately, any uncertainty that enters the analysis of

long-term in vivo imaging data manifests itself as spurious structural plasticity. Therefore, it is impor-

tant to account for all sources of errors, minimize their effect, and incorporate the residual uncer-

tainty into the interpretation of results. Below, we describe various sources of errors affecting

bouton measurements.

First, fluorescence based measurements provide only indirect evidence of bouton size. Therefore,

such measurements need to be validated by showing that they are informative of bouton structures.

In this study, we used CLEM to show that bouton weight, defined based on 2PLSM data, is well cor-

related with bouton volume (Figure 4F and G). Second, variability in expression levels of fluorescent

proteins across axons and within axons over time makes it difficult to compare boutons on different

axons and to identify true structural changes. Here, these problems were mitigated by a specifically

designed normalization procedure (Figure 2), which was verified with CLEM (Figure 4) and was

tested in the short-term imaging experiment (Figure 5A–C). Third, because the resolution of 2PLSM

( » 0.3 mm in xy) is not much smaller than bouton size ( » 1 mm for small boutons in Figure 3), there

are inherent uncertainties in detection of small boutons, differentiation of closely positioned bou-

tons, and measurement of bouton size changes. These uncertainties of the imaging method cannot

be eliminated, and, therefore, they must be modeled to ensure that bouton measurements are inter-

preted correctly (Figure 5D–F).

Many other technical issues can add to the uncertainty and introduce bias in bouton measure-

ments. For example, deterioration of cranial window quality with time, deformation of brain tissue,

small changes in brain orientation relative to the microscope, and slight movement of boutons along

axons can lead to the perception of increased plasticity. In contrast, limited temporal resolution of

long-term imaging experiments, typically few days between imaging sessions, can lead to an under-

estimate of plasticity, as changes that occur between imaging sessions remain unaccounted. Finally,

uncertainty can arise from the computational method used to detect boutons. Figure 2—figure sup-

plement 2D shows that computational uncertainty of the method described in this study is small

and can be ignored considering contributions from other sources (Figure 5C).

It is important to emphasize that not every putative bouton detected in LM will correspond to a

varicosity if imaged with EM. This is particularly so for very small putative boutons (w < 2.0, bouton

volume < 0.1 mm3) which can result from noise in fluorescence or inhomogeneity in labeling. In the

absence of a reliable synaptic marker, the only reasonable way to eliminate such functionally irrele-

vant putative boutons is by imposing a threshold on bouton weight. In this study, we refer to puta-

tive boutons whose true weight exceeds the threshold as LM boutons and suggest setting this

threshold at 2.0 based on CLEM and short-term imaging experiments. In practice, one may vary the

threshold in a small range to ensure that specific conclusions are robust to the choice of this

parameter.

Using a threshold to define an LM bouton as an all-or-none entity may impose a bias since the

true bouton weight is unknown due to measurement uncertainty. The problem is exacerbated by the

unimodal shape of bouton weight distributions (see Figure 2—figure supplement 2B), because of

which a large fraction of weights will lie within the range of uncertainty around the threshold, regard-

less of its value. Such ambiguous boutons can either be discarded, which may bias biological inter-

pretation, or, otherwise, they must be treated probabilistically. For example, probabilistic

description is essential for calculation of the expected number of LM boutons. Simply counting the

number of above threshold weights would result in an underestimate as bouton weight distribution

is monotonically decreasing. Similar considerations apply to calculations of expected numbers of

added, eliminated, potentiated, and depressed boutons. As most bouton structures are stable and

do not change substantially over days-to-weeks, their weight changes often lie within the range of

measurement uncertainty and must also be described probabilistically. Furthermore, probabilistic

description is necessary for calculation of error-bars and for establishing statistical significance of

results. To illustrate the feasibility of this approach, we applied it to a dataset of 4840 bouton sites
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tracked over 24 days. Figure 6 shows that statistically significant changes in LM boutons can be

detected in long-term imaging experiments. It remains to be seen if the detected changes are infor-

mative of circuit alterations that subserve the many functions of the brain.

Materials and methods

In vivo imaging
All experiments were performed according to the guidelines of the Swiss Federal Act on Animal Pro-

tection and Swiss Animal Protection Ordinance. The ethics committee of the University of Geneva

and the Cantonal Veterinary Office of Geneva, Switzerland (approval code GE/61/17) approved all

experiments.

For development of the detection methodology we used data from mice that had been repeat-

edly imaged as part of a larger optical micro-stimulation and behavioral study (not yet published).

Only the methodology that is relevant for the present study will be mentioned. Adeno-associated

viral (AAV) vectors encoding floxed GFP (AAV2/9.CAG.flex.eGFP.WPRE.bGH2 [Upen]) were co-

injected with an AAV vector encoding Cre (AAV2/9.hSynapsin.hGHintron.GFP-Cre.WPRE.SV40

[Upen]) at a ratio of 0.15 � 109: 1 (genome copies: genome copies). This produced an average of

about 150 GFP-expressing cells per animal, mostly in L2/3 and L5 of the barrel cortex. We exclu-

sively imaged the processes of these neurons in the upper layers of the cortex. Hence, the source of

the fluorescent signal in the green channel is dominated by cytosolic GFP.

Following the AAV injection, we implanted a 3 mm diameter glass window over the barrel cortex

as previously described (Holtmaat et al., 2009). Imaging experiments were started 6 weeks after

the virus injection. Imaging was performed under anaesthesia (0.5–1.5% isoflurane). A custom-built

alignment system was used to ensure identical positioning of the mouse’s cranial window at different

time points, and to avoid rotations relative to the axial dimension of the objective. The system was

based on aligning a beam reflected by the cranial window through two apertures, which uniquely

determines a line in three spatial dimensions. The apertures and the laser position were constant,

and the only free variables were the cranial window position and rotation (i.e., the x, y, and z-posi-

tions, as well as the row and pitch needed to be identical between sessions to satisfy the passage of

light through the two apertures). We used a custom built 2PLSM (Janelia Research Campus, model

Non-MIMMS in vivo microscope) to acquire in vivo anatomical images of the anesthetized animals

through the cranial window. We used the ScanImage software (Janelia Research Campus, Vidrio

Technologies) (Pologruto et al., 2003) to record the 2PLSM images, and additional custom software

to align anatomical structures present on the central image stack by using a red-green overlay

between current and past images.

For imaging we used a 20x water immersion objective (NA 0.95, XLUMPlanFI, Olympus, Japan).

Images were acquired at a voxel volume of » 0.13 � 0.26 � 0.8 mm3 (x � y � z). We binned the

data in the x dimension to generate isometric voxels in x and y for all analyses. The voxel dwell time

was 0.8 ms for the full resolution images (and thus twice as high after 2x binning of the x dimension).

Each ROI comprised an image stack of » 270 � 270 � 250 mm3. As the imaging light source we

used a Ti:sapphire femtosecond pulsed laser (Chameleon ultra II, Coherent) that was lasing at 1010

nm. Emitted fluorescence light was split into two channels using a dichroic mirror (Semrock, FF735-

Di01�35.5 � 49.0) and two bandpass filters (red channel, Semrock FF01-607/70; green channel,

Semrock FF01-530/70). Each channel was equipped with a PMT (red channel, Hamamatsu R3896;

green channel, Hamamatsu H10770PA-40SEL). Images were analyzed only in the green channel.

Correlative 3D EM
Electron microscopy was carried out on the region outlined in Figure 3A using a previously

described method (Maco et al., 2014; Maco et al., 2013). An image of the blood vessel pattern

below the cranial window was taken immediately after the last 2PLSM imaging session. The anesthe-

tized animal was then chemically fixed by perfusing, via the heart, 10 ml of isotonic PBS immediately

followed by 200 ml of 2.5% glutaraldehyde and 2% paraformaldehyde in phosphate buffer (0.1 M,

pH 7.4). Two hours later, the brain was removed and 60-mm-vibratome sections cut from the imaged

region, tangential to the cortical surface. The region containing the imaged axons was located in

these sections by matching the pattern of blood vessels seen in the first 2–3 sections with the image
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of the brain’s surface taken prior to the perfusion. The 2-photon laser was then used to burn lines

into the fixed section around the region of interest. The laser was tuned to l = 850 nm with a power

of ~300 mW at the back focal plane of the objective. A rectangle of ~25 mm x 25 mm was burnt

around the ROI using the line scan mode (2 ms/line). This shape acts as a fiducial mark that can be

seen after the tissue has been stained, and resin embedded, ready for election microscopy. This sec-

tion was then washed in sodium cacodylate buffer (0.1 M, pH 7.4) 5 � 3 min, postfixed and stained

in reduced osmium (1.5% potassium ferrocyanide with 1% osmium tetroxide in 0.1 M sodium caco-

dylate buffer) for 40 min, followed by another 40 min incubation with 1% osmium tetroxide in the

same buffer, and finally for 40 min with 1% aqueous uranyl acetate. Next, the section was dehy-

drated in a series of increasing concentrations of alcohol, then infiltrated in 100% Durcupan resin,

and flat embedded between two glass slides and placed in a 60˚C oven for 24 hr.

A small piece of the section (2 mm x 2 mm), containing the laser marked region, was trimmed

from the rest of the section and glued onto a slab of blank resin, keeping the region of interest clos-

est to the surface. This block was then trimmed in the ultramicrotome, using glass knives, so that the

laser marks were within 5 mm of its surface, and less than 2 mm from one edge. The block was then

mounted on a 45˚ aluminum stub, using conductive carbon paint, so that this edge was uppermost.

It was then sputter coated with a 30 nm thick layer of gold. The sample was then placed in the

focused ion beam scanning electron microscope chamber (FIBSEM; Zeiss NVision 40, Zeiss SMT,

Germany) and orientated so that the ion beam could mill parallel to the laser marks, and therefore

parallel to the 2PLSM plane of focus. The sample was imaged with an electron beam of 1.7 kV and a

probe current of 1.1 nA using the back-scattered electron detector (ESB). Images with a pixel size of

6 nm were collected with a dwell time of 12 ms per pixel. The ion beam removed 12 nm of resin after

each image, using a current of 700 pA, with an energy of 30 kV.

The serial electron micrographs were aligned in FIJI (http://fiji.sc; Schindelin et al., 2012) and the

structures of interest segmented in the TrakEM2 part of the software (Cardona et al., 2012). Models

were then exported to the Blender software (Blender Foundation, Amsterdam; http://www.blender.

org), and the NeuroMorph toolset (http://neuromorph.epfl.ch; Jorstad et al., 2015) was used to

measure axon cross-section areas, bouton and mitochondrial volumes, and PSD surface areas. The

beginning and end of each bouton were defined, using the centerline processing tool, as the points

along the axon where its normal cross-section area changed by more than 30% within a distance of

0.2 mm. The boutons were then delineated and their volumes calculated in the measurement tool

(fourth row in Figure 4A–D and Figure 4E).

Trace optimization
Figure 2—figure supplement 1A shows three maximum intensity projection views of an axon seg-

ment, which was traced independently by five users. Inter-user trace variability, which is usually more

pronounced along the z-dimension (optical axis), can hinder bouton detection and measurement.

Therefore, it is essential to optimize the layout of manual traces, ensuring that they accurately follow

axon centerlines in the underlying image.

In this study, we used the optimization algorithm described in (Chothani et al., 2011). In this ver-

sion of the algorithm, positions of trace nodes rk ¼ xk; yk; zkð ÞT are updated to optimize a fitness func-

tion, which includes intensity integrated along the trace and a regularizing constraint on the

positions of neighboring trace nodes:

F rkf gð Þ ¼
X

k

1

l

X

m

I lmð Þ e
� rk�lmk k2

2R2

2pð Þ3=2R3
1� 2

3

rkk k2
R2

 !

�al

2

X

k0
rk � rk0k k2

0

@

1

A (11)

Here, vectors lm denote the positions of voxel centers in the image stack, index k0 enumerates the

neighbors of node k, parameter l denotes the average density of nodes in the trace (number of

nodes per voxel), and Lagrange multiplier a > 0 controls the stiffness of the trace. The first term in

this expression represents convolution of the image with the Laplacian of Gaussian filter of size R,

and due to the fast decay of the Gaussian factor, summation in this term can be restricted to a small

number of voxels in the vicinity of the trace. The following parameter values were used to produce

the results of this study. R was set to three voxels (roughly equal to axon diameter in the images), l

was set to 0.5, and a equaled 0.001. The fitness function was maximized with Newton’s method as

Gala et al. eLife 2017;6:e29315. DOI: https://doi.org/10.7554/eLife.29315 15 of 20

Tools and resources Neuroscience

http://fiji.sc
http://www.blender.org
http://www.blender.org
http://neuromorph.epfl.ch
https://doi.org/10.7554/eLife.29315


previously described (Gala et al., 2014). Trace node positions were synchronously updated at every

iteration step, and optimization terminated when the relative change in F fell below 10�6.

Results of this optimization procedure (Figure 2—figure supplement 1B) show marked improve-

ment over manual traces. The optimized traces are smoother, closer to one another in z, and follow

the underlying axon intensity in the image more accurately. Following optimization, all traces were

subdivided to a higher density of nodes, l = 4.

Generation of axon intensity profiles
Parameters of filters used to generate the axon intensity profiles, Equation (1), were chosen in the

following way. The xy size of the multi-scale LoGxy filter was chosen to span bouton sizes observed

in 2PLSM images, Rxy 2 [1.5, 3.0] voxels (0.39 mm to 0.78 mm). Since the observed bouton size in the

z dimension is dominated by the point spread function of the microscope, a single size was chosen

for the z component of the filter, Rz = 2 voxels (1.6 mm). Upon convolution with the image, this

multi-scale filter returns the maximum intensity calculated over the specified range of sizes. The

Gaussian filter, G, was chosen to have a fixed size of R = 2 voxels in all three dimensions. This size

was selected to be roughly equal to the typical axon shaft radius observed in the images (Figure 2—

figure supplement 1A).

Figure 2—figure supplement 1C shows LoGxy profiles for the five manual traces from Figure 2—

figure supplement 1A. Small differences in the layout of manual traces can lead to significant vari-

ability in intensity profiles, which is undesirable. Trace optimization reduces this variability to an

extent undetectable by visual inspection, Figure 2—figure supplement 1D.

Detection of putative boutons
Peak detection algorithm, Equation (2), was initialized with a number of foreground peaks,

Nf ¼ L=0:5 �md e, which is much larger than the expected number of putative boutons. In this expres-

sion, d e denotes the ceiling function and L is the trace length in micrometers. The number of back-

ground peaks, Nb ¼ L=25 �md e, was determined based on the observed spatial scale of background

variability. The peaks were initially distributed uniformly along the entire length of the trace. Both,

Gaussian and Lorentzian peak functions were tested, but only the former was used in this study as it

provided a better fit to intensity profiles as judged by the value of the objective function.

The objective function was minimized with the gradient descent method. Gradient steps were

taken simultaneously along the �f
j , �

b
k , a

f
j , a

b
k , s

f
j , and s

b
k dimensions. At every gradient step, parame-

ters that moved outside the bounds specified in Equation (2) were set to these bounds. Upon con-

vergence, that is, when the relative change in the value of the objective function became less than

10�6, one small foreground peak was eliminated or a pair of closely positioned foreground peaks

was merged, and the resulting set of peaks was re-optimized. This procedure was continued until

there were no peaks left that passed the following heuristic criteria: (1) a single foreground peak is

marked for elimination if the peak amplitude is less than 0.3, and (2) a pair of overlapping fore-

ground peaks is marked for merger if distance between the peaks is less than 1.0 mm or overlap

area of the peaks exceeds 50% of either area. Here, the threshold of 0.3 was set to exclude small

profile peaks that result from fluctuations of intensity along the axon. This threshold was chosen to

be significantly lower than the mean profile intensity, which is one according to Equation (6). Dis-

tance threshold of 1.0 mm (size of a small bouton, see e.g. Figure 3) and threshold on inter-peak

overlap were introduced to merge peaks corresponding to the same varicosity.

Matching putative boutons across imaging sessions
Custom software was used to match putative boutons over time. Because most large boutons

remains stable over weeks to months, they can serve as fiducial points to match the remaining bou-

tons. Here, piecewise linear registration of normalized intensity profiles was performed based on

few fiducial boutons marked by users across imaging sessions (Figure 6—figure supplement 1).

This was followed by matching the remaining putative boutons with a greedy, distance-based algo-

rithm. All results were then validated with visual inspection. For putative boutons detected in some,

but not all imaging sessions the missing bouton weights were filled in with the normalized intensity

profile values at the corresponding registered positions. This procedure was performed for axons

Gala et al. eLife 2017;6:e29315. DOI: https://doi.org/10.7554/eLife.29315 16 of 20

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.29315


traced by different users (Figure 2—figure supplement 2), axons repeatedly imaged under different

conditions (Figure 5), and axons monitored in the long-term imaging experiment (Figure 6).

Quantifying precision of bouton detection methodology
Small inaccuracies in layout of axon traces can introduce errors in bouton detection. Therefore, it is

essential to verify that trace optimization can guarantee sufficiently high precision in bouton detec-

tion. For this test, putative boutons were detected automatically, both with and without trace opti-

mization, on the same set of 16 axon segment traced manually by five users. In the absence of trace

optimization, a total of 578 candidate bouton sites were identified and matched across all five user

traces (Figure 2—figure supplement 2A). A candidate bouton site here is defined as a position on

an axon where a putative bouton was detected based on at least one user trace. For the majority of

candidate bouton sites, 348 (60%), a putative bouton was present in all five user traces, and thus,

there was a full consensus in bouton detection. However, 141 (24%) candidate bouton sites had one

conflict and 89 (16%) had two. A conflict is defined as a dissent from the majority, and given five

traces, the maximum number of conflicts is two. In contrast, after trace optimization, 474 candidate

bouton sites were detected, of which 409 (86%) had full consensus, 39 (8%) had one conflict, and 26

(6%) had two (Figure 2—figure supplement 2B). With trace optimization, it was possible to obtain

complete agreement in all putative boutons of weights greater than 2.5. This is a marked improve-

ment over bouton detection with no trace optimization where 17 putative boutons of weights

greater than 2.5 had one or more conflicts.

Tracing inaccuracies also affect the weights of detected putative boutons. Figure 2—figure sup-

plement 2C, shows that inaccurate manual traces can contribute to bias (slope difference from 1)

and variance (deviation from the best fit line) in bouton weight, and that trace optimization signifi-

cantly reduces such errors. To quantify the uncertainty in bouton weight we calculated root mean

square (RMS) weight difference for putative boutons detected with no conflicts (Figure 2—figure

supplement 2D). As was expected, trace optimization dramatically reduces this uncertainty in the

entire range of bouton weights.

We would like to point out that some amount of uncertainty in bouton detection (Figure 2—fig-

ure supplement 2B) and measurement (Figure 2—figure supplement 2D) remains even after trace

optimization. However, as shown in Figure 5A–C this uncertainty of the method is much smaller

than variability originating from the experimental sources, and therefore, it is not a limiting factor in

structural plasticity measurements.

Implementation
Axons of fluorescently labeled neurons were traced by using the manual tracing module of NCTracer

software (http://www.neurogeometry.org). Custom software written in MATLAB, BoutonAnalyzer

(Gala et al., 2017; copy archived at https://github.com/elifesciences-publications/BoutonAnalyzer),

was used to optimize the traces, generate intensity profiles, detect putative boutons, and match

these boutons across multiple user traces and imaging sessions. BoutonAnalyzer enables the user to

visually inspect the results of bouton detection and matching and edit them if necessary.

The NeuroMorph Centerline Processing and NeuroMorph Measurement tools were used to measure

axon cross-section areas, bouton and mitochondrial volumes, and PSD surface areas (Jorstad and

Knott, 2017). A copy is archived at https://github.com/elifesciences-publications/NeuroMorph.

Data availability
Data used in the CLEM experiment are available in the Dryad Digital Repository (https://dx.doi.org/

10.5061/dryad.3q50t). This dataset includes a 2PLSM image stack in TIFF format (Figure 3A), opti-

mized traces of four axon segments in SWC format (Figure 3A), and 3D EM reconstructions of these

axons in Blender format (Figure 3C).
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