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Abstract. Neutrophil adherence to cytokine-activated 
endothelial cell (EC) monolayers depends on the ex- 
pression of the endothelial leukocyte adhesion 
molecule-1 (ELAM-1). The ligand for ELAM-1 is the 
sialylated Lewis-x antigen (SLe0 structure. The selec- 
tin LAM-1 (or LECAM-1) has been described as one 
of the SLex-presenting glycoproteins involved in neu- 
trophil binding to ELAM-1. Other presenter molecules 
have not yet been described. 

Our data demonstrate that the carcinoembryonic an- 
tigen (CEA)-like surface molecules on neutrophils-  
known as the nonspecific cross-reacting antigens 
(NCAs) -a re  involved in neutrophil adherence to 
monolayers of IL-1-/3-activated EC. The NCAs are rec- 
ognized by CD66 (NCA-160 and NCA-90) and CD67 
(NCA-95). Because NCA-95 and NCA-90 have previ- 
ously been found to be phosphatidylinositol (PI)- 
linked, paroxysmal nocturnal hemoglobinuria (PNH) 
neutrophils (which lack PI-linked surface proteins) 

were tested as well. PNH neutrophils showed a dimin- 
ished binding to activated EC. CD66 (on PNH cells 
still recognizing the transmembrane NCA-160 form) 
still inhibited the adherence of PNH cells to IL-1-B- 
activated EC, but to a limited extent. 

Soluble CEA(-related) antigens inhibited normal 
neutrophil adherence as well, whereas neutrophil 
transmigration was unaffected. Sialidase-treatment as 
well as CD66 preclearing abolished the inhibitory ca- 
pacity of the CEA(-related) antigens. The binding of 
soluble CEA antigens to IL-1-B-pretreated EC was 
blocked by anti-ELAM-1. These soluble antigens, as 
well as the neutrophil NCA-160 and NCA-90, both 
recognized by CD66 antibodies, presented the SLe x 
determinant. 

Together, these findings indicate that the CD66 anti- 
gens (i.e., NCA-160/NCA-90) function as presenter 
molecules of the SLe x oligosaccharide structures on 
neutrophils that bind to ELAM-1 on EC. 

M 
IGRATION of neutrophils from the bloodstream to 
inflammatory sites requires the expression of the 
CD18 integrin subfamily (LFA-1, CR3, and p150,95) 

(Harlan, 1985; Anderson et al., 1985; Kuijpers and Roos, 
1989; Springer, 1990). In the neutrophil adherence to the 
vascular lining, endothelial ICAM-1 may function as a cellu- 
lar ligand for LFA-1 and CR3 (Rothlein et al., 1986; Dia- 
mond et al., 1990). The accessory role of the human selectin 
family (endothelial leukocyte adhesion molecule 1 [ELAM- 
1], t GMP-140, and LAM-1) (Bevilacqua et al., 1989; John- 
ston et al., 1989; Tedder et al., 1989) is well documented. 

Unless activated, the endothelial cells do not express the 
selectin members. Upon activation of endothelial cells (EC) 

1. Abbreviations used in this paper: CEA, carcinoembryonic antigen; EC, 
endothelial cells; ELAM-1, endothelial leukocyte adhesion molecule 1; 
FMLE formyl-methionyl-leucyl-phenylalanine; HSA, human serum al- 
bumin; IL-1, interleukin-1; Le x, Lewis-x antigen; NCA, nonspecific cross- 
reacting antigen; PI, phosphatidylinositol; PNH, paroxysmal nocturnal he- 
moglobinuria; r, recombinant; SLe x, sialylated Lewis-x antigen. 

with thrombin or histamine, GMP-140 is momentarily up- 
regulated by fusion of intracellular Weibel-Palade bodies 
with the plasma membrane (Bonfanti et al., 1989; Hattori 
et al., 1989). In contrast, ELAM-1 expression depends on 
de novo synthesis, and is induced by the inflammatory cyto- 
kines interleukin-1 (IL-1) and tumor necrosis factor (TNF). 
Its expression is transient with a peak at 4-6 h (Bevilacqua 
et al., 1987; Luscinskas et al., 1989). Recent evidence sug- 
gests a role for LAM-1 on neutrophils in the recruitment to 
inflammatory lesions (Watson et al., 1991; Smith et al., 
1991). 

The ligands recognized by ELAM-1 and GMP-140 are 
similar but not necessarily identical (Zhou et al., 1991; Berg 
et al., 1991). Sialidase treatment of neutrophils abolishes 
binding to either of the two selectins. Moreover, antibodies 
directed to the sialylated Lewis-x antigen (SLe0 (Lowe et 
al., 1990; Goelz et al., 1990; Phillips et al., 1990; Walz et 
al., 1990) block both interactions (Polley et al., 1991). Un- 
related to these sialylated ligands, a group of sulfated galac- 
tosyl ceramides (sulfatides) have been discovered as func- 
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tional ligands for GMP-140 (but not ELAM4) (Aruffo et 
al., 1991). 

The selectin member LAM-1 was reported to be involved 
in the neutrophil adherence to ELAM-1 (Kishimoto et al., 
1991; Picker et al., 1991). Although LAM-1 on neutrophils 
bears SLe x, its role as the predominant presenter of critical 
oligosaccharide determinants must be limited to the initial 
phase of adherence: LAMA-negative neutrophils still bind 
to ELAM-1 (Kuijpers et al., 1991). Thus, other SLe x 
oligosaccharide presenters must exist on the neutrophil 
surface. 

For several reasons carcinoembryonic antigen (CEA)-re- 
lated molecules are of potential importance in the ELAM-1 
interactions: (a) colon carcinoma cell lines expressing CEA 
bind to cytokine-activated EC (Dejana et al., 1988; Benja- 
min et al., 1990); (b) The CEA(-like) antigens possess ad- 
hesive properties (Oikawa et al., 1989; Benchimol et al., 
1989); (c) neutrophils express several CEA(-like) nonspe- 
cific cross-reacting antigens (NCAs) (Buchegger et al., 
1984; Audette et al., 1987; Kuroki et al., 1990) with >80% 
homology between CEA and NCAs (Thompson et al., 1987); 
and (d) CEA(-like) antigens are highly glycosylated mole- 
cules with multiple sialyl and fucosyl residues (Kobata et al., 
1989; Thomas et al., 1990). The CEA family is a group of 
proteins that belongs to the immunoglobulin supergene fam- 
ily (Williams and Barclay, 1988). 

In our hands, three different CEA-like surface antigens can 
be distinguished on neutrophils by immunoprecipitation and 
Western blotting techniques. The CD66 and CD67 mAb 
directed to granulocyte-specific antigens (Majdic, 1989; 
Stockinger, 1989; Van der Schoot et al., 1989a,b) have re- 
cently been identified to bind to the antigens NCA-160, 
NCA-95, and NCA-90 (Van der Schoot et al., 1989a, 1990; 
Watt et al., 1991). NCA-160 (binding CD66) is a transmem- 
brane phosphoprotein (Van der Schoot et al., 1989a), NCA- 
95 (binding CD67) and NCA-90 (binding CD66) are strictly 
phosphatidylinositol (PI)-linked surface proteins (Van der 
Schoot et al., 1989b; Kolbinger et al., 1989; Hefta et al., 
1990; Berling et al., 1990). 

In this paper, we describe the role of the membrane- 
intercalated NCA proteins in neutrophil adherence to and 
transmigration across cytokine-treated EC. The functional 
importance of these proteins is corroborated by the ability 
of soluble CEA to specifically inhibit these neutrophil inter- 
actions. 

Materials and Methods 

Reagents 
Formyl-methionyMeucyl-phenylalanine (FMLP), PMA, protein A-Sepha- 
rose, cyanogen bromide-activated Sopharose, and dimethyl pimelidate were 
purchased from Sigma Chem. Co. (St. Louis, Me).  FMLP and PMA were 
dissolved in DMSO at 1,000x the final concentration for cell stimulation, 
and were stored at -20~ The rabbit anti-human CEA serum was ob- 
tained from Dakopats (Glostrup, Denmark). Purified CEA product (pre- 
pared from PCA extracts of liver metastasis of human colonic adenocarci- 
noma) was purchased from Zymed Labs. Inc. (South San Francisco, CA). 
The following purified murine mAbs OgG1) were used: Nee-618, 26/3/13, 
4/3/17, CD66 CLB-granl0 (IH4), 49.30, CD67 CLB-B13.9, MUS, 80H3, 
and N1 (Table I) (Berling et al., 1990; Tetteroo et al., 1986). Nee-618 and 
49.30 were purchased from Sanbyo (Uden, The Netherlands) and 80H3 
from l)ianova (Hamburg, Germany). (None of the anti-CEA/NCA mAbs 
used in the present study induced any neutrophil activation measured as 
NADPH oxidase activity, neutrophil aggregation, change in intracellular 

Ca 2+ or cAMP level [not shown]). In additional experiments, the CD15 
mAb CLB-B4.3 (IgM) (Tetteroo et al., 1984) or CSLEX-1 (IgM) (Fu- 
kushima et al., 1984) to SLe x were used as indicated. CSLEX-1 was 
provided by Dr. Paul Terasaki (University of California Medical School, 
Los Angeles, CA). In control experiments CD18 mAb CLB-LFAI/1 
(Miedema et al., 1984) or anti-ELAM-I mAb ENA-2 (Laeuwenberg et al., 
1989) F(ab)2 fragments were used as described before (Kuijpers et al., 
1991). The basal incubation medium for cell suspensions consisted of a 1:1 
mixture of RPMI-1640 and Medium 199 (Gibco Laboratories, Paisley, 
UK), supplemented with 0.5% (wt/vol) human serum albumin (HSA). 

Granulocyte Isolation 
Granulocytes from healthy controls or patients suffering from paroxysmal 
nocturnal hemoglobinuria (PNH) were purified from 30-50 ml of whole 
blood anticoagulated with 0.4% (wt/vol) trisodium citrate (pH 7.4), essen- 
tially as described (Roos and de Boer, 1986). After density gradient een- 
trifugation over isotonic Percoll (1.076 g/ml), the interphase containing the 
mononuclear ceils was removed, and erythrocytes were lysed by treatment 
for 10 min with ice-cold isotonic NI-hCl solution (155 mM NI-hCI, 10 mM 
KHCO3, 0.1 mM EDTA, pH 7.4). Granulocytes were resuspended in incu- 
bation medium. Purity of the granulocytes was >98% (>95% neutrophils). 

J~Chroraium Labeling of Neutrophils 
Freshly purified neutrophils were radiolabeled with 51Cr according to Gal- 
lin et al. (1973). Briefly, neutrophils (107 ceUs/ml) were incubated with 
1 #Ci 51Cr/106 ceils (sodium chromate, 200-500 Ci/g; New England Nu- 
clear, Boston, MA) in incubation medium (containing 0.1% HSA instead 
of 0.5% HSA) at 37~ for 1 h under gently shaking conditions and were 
subsequently washed. Viability after labeling was >95 %. 

Endothelial Cell Culture 
EC were cultured following standard procedures essentially as described 
before (Kuijpers et al., 1991, 1992b). In short, EC were isolated from hu- 
man umbilical cord veins according to Jaffe et al. (1973) with minor 
modifications (Willems et al., 1982). Cells were first cultured in plastic 
flasks (80 cm 2) precoated with fibronectin. The culture medium consisted 
of an equal mixture of RPMI-1640 and Medium 199, supplemented with 
20% (vol/vol) heat-inactivated human serum, penicillin (100 U/ml; Gibco 
Laboratories), streptomycin (100 t~g/ml; Gibco Laboratories), fungizone 
(2.5 t*g/mi; Gibco Laboratories), and glutamine (2 mM). After one or two 
passages with trypsin/EDTA (Gibco Laboratories), EC were subcultured to 
confluent monolayers on tissue culture-treated polycarbonate membranes 
(8.0-txm pore size; 24-mm diana) of Transwell cell culture chamber inserts 
(Costar Data Packaging, Cambridge, MA). 

Transfected Cell Lines 
HeLa cells stably transfected with CEA (HeLa-CEA), NCA-95 (HeLa- 
CGM6), NCA-90 (HeLa-NCA), o r -as  a control-the plasmid only (HeLa- 
Nee) have been described before by Berling et al, (1990). The murine pre-B 
cells (pMRB101) and the ELAM-l-transfected pre-B cells (pMRB107) were 
kindly provided by M. Robinson (Cell Tech Ltd., Slough, Berkshire, UK) 
and have been successfully used before (Leeuwenberg et al., 1992). 

Adherence and Migration Assay 
The confluent monolayers were washed twice with basal incubation medium 
prewanned to 370C. Prewarmed incubation medium with or without an op- 
timal amount of the chemoattractant FMLP (10 nM) was added to the lower 
chambers (Kuijpers et al., 1992b). SlCr-labeled neutrophils (106 cells/ 
rrd)-prewarmed for 10 min at 37~ added to the upper compart- 
ments. In some experiments, the neutrophils or the monolayer of endothelial 
cells were preiacuhated with purified mAb at 20 #g/mi for 10 min before 
addition of the neutmphils to the upper chamber and remained present dur- 
ing the assay. 

The chamber plates were then incubated at 37~ in a 5% CO2 incubator 
for 30 rain (or other times as indicat~xl). After 30 min, neutrophil fractions 
were collected, and diluted with a fixed amount of incubation medium that 
had been used to wash the upper or lower chambers. Radioactivity was de- 
termined in three cell fractions: "luminal" (i.e., the content of the upper 
compartment with a fixed volume of washing buffer), '~abluminal ~ (i.e., the 
content of the lower compartment plus a fixed volume of buffer used to rinse 
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the basal side of the membrane), and "adhering cell ~ fraction (i.e., the com- 
plete membrane, carefully cut out of its container). Recovery was >92%. 
Adhesion was measured as radioactivity found in the "membrane fraction," 
and migration was measured as radioactivity found in the abluminal fraction 
(lower compartment). The results were expressed as percentage of radioac- 
tivity added to the chambers. 

EC monolayers were pretreated with optimal concentrations of human 
recombinant IL-1-/~ (rlL-1-/~) (10 U/rnl) or TNF-tx (50 ng/ml). The cytokine 
was left for 4 h with the ceils, followed by extensive washing of the 
monolayer with prewarmed incubation medium before use. Under these 
conditions, no chemoattractant was added to the lower chamber. The "spon- 
taneous" transmigration is driven by EC-derived platelet-activating factor 
and IL-8, as described elsewhere (Kuijpers et al., 1992a). rlL-1-B was a gift 
of Dr. P. T. Lomedico (Hoffmann-La Roche, Nutley, NJ). Human recom- 
binant TNF-ct (rTNF-c~) was a gift of Dr. A. Creasy (Cetus, Oakland, CA). 

Immunoprecipitation and Western Blotting 

Lysis of 12SI-labeled nentrophils was performed in Hepes medium contain- 
ing 1% NP-40 (vol/vol), protease inhibitors PMSF (1 raM), N~-p-tosyl-L- 
lysine-chloromethyl ketone (1 mM), leupeptin (20/~g/ml), soybean trypsin 
inhibitor (20 tLg/ml) (Sigma Chem. Co.), and EDTA (5 mM). After an over- 
night preclearing step with protein A-Sepharose, immunoprecipitation was 
performed with the rabbit anti-CEA antiserum, or the murine mAb CLB- 
granl0 chemically cross-linked to protein A-Sepharose by dimethyl pimeli- 
date, or CLB-B13.9 (Tetteroo et al., 1986) coupled to goat anti-mouse Ig 
on cyanogen bromide-activated Sepharose. Sham precipitates were per- 
formed with CLB-CD2 mAb coupled to protein A-Sepharose. Samples 
were run with reduced 5-15 % gradient SDS-PAGE together with prestained 
markers from GIBCO-BRL Life Technologies (Breda, The Netherlands). 
For autoradiography of the ~25I-labeled immunoprecipitates, X-AR5 film 
(Eastman Kodak Co., Rochester, NY) was used in combination with in- 
tensifier screen (Cronex Lighting Plus, Du Pont Co., Newtown, CT). In ex- 
periments with nonradiolabeled neutrophils, cell lysates or immunoprecipi- 
rates were (subsequent to 5-15 % reduced SDS-PAGE) electrophoretically 
transferred to nitrocellulose sheets at 4~ according to standard procedures. 
After the initial blocking of nitrocellulose with BSA (1% [wt/voll in 10 mM 
Tris-HC1, 150 mM NaC1, 0.05% Tween 20, pH 8.0), the sheets were in- 
cubated with primary antibody at "~10/~g/ml for 1 h. After extensive washes 
with the Tris/Tween buffer, the alkaline phosphatase-conjugated anti- 
mouse Ig antibody (Promega Corp., Madison, WI) was used in the final in- 
cubation step for the subsequent enzymatic detection of electroblotted pro- 
teins recognized by the primary antibody. 

Immunoprecipitation of 125I-radiolabeled or immunoblotting of nonla- 
beled purified CEA was performed in the same way as described for neutro- 
phil lysates. After immunoprecipitation of the CEA product with CSLEX-1 
or CLB-B4.3 (coupled to cyanogen bromide-activated Sepharose), the 
precipitates were washed and resuspended in a 0.3-M glycine buffer, pH 11, 
for 1 h. After removal of the Sepharose beads, the soluble fraction was neu- 
tralized to pH 7.0 and reprecipitated with CLB-granl0 (IH4). 

Results 

Inhibition of Neutrophil Adhesion to IL-treated EC 

The enhanced neutrophil adherence to cytokine-treated EC 
can be attributed to a large extent to the expression of 
ELAM-1, but migration completely depends on functional 
CD18 (Smith et al., 1988; Luscinskas et al., 1989; Hakkert 
et al., 1991). A series of anti-NCA mAbs-directed to com- 
mon, shared, or specific epitopes (Table I)-was tested for 
its effect on these processes. Inhibition was found with some 
mAbs, of which 49.30 most potently interfered with the neu- 
trophil adherence to EC pretreated with rlL-1-/3 (Fig. 1) or 
TNF-ct (not shown). Under these conditions, neutrophil 
transmigration was not significantly affected with any of the 
mAbs tested. Inhibition of adherence by 49.30 (directed to 
NCA-160 and NCA-90) was maximal when EC were shortly 
pretreated with cytokines (rlL-1-/~ or TNF-o~ for 4-8 h) to 
induce an optimal expression of ELAM-1. mAb 49.30 could 
not be evaluated when the EC monolayers had been pre- 
treated for 24 h with rlL-1-/~ or rTNF-ct, because neutrophil 
adherence and transmigration were almost absent at that 
time. Neutrophil adherence and migration across monolay- 
ers of resting EC along a gradient of FMLP were unaffected 
by 49.30 (not shown). 

When rnAb 49.30 was used in combination with CD18 or 
anti-ELAM-1, additive inhibition was only observed with 
CD18 (Fig. 2). The inhibition of neutrophil adherence by 
anti-ELAM-1 mAb was high, because binding of neutro- 
phils to ELAM-1 results in activation of the adhesive CD18 
proteins (Lo et al., 1991). Consequently, the anti-ELAM-1 
mAb inhibits neutrophil adherence more efficiently than 
CD18 (Kuijpers et al., 1991). To study the ELAM-l-depen- 
dent binding only, the neutrophils were ATP depleted by so- 
dium iodoacetate before use (Kuijpers et al., 1989, 1991). As 
shown in Fig. 3, rnAb 49.30 significantly inhibited the neu- 
trophil adherence also under these conditions. Migration 
of ATP-depleted neutrophils was absent, either across cyto- 
kine-treated EC (Fig. 3) or along a gradient of FMLP (not 
shown). 

Table L Reactivity of Anti-NCA mAbs with Either HeLa Cells Transfected With CEA(-related) Antigens or with Neutrophils* 

HeLa-CEA HeLa-CGM6 HeLa-NCA HeLa-Neo Neutrophils Neutrophils 
(CEA) (NCA-95) (NCA-90) ( - )  (intact cells) (cell lysate) 

Neo-618 194 + 20 230 + 18 232 + 43 30 -i- 11 189 + 31 NCA-160/95/90 
26/3/13 289 + 28 37 + 12 37 + 13 27 + 5 9 + 2 - 
4/3/17 206 + 34 30 + 11 32 + 11 29 + 9 110:1:41 NCA-160 
CLB-granl0 443 + 52 37 + 15 205 + 38 28 + 7 138 -t- 34 NCA-160/90 
49.30 417 + 48 24 + 12 439 + 38 19 + 6 242 + 56 NCA-160/90 
CLB-B13.9 39 + 12 267 + 44 29 + 10 19 + 8 137 + 38 NCA-95* 
80H3 53 + 17 305 + 65 39 + 16 26 + 9 95 + 19 NCA-95 
MUS 64 + 25 31 + 9 237 -t- 33 29 + 10 88 + 23 NCA-90 
N1 54 -1- 13 47 + 18 496 + 79 26 + 9 68 5 :22  NCA-90 

* The HeLa transfectants have been previously described (Berling et al., 1990). Control transfected HeLa cells have been designated HeLa-Neo. Surface staining 
of HeLa cells and purified neutrophils was measured by cytometry on a FACScan (Becton and Dickinson Immanocytometry Sys., Mountain View, CA), essentially 
as described before (Berling et al., 1990; Kuijpers et al., 1991). Mean fluorescence intensity + SEM of three to seven experiments. The procedures for immuno- 
blotting of neutrophil lysates are described in Materials and Methods. 
~: Nonblotting mAb; antigen has been characterized by immunoprecipitation (Materials and Methods). 
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Figure I. The effect of anti-NCA mAbs on the neutrophil adherence 
to monolayers of rlL-l-~-pretreated EC. Bars represent adherence 
expressed as percentage of total number of neutrophils added. 
Mean + SEM of 10-15 experiments. Those bars marked by an 
asterisk show a significant effect of the respective anti-NCA mAb 
(p < 0.05). 
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Figure 3. The effect of anti-NCA 49.30 on the adherence of ATP- 
depleted neutrophils to and migration across rlL-l-~-pretreated 
EC. Black bars, adherence; open bars, migration. Mean + SEM 
of three to six experiments. Bars marked by an asterisk display a 
significant effect (19 < 0.05) as compared with the respective control 
situation. 

Adhesion of  Neutrophils from PNH Patients 
to IL-treated EC 

The NCA-95 and NCA-90 antigens are membrane attached 
through a lipid PI anchor. Neutrophils of PNH patients are 
deficient in the expression of these proteins, including the 
NCA-90 and NCA-95 antigens (Grunert et al., 1990; Van der 
Schoot, C. E., T. W. Kuijpers, G. Nagel, E Grunert, M. 
Daams, and A. E. G. Kr. von dem Borne, manuscript sub- 
mitred for publication). Moreover, the amino acid sequence 
deduced from the cDNA CGM6 (Berling et al., 1990) and 
NCA (Thompson et al., 1987; Neumaier et al., 1988; Oikawa 
et al., 1987)-representing NCA-95 and NCA-90, respec- 
t ively-had already suggested PI-anchored surface mole- 
cules. Two mAbs (MUS and N1), which selectively recog- 
nized NCA-90 mAb without binding to NCA-160 or NCA-95 
(Table I), were noted to have a significant inhibiting effect 
on neutrophil adherence (Fig. 1). Therefore, PNH neutro- 
phils which completely missed the expression of several PI- 
linked surface antigens tested but expressed transmembrane 
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Figure 2. The additive effect of anti-NCA 49.30, CD18, and 
anti-ELAM-1 mAb on neutrophil adherence to and migration 
across monolayers of rlL-l-/3-pretreated EC. Black bars, adher- 
ence; open bars, migration. Mean + SEM of five to seven experi- 
ments. The experiments in the absence or presence of 49.30 were 
compared for significance. Bars marked by an asterisk display a 
significant effect of 49.30 (p < 0.05). 

molecules at a normal level (Table II), were studied to fur- 
ther discriminate between the role of NCA-160 versus NCA- 
90 in adherence and in the inhibition found with 49.30. 

These PNH neutrophils bound significantly less to rlL-1- 
#-pretreated EC than did normal control neutrophils. 
Moreover, NCA-90-deficient neutrophils were still sensitive 
to inhibition of 49.30 (Fig. 4), whereas MUS and N1 were 
without effect (not shown). Together, the results obtained 
with mAb 4/3/17, N1, and MUS (Table I, Fig. 1) and the sub- 
sequent observations made with PNH neutrophils are in 
keeping with a role for NCA-160 as well as NCA-90 in neu- 
trophil adherence to cytokine-treated EC. 

Adhesion of  LAM-l-negative Neutrophils 
to IL-treated EC 

Whereas the expression of NCA-160, NCA-95, and NCA-90 

Table II. Surface Antigen Expression of  Neutrophils 
Obtained from a Patient Suffering from Severe PNH 

Control neutrophils PNH neutrophils 

Control mAb 9.3 16.7 
4/3/17 73.6 77.3 
CD66 (CLB-granl0) 133.3 87.3 
49.30 186.1 53.7 
80H3 121.9 25.8 
CD67 (CLB-B13.9) 179.2 18.2 
MUS 76,3 20,0 
NI 58.1 20.2 

CDI la (CLB-LFA1/2) 79,4 76.0 
CD1 lb (CLB-B2.12) 135.6 129.2 
CD1 lc (LeuM5) 50.1 67.9 
CD15 (CLB-B4.3) 821.4 1222.1 
SLe ~ (CSLEX-1) 913.0 1515.1 
LAM-1 (Leu-8) 118,9 134.3 
CD32 (IV,3) 122.3 139.6 

CD16 (CLB-FcRgranl) 579.0 30.3 
CD24 (CLB-granBlyl) 47.7 18.7 
CD59 (MEM-43) 259.2 21.1 

Results expressed as mean fluorescence intensity determined by FACScan 
cytometry, Representative of two experiments. 
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Figure 4. Comparison of adherence to rlL-1-/3-pretreated EC be- 
tween normal control neutrophils and PNH neutrophils deficient in 
PI-linked antigens such as NCA95/90. Mean + SEM of three ex- 
periments. Bars marked by an asterisk display a significant effect 
(p < 0.05) as compared to the respective neutrophil adherence to 
IL-l-pretreated EC. 

is upregulated during neutrophil activation (Tetteroo et al., 
1986; Van der Schoot, C. E., T. W. Kuijpers, G. Nagel, E 
Grunert, M. Daams, and A. E. G. Kr. von dem Borne, un- 
published observations), LAM-1 is known to be rapidly shed 
from the plasma membrane (Jutila et al., 1990; Kishimoto 
et al., 1991; Kuijpers et al., 1992b). Under normal condi- 
tions, all neutrophils added to the upper compartment ex- 
press LAMA, as we have described before (Kuijpers et al., 
1992a,b). After pretreatment of neutrophils for 30 min at 
37~ with 10 nM FMLP, the neutrophils have become 
LAM-l-negative, nonaggregated cells (Kuijpers et al., 1991). 
However, the adherence of  these neutrophils to rIL-1-/3-acti- 
vated EC was neither downmodulated, nor inhibited to a 
significantly larger extent by mAb 49.30 (Table III). 

Inhibition of  Adherence by Soluble 
CEA(-related) Antigen 

A soluble CEA product was purchased and tested to substan- 
tiate our findings with anfi-NCA mAbs with respect to neu- 
trophil adherence. Neutrophil adherence to cytokine-treated 

Table III. The Role of LAM-1 in the Neutrophil Adherence 
to Cytokine-activated EC Monolayers 

LAM- l-positive LAM- 1 -negative 
Additions neutrophils neutrophils 

Control mAb 37 + 2.2 38 + 2.8 
CD18 (CLB-LFA1/1) 19 + 3.0 17 + 4.9 
c~ELAM-1 (ENA-2) 7 + 0.6 8 + 1.1 
CD66 (49.30) 16 5:2.0 14 + 3.2 

Mean + SEM of four to eight experiments. Adherence is expressed as the per- 
centage of 5~Cr-labeled neutrophils that adhered to the EC on the filter (see 
Materials and Methods). The control mAb used is an isotype-matched anti- 
TNP IgGl mAb. 

Figure 5. (A) The effect of soluble CEA(-related) antigens on neu- 
trophil adherence to and migration across monolayers of EC. Neu- 
trophils either migrated across resting EC toward FMLP (10 nM) 
in the lower compartment, or across monolayers of rlL-1-B-pre- 

A 

control 

FMLP 10 nM 

CEA ( 1 pg/ml) 

CEA ( 5 pglml) 

CEA (10 pg/m[) 

EC IL -1 ,  4h 

CEA ( 1 pg/ml) 

CEA ( 5 pg/ml) 

CEA (10 pg/ml) 

B 

r ~J~ 

EC 111--1, 4h) 

CEA �9 

CEA/CD9 precl. �9 

CEA/CD 66 precl. 

I 

i 

I * 

10 20 30 40  

(%) 

I 

50 60 

10 20  30  4 0  5 0  

(%) 

C 

control 

Ec ( r  4h) 

CEA 

CEAIsialidase 

HSA 

HSA/sialidase 

I * 

i 

I 

I 
i 

[ 

0 10 20  30 40 5 0  

(%) 

treated EC without exogenously added chemoattractants. Black 
bars, adherence; open bars, migration. Mean -t- SEM of four to 
eight experiments. Bars marked by an asterisk display a significant 
effect (p < 0.05). (B) The effect of preclearing with CD66 CLB-gran 
10 or control mAb CD9 on the inhibitory capacity of the soluble 
CEA(-related) antigens on neutrophil adherence to and migration 
across rlL-1-/%pretreated EC. Black bars, adherence; open bars, 
migration. Mean 5: SEM of three experiments. Bars marked by an 
asterisk display a significant effect (p < 0.05). (C) The effect of siali- 
dase (Vibrio cholerae) on the inhibitory capacity of CEA(-related) 
antigens on the neutrophils adherence to and migration across 
rlL-l-#-pretreated EC. Black bars, adherence; open bars, migra- 
tion. Mean 5: SEM of three experiments. Bars marked by an aster- 
isk display a significant effect (p < 0.05). 
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Figure 6. Autoradiogram of the t25I-labeled CEA product (lane 1) 
and immunoprecipitates with CD66 CLB-granl0 (lane 2), and 
CD67 CLB-B13.9 (lane 3a) developed after 2-2.5 h, or (lane 3b) 
after 48 h. Lane 4 is a sham precipitate after 48 h. The bands below 
44 kD in lane 3b probably represent trace contaminants in the CEA 
product that have nonspecifically bound to the goat anti-mouse/cy- 
anogen bromide-activated Sepharose, as used for CD67 immuno- 
precipitation (cf. Materials and Methods). 

EC, but not to resting EC in the presence of FMLP, was 
significantly inhibited by soluble CEA(-related) proteins 
(Fig. 5 A). Transmigration induced by FMLP or IL-1 
pretreatment was not affected by the CEA product. After 
t25I-labeling, the product was noted to contain two major 
bands of ,~180 and 150 kD and minor bands of ~100 and 
50 kD (Fig. 6). The high molecular band of 180 kD was im- 
munoblotted with monospecific noncross-reacting anti-CEA 
mAb 26/3/13. The exact nature of the 150-kD band is as yet 
unknown. It may be a CEA glycoform also known as CEA- 
160 (Grunert et al., 1985) (differently glycosylated and thus 
masking the 26/3/13 epitope), or it may be a large cleavage 
product of CEA (having lost the 26/3/13 epitope). Alterna- 
tively, the 150-kD product may also represent a soluble NCA 
variant; both the 180 and 150 kD bands were immunoblotted 
by CLB-granl0 and 49.30 (data not shown). The smaller 
band of *100 kD was precipitated with B13.9 and is proba- 
bly the myeloid NCA-95 protein. The low molecular mass 
band of ~50  kD was blotted by the polyclonal anti-CEA an- 
tisernm but not by CLB-granl0 or 49.30. This band most 
likely represents NCA-50 (Thompson et al., 1987; Barnett 
and Zimmerman, 1990). 

When the CEA product was precleared by CLB-granl0 be- 
fore testing, no inhibition of neutrophil adherence to rIL-1- 
~-pretreated EC was observed anymore, whereas the CEA 
product precleared with CD9 mAb still inhibited neutrophil 
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Figure 7. (A) Binding of the 125I-labeled CEA product to mono- 
layers of rIL-l-/%pretreated EC. Binding to EC pretreated for 4 h 
with rIL-l~ (black bars) was significantly blocked by prior incuba- 
tion of the monolayers with anti-ELAM-1 mAb (white bars; p < 
0.05). Mean 5: SEM of three experiments. (B) Direct interaction 
of ELAM-l-transfected cells with the CEA product coated on poly- 
sterene. Murine pre-B cells transfected with human recombinant 
ELAM-1 (pMRBI07; black bars) and control murine pre-B cells 
(pMRBI01; white bars) were used at 10 ~ cells/well for adherence 
to the CEA product or to HSA as a control protein. After four 
washes with basal incubation medium, adhering cells were micro- 
scopically scored. Represented is the mean of 10 high-power fields 
(120 x) per well of three experiments in triplicate. 

adherence to these ELAM-l-expressing EC (Fig. 5 B). 
Moreover, direct interaction of the CEA product with 
ELAM-1 was indicated by time course considerations and 
substantiated by the significant inhibition by anti-ELAM-1 
mAb (Fig. 7 A), as well as the direct interaction of ELAM- 
1-transfected murine pre-B cells to the CEA product coated 
on polystyrene (Fig. 7 B). Anti-ELAM-1 as well as 49.30 
mAbs blocked the binding for >85 % (not shown). 

Oligosaccharides SLex and Le �9 Present 
on CEA(-related) Antigens 

Sialidase-treated neutrophils have previously been found to 
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Figure 8. Immunoblot of neutrophil precipitates of 
NCA with anti-SLe x CSLEX-1 (A) or anti-Le �9 CLB- 
B4.3 (B). (Lanes 1) Sham (CD2)precipitates; (lanes 
2) rabbit polyclonal anti-human CEA immunopre- 
cipitates; (lanes 3) CD67 CLB-B13.9 immunopre- 
cipitates; (lanes 4) CD66 CLB-granl0 immuno- 
precipitates. Arrows indicate the expected location of 
NCA-160 and NCA-95/NCA-90. The low molecular 
weight bands immunoblotted with anti-Le �9 (B) were 
also noted without immunoprecipitation and can be 
considered as nonspecific staining. Representative for 
three different experiments. 

lack ELAM-1 binding. Subsequently, the crucial oligosac- 
charide for ELAM-1 binding was found to be SLe x (Lowe 
et al., 1990; Goelz et al., 1990; Phillips et al., 1990; Walz 
et al., 1990; PoUey et al., 1991). CEA(-related) antigens are 
well-documented glycoproteins of which oligosaccharide 
chains constitute 30-50% of the relative molecular weight 
(Kobata et al,, 1989; Thompson et al., 1991). CEA contains 
mainly type II polylactosamine ([Galfll-4GlcNAc],) side 
chains (in contrast to the type I Galfll-3GlcNAc isomers) 
(Chandrasekaran et al., 1983; Yamashita et al., 1987)-just 
like most glycoproteins on granulocytes (Spooncer et al., 
1984; Fukuda et al., 1984, 1986). These chains bear fucose 
and sialic acid residues at positions potentially critical for 
Le ~ and its sialylated form in >50% of its oligosaccharide 
structure (Chandrasekaran et al., 1983). 

Both the NCA-160 and NCA-90 were immunoblotted by 
the anti-SLe ~ mAb CSLEX-1. NCA-160 was also positively 
stained in Western blot with anti-Le x rnAb CLB-B4.3 (Fig. 
8), as was shown before by Stocks et al. (1990). In some ex- 
periments, NCA-95 was immunoblotted with anti-Le x as 
well (not shown). The soluble CEA product was found to be 
positive for SLe ~ and Le ~ determinants in an ELISA (not 
shown). Immunoprecipitation with anti-SLe ~ mAb CSLEX-1 
or anti-Le x mAb CLB-B4.3 demonstrated that both the 
180- and 150-kD bands were SLe x positive. The CEA band 
of 180 kD was not fully oe-2,3 sialylated at the Le x deter- 
minants, as indicated by the immunoprecipitation of the high 
molecular weight band also with anti-Le x (Fig. 9 A). As al- 
ready indicated by the difference in mobility of the high mo- 
lecular weight bands of CEA in Fig. 9 A, the level of sialyla- 

tion directly influenced electrophoretic mobility: sialidase 
treatment of the CEA product induced an apparent increase 
in the 180 and 150 kD (SLex-positive) bands of ,,o10 kD 
(Fig. 9 B). Both the SLe x- and Lex-positive 180-kD band 
were recognized by the monospecific anti-CEA mAb 26/3/13 
(not shown). 

When the CEA product was sialidase treated before use, 
there was no inhibition of neutrophil adherence to rIL-1- 
/3-pretreated EC to be seen anymore. This was not caused 
by trace amounts of sialidase, because sialidase-treated HSA 
did not show any effect (Fig. 5 C). 

Discuss ion  

The function of ELAM-1 as an important adhesion molecule 
on inflamed endothelium in neutrophil binding in vitro 
(Bevilacqua et al., 1987; Luscinskas et al., 1989; Kuijpers 
et al., 1991) has been further substantiated by recent in vivo 
animal models, in which neutrophil binding and influx were 
blocked by anti-ELAM-1 mAb (Mulligan et al., 1991; Gun- 
del et al., 1991). 

The SLe x moieties located on glycoproteins have been 
shown to be essential for neutrophils to bind to ELAM-1 
(Lowe et al., 1990; Goelz et al., 1990; Phillips et al., 1990; 
Walz et al., 1990; Policy et al., 1991). However, many, 
surface-expressed (and soluble) glycoproteins may bear the 
SLe x oligosaccharide. Therefore, SLe x positivity alone can- 
not be considered as proof for involvement in ELAM-1 bind- 
ing. Previously, LAM-1 on neutrophils was suggested to be 
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a predominant SLex-bearing ligand for ELAM-1, though 
not the only one (Picker et al., 1991). 

Of a series of anti-NCA n~bs  (Table I), some were found 
to significantly inhibit neutrophil adherence to cytokine- 
activated monolayers of EC, whereas others did not (Fig. 
1). The anti-NCA-160/NCA-90 mAb 49.30 was most effec- 
tive, but only under conditions of neutrophil adherence to 
ELAM-l-expressing EC (Fig. 1). Adherence ofPNH neutro- 
phils (lacking NCA-95 and NCA-90 [Table II]) to cytokine- 
treated EC was sensitive to CD66 mAb 49.30 inhibition, but 
to a very limited extent (Fig. 4). Together with the data ob- 
tained with the more selective anti-NCA mAbs 4/3/17, N1, 
and MUS (Table I, Fig. 1), this indicates that NCA-90 and 
to some extent NCA-160 are involved in adherence. We did 
not find any inhibitory effect with the CD67 mAbs. 

Glycosylation of the CEA/NCA molecules is essential. 
First, HeLa cells transfected with CEA (HeLa-CEA), NCA- 
95 (HeLa-CGM6), or NCA-90 (HeLa-NCA) did not consis- 
tently bind to ELAM-l-expressing EC. Le x or SLe X deter- 
minants were absent on the HeLa cells-transfected or 
no t -  (data not shown), which is in keeping with the fact that 
HeLa cells do not have any ~1,3 fucosyl transferase activity 
(Goelz et al., 1990). Second, the soluble CEA product lost 
all inhibitory capacity upon sialidase treatment (Fig. 5 C). 

Although transfection studies of Oikawa et al. (1989) and 
Benchimol et al. (1989) have demonstrated that aggregation 
of CEA/NCA-transfected COS cells can occur, neutrophils 
(or CEA/NCA-transfected HeLa cells) continuously and sta- 
bly expressing these molecules do not spontaneously form 
clusters. The NCA proteins on neutrophils have evolved to 
presenter molecules of the correct oligosaccharide deter- 
minants for lectin-like molecules such as ELAM-1 (Bevilac- 
qua et al., 1989). Binding of CEA(-related) antigens to 
ELAM-1 was evidenced, as shown in Fig. 7, A and B. 

Our data strongly indicate that, apart from LAM-1 and the 
NCA proteins, other SLex-beadng presenter molecules also 
contribute to the adherence of neutrophils to ELAM-I-ex- 
pressing EC. First, LAMA-negative neutrophils are still 
able to bind to cytokine-treated, ELAM-l-expressing EC 
(Table III). This finding corroborates a role for LAMA espe- 
cially in the initial phase of neutrophil adherence to cyto- 
kine-treated EC (Kuijpers et al., 1991). This notion is in line 
with the adhesion studies at 500 s by Smith et al. (1991) and 
Kishimoto et al. (1991). Second, the inhibition of neutro- 
phil adherence by CD66 mAb 49.30 was not dramatically in- 
creased upon prior LAM-1 shedding (Table ~I). Third, anti- 
ELAM-1 mAb consistently showed a stronger inhibition of 
neutrophil adherence to cytokine-treated EC than did 49.30 
(Fig. 2). 

We have found that the surface-expressed NCA molecules 
on neutrophils can trigger CD18 activation, hence contribut- 

Figure 9. (A) Immunoprecipitation of the ~zsI-labeled CEA prod- 
uct with anti-SLe x mAb CSLEX-1 (A) or anti-Le x mAb CLB-B4.3 
(B), followed by reprecipitation (see Materials and Methods) with 
the polyclonal anti-human CEA antiserum (lanes 1), CD66 
CLB-granl0 (lanes 2), 49.30 (lanes 3), or sham (CD2) precipitates 
(lanes 4). Representative for three different experiments. (B) Im- 
munoprecipitation of the 125I-labeled CEA product before ( - )  and 
after (+) sialidase treatment with the polyclonal anti-human CEA 
antiserum. Representative for two different experiments. 



ing to a strengthening of neutrophil adherence to EC via 
CD18-dependent binding. This NCA-mediated triggering is 
absent in PNH neutrophils (Kuijpers, T. W., C. E. Van der 
Schoot, M. Hoogerwerf, and D. Roos, manuscript submitted 
for publication). Thus, both NCA-160 and NCA-90 are in- 
volved in neutrophil adherence but only NCA-90 seems to 
increase adherence via CD18 activation. We (Kuijpers, 1991) 
and others (Lo et al., 1991) have demonstrated the existence 
of such a direct ELAM-l-mediated activation of CD11/CD18 
molecules. 

Medoff et al. (1984) have ascribed a negative modulatory 
capacity to CEA in lymphocyte proliferation. We can add 
another possible role of circulating CEA(-related) antigens 
in plasma. Because of the presentation of certain oligosac- 
charide structures, CEA-like antigens may interfere with 
neutrophil adherence to endothelium at sites of inflamma- 
tion. Possibly, a wide spectrum of serum proteins, ranging 
from acute phase proteins (e.g., ott-acid glycoprotein/oroso- 
mucoid [Chandrasekeran et al., 1984; Walz et al., 1990]) to 
oncofetal proteins (e.g., mucin-type of glycoprotein [Kannagi 
et al., 1986], or soluble CEA/NCA antigens (in all kinds of 
cancer patients with adenocarcinomas), modulate neutrophil 
adherence. Further investigation is currently undertaken to 
elucidate whether soluble serum components can indeed 
have such a modulatory role in neutrophil adhesion. 
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