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Abstract: Background: Pancreatic cancer is one of the malignant tumors that threaten human health.
Methods: The gene expression profiles of GSE15471, GSE19650, GSE32676 and GSE71989 were
downloaded from the gene expression omnibus database including pancreatic cancer and normal
samples. The differentially expressed genes between the two types of samples were identified with the
Limma package using R language. The gene ontology functional and pathway enrichment analyses of
differentially-expressed genes were performed by the DAVID software followed by the construction
of a protein–protein interaction network. Hub gene identification was performed by the plug-in
cytoHubba in cytoscape software, and the reliability and survival analysis of hub genes was carried
out in The Cancer Genome Atlas gene expression data. Results: The 138 differentially expressed
genes were significantly enriched in biological processes including cell migration, cell adhesion and
several pathways, mainly associated with extracellular matrix-receptor interaction and focal adhesion
pathway in pancreatic cancer. The top hub genes, namely thrombospondin 1, DNA topoisomerase II alpha,
syndecan 1, maternal embryonic leucine zipper kinase and proto-oncogene receptor tyrosine kinase Met were
identified from the protein–protein interaction network. The expression levels of hub genes were
consistent with data obtained in The Cancer Genome Atlas. DNA topoisomerase II alpha, syndecan 1,
maternal embryonic leucine zipper kinase and proto-oncogene receptor tyrosine kinase Met were significantly
linked with poor survival in pancreatic adenocarcinoma. Conclusions: These hub genes may be used
as potential targets for pancreatic cancer diagnosis and treatment.
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1. Introduction

In modern medicine, pancreatic cancer is one of the most difficult diseases to diagnose because of
the early development of systemic metastatic disease. Although the incidence of pancreatic cancer
is increasing, awareness of pancreatic cancer is relatively low. The 5-year survival rate of pancreatic
carcinoma was about 8%, much less than that of other cancers [1]. The perspective of pancreatic cancer
patients has not elevated notably although surgical methods and pharmaceuticals have enhanced
treatment to some extent. Moreover, lower enrollment on clinical trials has resulted in a decrease of new
therapy development [2]. Generally, some factors that may increase the risk of pancreatic carcinoma
including pancreatitis, family history of pancreatic cancer, obesity, and older age so on. One of the
main challenges of pancreatic carcinoma chemotherapy is the development of new therapeutic ways
affording the elimination of tumors cells while sparing normal tissues. It may ameliorate the depressing
outcome of pancreatic carcinoma by molecularly targeted therapeutic approaches used for aberrant
signaling pathway in pancreatic cancer cells. Consequently, a relevant molecular target needs to
be identified.
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Microarray is one of the most recent advances being used for cancer research. Tumor formation
involves aberrant changes in numerous cells and variations in genes. Microarray can help peculiarly
in the identification of target genes of tumor suppressors and cancer biomarkers, and classification
of tumors [3]. In recent investigations, numerous differentially expressed genes (DEG) have been
identified through microarray in pancreatic carcinoma, and several potentially pivotal biomarkers
were disclosed [4–6]. For instance, some key biomarkers have been exposed in pancreatic carcinoma,
namely intercellular adhesion molecule 2 (ICAM2), anoctamin 9 (ANO9), proline-rich tyrosine kinase 2 (PYK2)
and cyclin-dependent kinase 9 (CDK9) [7–10]. However, a different biomarker was uncovered in different
research lab. Accordingly, there was no responsible biomarker in gene expression profile research
of pancreatic carcinoma. The integrative bioinformatics method connecting with gene expression
profiling technology might solve the deficiencies.

In this study, we used the publicly available microarray data sets of human pancreatic tissue
and performed integrative analysis on DEG by bioinformatics analysis. Our results will disclose the
particular biomarker and the underlying therapeutic target for pancreatic carcinoma.

2. Materials and Methods

2.1. Microarray Data

Four publicly available gene expression profiles (GSE15471, GSE19650, GSE32676 and GSE71989)
were downloaded from the Gene Expression Omnibus (GEO) database and used in this study. Criteria
of the selected dataset was as follows: (1) the GEO platform (GPL) is GPL570 (Affymetrix Human
Genome U133 Plus_2.0 Array); (2) the number of samples is more than 20 containing normal and
cancer tissues; (3) the samples are human pancreatic cancer tissue. The dataset of GSE15471 contained
pancreatic tissue samples of 39 cancer patients and 39 healthy subjects. The dataset of GSE19650
contained pancreatic tissue samples of 15 cancer patients and 7 healthy subjects. The dataset of
GSE32676 contained pancreatic tissue samples of 25 cancer patients and 7 healthy subjects. The dataset
of GSE71989 contained pancreatic tissue samples of 13 cancer patients and 8 healthy subjects. Data
of chronic pancreatitis tissue samples in GSE71989 were not included in this study. These four
datasets were chosen for integrative analysis in this study including 92 pancreatic cancer samples and
61 healthy subjects.

2.2. Data Preprocessing and DEG Screening

Affy package of R language was used for manipulating the raw data following a 3-step process:
background-adjusted, normalized, and log-transformed the raw data values [11]. Afterwards, the
expression matrix with gene level was gained by transforming the expression matrix with probe level
grounded on annotation files. DEG analysis was performed with multiple linear regression Limma
package [12]. It estimates the fold changes and standard errors by fitting a linear model for each gene
by lmFit and the empirical Bayes statistics implemented by eBayes, topTable etc. Statistical significance
was set at p value <0.01 and log2-fold change (log2|FC|) > 1 for each dataset. In the following
study, intersection of the 4-dataset DEG was defined as common DEG. A Venn diagram was used for
showing the common DEG by VennDiagram package of R language. We further analyzed the DEG of
intraductal papillary-mucinous adenoma (IPMA), intraductal papillary-mucinous carcinoma (IPMC)
and intraductal papillary-mucinous neoplasm (IPMN) for the GSE19650 dataset by the same method.

2.3. Hierarchical Clustering Analysis

Gene expression values were extracted from the expression profile for each dataset. A bidirectional
hierarchical clustering heatmap was constructed using gplots package of R language for DEG in every
dataset. Besides, the hierarchical clustering was performed by limiting the analysis only to the 138
common DEG obtained from the 4 datasets. We used heatmap.2 function in gplots package of R to
draw the heat map. In heatmap.2, the expression value of gene is in the row and the sample is in the
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column. After normalizing the value of row, clustering settings are specified via distfun (method =

‘euclidean’) and hclustfun (method = ‘complete’) function.

2.4. Functional and Pathway Enrichment Analysis

On the basis of the database for Annotation, Visualization and Integrated Discovery (DAVID),
common DEG were classified according to genes biological processes, molecular functions, or cellular
components by gene ontology (GO) consortium reference [13]. The DAVID database was also used for
performing pathway enrichment analysis with reference from kyoto encyclopedia of genes and genomes
(KEGG) database. A cut-off point was delimited as p value < 0.05 and Benjamini-Hochberg false
discovery rate (FDR) < 0.05. Moreover, we used KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/anno_iden.php;
Peking University: Beijing, China) to further perform GO and KEGG analysis.

2.5. Protein–Protein Interaction Network Construction and Hub Gene Analysis

The Search Tool for the Retrieval of Interacting Genes (STRING) version 10.5 (http://www.string-
db.org/) was used for constructing the protein–protein interaction (PPI) networks [14]. The PPI
network was constructed and visualized using cytoscape software version 3.5.0 (California, USA) for
the common DEG [15]. The plug-in cytoHubba was used for exploring key nodes and fragile motifs
in the PPI network by some topological algorithms including Degree, Edge Percolated Component,
Maximum Neighborhood Component, Density of Maximum Neighborhood Component, Clustering
Coefficient, Maximal Clique Centrality, Bottleneck, EcCentricity, Closeness, Radiality, Stress, and
Betweenness [16]. A definition of 12 topological algorithms is described in the Supplementary Table S1.
The top 30 nodes were considered as notable genes in the network for every topological analysis
method. The intersected genes of top 30 nodes of every topological algorithm were regarded as the
most important hub genes in the network.

2.6. Validation and Survival Analysis of the Hub Genes in The Cancer Genome Atlas (TCGA) Dataset

UALCAN is an interactive web-portal to perform to in-depth analyses of The Cancer Genome
Atlas (TCGA) gene expression data (http://ualcan.path.uab.edu/index.html) and it uses TCGA level 3
RNA-seq and clinical data from 31 cancer types [17]. The correlation between hub genes expression and
survival in pancreatic adenocarcinoma was analyzed by UALCAN. The patient objects with pancreatic
adenocarcinoma were split into two groups according to the expression of a particular gene (high vs.
low/medium expression).

3. Results

3.1. Identification of DEG

A total of 138 common DEG were identified from the intersected parts of the four profile datasets
including 93 up-regulated genes and 45 down-regulated genes in the pancreatic carcinoma samples
compared to normal samples, which was exhibited by a Venn diagram (Figure 1). The gene expression
value was extracted from every profile dataset and a hierarchical clustering heat map was plotted
to show the DEG (Figure 2). In Figure 2, it can be seen that some cancer GSE samples (GSM) of the
GSE15471 dataset were not classified as the cancer group. Similarly, this phenomenon also presents
in the datasets of GSE32676 and GSE71989. Additionally, it shows that a clearer separation between
cancer and normal samples (Supplementary Figure S1), which partly support the idea that these
138 genes can act as a pancreatic cancer signature.

http://kobas.cbi.pku.edu.cn/anno_iden.php
http://www.string-db.org/
http://www.string-db.org/
http://ualcan.path.uab.edu/index.html
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Figure 1. Four-set Venn diagram showing the common differentially expressed genes from the four
Gene Expression Omnibus series datasets. Differentially expressed genes (DEG) were identified with
classical t test, statistically significant DEG were defined with p < 0.01 and log2-fold change (log2FC) >1
or < −1 as the cut-off criterion for every dataset.
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Figure 2. Heat map showing up-regulated and down-regulated differentially expressed genes in
pancreatic adenocarcinoma compared to the normal samples in the four datasets. The expression
values are log2 transformed for absolute value of fold changes (>1 or <−1) between normal tissues
and pancreatic adenocarcinoma samples. Green represents down-regulation and red represents
up-regulation. (A) GSE15471; (B) GSE19650; (C) GSE32676; (D) GSE71989.
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The number of DEG of IPMA, IPMC and IPMN is 4021, 4047 and 4331, respectively. During
the process, 47 IPMN specific genes were obtained by removing DEG of IPMA and IPMC from the
1271 genes. They are: RPS4Y1/SCG5/NFIA/FABP6/RPL31/HHIP/KIF5C/LOC158402/BEX4/PID1/P2RY12/
GDAP1/ABI2/PRDM10/ATP7B/ZNF107/NAPRT/RPL11/FGA/ABCC4/ZDHHC9/SLC5A1/XIAP/SCGB1D2/
LOC101928000/4-Sep/BTBD10/CHL1/XKR4/B3GALT2/ALG6/NBR2/RAD51AS1/ACOT8/DPP8/ ADSS/AGPS/
ARL6IP1/CST3/TIPRL/MUM1/MSX2/C1orf53/BTBD3/H3F3A/NDUFB4/MPC2.

3.2. GO Functional and Pathway Enrichment Analysis

As shown in Table 1, the DEG was significantly enriched in biological processes containing cell
migration, cell adhesion, cell-cell adhesion, extracellular matrix disassembly and hemidesmosome
assembly. GO analysis exhibited that the DEG was obviously enriched in extracellular exosome, plasma
membrane, bicellular tight junction, focal adhesion for cell component. In addition, GO analysis
also displayed that the DEG was markedly enriched in laminin binding, protein homodimerization
activity, protein phosphatase binding and cadherin binding involved in cell-cell adhesion for molecular
function. However, there are considerable differences in the ranked GO term by p-value between
DAVID and KOBAS. For example, the term of cell migration is ranked first in the results of DAVID but
it ranked 60 in the KOBAS analysis (Supplementary Table S2).

The results of KEGG signaling pathway analysis showed that the DEG was markedly enriched in
extracellular matrix (ECM)-receptor interaction, proteoglycans in cancer, focal adhesion, mucin type
o-glycan biosynthesis and phosphoinositide 3-kinase- protein kinase B (PI3K- Akt) signaling pathway
(Table 1). The results of KEGG pathway analysis are consistent with the KOBAS analysis.
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Table 1. Gene ontology and pathway enrichment analysis of differentially expressed genes function in pancreatic cancer (top 5 in each category).

Category Term Count p-Value Genes

BP GO:0016477 ~ cell migration 10 6.34 × 106 JUP, STYK1, SDC1, TSPAN1, FAT1, PRKCI, THBS1, SDC4, CEACAM1, ADAM9

BP GO:0007155 ~ cell adhesion 13 1.89 × 104 EFNB2, FERMT1, ITGA2, JUP, LGALS3BP, LAMB3, LAMA3, FAT1, MSLN, LAMC2, THBS1,
CEACAM1, ADAM9

BP GO:0098609 ~ cell-cell adhesion 9 1.06 × 103 PKM, FLRT3, S100P, RPL14, CAPG, ANLN, SFN, GPRC5A, CEACAM1

BP GO:0022617 ~ extracellular matrix disassembly 5 2.63 × 103 LAMB3, LAMA3, ADAM10, CAPG, LAMC2

BP GO:0031581 ~ hemidesmosome assembly 3 3.56 × 103 LAMB3, LAMA3, LAMC2

CC GO:0070062 ~ extracellular exosome 46 1.35 × 107

S100A6, TSPO, FXYD3, SLC44A1, TSPAN1, RPL14, MAL2, MARCKSL1, MLPH, SFN, SDC4, GPRC5A,
ZG16B, PKM, LGALS3BP, FAT1, CEACAM5, NQO1, THBS1, MYOF, CEACAM1, DLG1, ADAM9,

S100P, ADAM10, SLC12A2, LGALS3, TMC5, PRKCI, SLC6A14, S100A10, S100A14, ANXA3, LCN2, JUP,
MTMR11, SDC1, KRT19, TNFSF10, LAMA3, C1ORF116, SERPINB5, CAPG, CTSE, SLPI, AOC1

CC GO:0005886 ~ plasma membrane 52 3.79 × 105

SLC44A1, TSPAN1, MARCKSL1, SDC4, PKM, MGLL, CEACAM1, DLG1, NET1, ADAM10, EFNB2, F8,
PRKCI, JUP, STYK1, KRT19, SDC1, EFNA5, AOC1, MELK, TNFRSF21, FXYD3, CLDN18, ASAP2,
GPRC5A, FAT1, MSLN, AHNAK2, MYOF, FLRT3, KLF5, OSBPL3, SLC12A2, LGALS3, KLB, MET,

SLC6A14, ITGA2, DGKH, ITPR3, KCNK1, DOCK5, S100A14, ANXA3, CLDN23, GJB2, KCNN4, P2RX1,
PON2, SYTL2, RHBDL2, IFI6

CC GO:0005923 ~ bicellular tight junction 7 1.87 × 104 CLDN18, EPPK1, PRKCI, ECT2, AOC1, CLDN23, DLG1

CC GO:0005925 ~ focal adhesion 11 6.35 × 104 FLRT3, JUP, SDC1, ADAM10, FAT1, EFNB2, FERMT1, FHL2, ITGA2, SDC4, ADAM9

CC GO:0005913 ~ cell-cell adherens junction 9 2.70 × 103 PKM, JUP, S100P, RPL14, CAPG, ANLN, SFN, GPRC5A, DLG1

MF GO:0043236 ~ laminin binding 4 7.91 × 104 LGALS3, ITGA2, THBS1, ADAM9

MF GO:0042803 ~ protein homodimerization activity 15 9.42 × 104 FLRT3, S100A6, ADAM10, S100A10, ECT2, JUP, LCN2, CTSE, MGLL, CEACAM5, AOC1, AGR2,
TOP2A, CEACAM1, MTUS2

MF GO:0019903 ~ protein phosphatase binding 5 1.18 × 103 JUP, KCNN4, NEK2, MET, CEACAM1

MF GO:0098641 ~ cadherin binding involved in
cell-cell adhesion 9 1.35 × 103 PKM, JUP, S100P, RPL14, CAPG, ANLN, SFN, GPRC5A, DLG1

MF GO:0005509 ~ calcium ion binding 13 6.50 × 103 S100A6, S100P, CAPN8, S100A10, MMP28, ITPR3, S100A14, ANXA3, FAT1, SYTL2, THBS1,
AOC1, MELK

KEGG hsa04512: ECM-receptor interaction 7 5.33 × 103 SDC1, LAMB3, LAMA3, ITGA2, LAMC2, THBS1, SDC4

KEGG hsa05205: Proteoglycans in cancer 6 1.93 × 102 SDC1, MET, ITGA2, THBS1, SDC4, ITPR3

KEGG hsa04510: Focal adhesion 6 2.17 × 102 LAMB3, LAMA3, MET, ITGA2, LAMC2, THBS1

KEGG hsa00512: Mucin type O-Glycan biosynthesis 3 2.41 × 102 GALNT5, C1GALT1, ST6GALNAC1

KEGG hsa04151: PI3K-Akt signaling pathway 7 5.10 × 102 LAMB3, LAMA3, MET, ITGA2, EFNA5, LAMC2, THBS1

Note: BP, biological process; CC, cell component; MF, molecular function; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes (as ranked by the p-value).
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3.3. PPI Network Construction and Hub Genes Identification

The PPI relationship was displayed in Figure 3. It was apparent from the figure that very few
down-regulated genes are there. These genes were thrombospondin 1 (THBS1), coagulation factor VIII (F8)
and suppressor of cytokine signaling 3 (SOCS3). In order to identify the key genes in the PPI relationship,
12 topological algorithms were carried out. As shown in Table 2, the top 30 genes of Degree topological
algorithm included DNA topoisomerase II alpha (TOP2A), THBS1, and so on. Closer inspection of the
table showed TOP2A and proto-oncogene receptor tyrosine kinase Met (MET) are top-ranked in the most
topological algorithms. Maternal embryonic leucine zipper kinase (MELK), MET, THBS1, TOP2A and
syndecan 1 (SDC1) were considered as common hub genes of 12 topological algorithms analysis in the
further statistical tests.
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Figure 3. Differentially expressed genes protein–protein interaction (PPI) network was constructed
and visualized using Cytoscape software. Red nodes represent up-regulated genes and baby blue
nodes represent down-regulated genes in pancreatic adenocarcinoma compared to the normal samples.
Only two nodes included one edge and alone node were removed from the network.
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Table 2. The hub genes were analyzed by different topological algorithms in the protein–protein interaction network.

Topological Algorithm Top 30 Genes Were Ranked by Score

Degree TOP2A, THBS1, NEK2, DLG1, ITGA2, MELK, CEP55, ANLN, ECT2, DTL, SDC1, MET, LAMB3, LAMA3, SDC4, PLD1, EFNB2,
DGKH, LAMC2, LGALS3, EFNA5, JUP, KRT19, CEACAM5, LGALS3BP, PKM, SGPP2, ADAM10, HS3ST1, MBOAT2

Edge Percolated Component TOP2A, MELK, NEK2, ANLN, DTL, CEP55, ECT2, DLG1, MET, SDC1, THBS1, ITGA2, JUP, SDC4, LAMB3, LAMA3, PKM,
EFNA5, LAMC2, KRT19, ADAM10, EFNB2, LGALS3BP, HS3ST1, CEACAM5, PLD1, F8, LGALS3, SLC12A2, PRKCI

Maximum Neighborhood Component TOP2A, NEK2, MELK, CEP55, ANLN, ECT2, DTL, ITGA2, LAMB3, THBS1, SDC1, LAMC2, LAMA3, SDC4, DLG1, PKM, DGKH,
EFNA5, MET, JUP, HS3ST1, PLD1, MBOAT2, F8, EFNB2, LGALS3BP, PGM2L1, SDR16C5, PRKCI, FHL2

Density of Maximum Neighborhood Component CEP55, ANLN, ECT2, DTL, NEK2, MELK, LAMC2, LAMA3, TOP2A, LAMB3, ITGA2, SDC4, DLG1, PKM, DGKH, EFNA5, MET,
JUP, HS3ST1, PLD1, MBOAT2, F8, EFNB2, LGALS3BP, THBS1, SDC1, PGM2L1, SDR16C5, PRKCI, FHL2

Clustering Coefficient PKM, CEP55, ANLN, LAMC2, ECT2, DTL, HS3ST1, MBOAT2, F8, NEK2, MELK, LAMB3, LAMA3, DGKH, EFNA5, SDC4, JUP,
LGALS3BP, SDC1, ITGA2, TOP2A, THBS1, PLD1, EFNB2, MET, DLG1, PGM2L1, SDR16C5, PRKCI, FHL2

Maximal Clique Centrality TOP2A, NEK2, MELK, CEP55, ANLN, ECT2, DTL, ITGA2, THBS1, DLG1, TNFSF10, LAMB3, LAMA3, SDC1, OAS1, IFI6, IFI27,
LAMC2, MET, SDC4, PLD1, EFNB2, DGKH, LGALS3, JUP, KRT19, CEACAM5, EFNA5, LGALS3BP, GALNT5

Bottleneck MET, DLG1, TOP2A, SDC1, KRT19, PLD1, MELK, THBS1, LGALS3, ITGA2, EFNB2, DGKH, SGPP2, SDC4, JUP, S100A6,
CEACAM5, LCN2, PKM, CEP55, ANLN, PGM2L1, SDR16C5, PRKCI, LAMB3, LAMC2, ECT2, LAMA3, DTL, NEK2

EcCentricity MET, DLG1, PRKCI, SDC1, TOP2A, EFNA5, ADAM10, JUP, STYK1, KRT19, EFNB2, MELK, PKM, CEP55, ANLN, PGM2L1,
SDR16C5, ECT2, THBS1, DTL, NEK2, LGALS3, SLC12A2, RHBDL2, SDC4, FAT1, HS3ST1, PLD1, FOXQ1, ITGA2

Closeness TOP2A, DLG1, MET, MELK, SDC1, THBS1, ITGA2, NEK2, JUP, CEP55, ANLN, ECT2, DTL, PLD1, KRT19, EFNB2, SDC4, EFNA5,
CEACAM5, ADAM10, PKM, LAMB3, LGALS3, PGM2L1, SDR16C5, SLC12A2, PRKCI, STYK1, LGALS3BP, LAMA3

Radiality MET, DLG1, TOP2A, SDC1, MELK, KRT19, JUP, EFNB2, EFNA5, THBS1, ADAM10, ITGA2, PRKCI, STYK1, PLD1, CEACAM5,
SDC4, NEK2, CEP55, ANLN, ECT2, DTL, LGALS3, PKM, PGM2L1, SDR16C5, SLC12A2, HS3ST1, FAT1, LAMB3

Stress MET, DLG1, TOP2A, SDC1, THBS1, PLD1, KRT19, ITGA2, LGALS3, MELK, EFNB2, CEACAM5, S100A6, LCN2, SDC4,
LGALS3BP, JUP, DGKH, SGPP2, ADAM10, EFNA5, LAMB3, LAMA3, NEK2, PKM, CEP55, ANLN, PGM2L1, SDR16C5, PRKCI

Betweenness MET, DLG1, TOP2A, SDC1, PLD1, THBS1, KRT19, ITGA2, LGALS3, EFNB2, MELK, CEACAM5, DGKH, SGPP2, JUP, S100A6,
LCN2, LGALS3BP, SDC4, EFNA5, ADAM10, LAMB3, LAMA3, NEK2, PKM, CEP55, ANLN, PGM2L1, SDR16C5, PRKCI

Common genes of 12 topological algorithms MET, MELK, SDC1, THBS1, TOP2A
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3.4. Survival Analysis

To validate the reliability of the identified hub genes from the four datasets, UALCAN was used
to analyze the hub genes transcript expression and survival in the 182 samples which is derived from
the TCGA project. The statistical samples included four normal and 178 pancreatic adenocarcinoma
samples. As shown in Figure 4, there was a clear trend of increasing gene expression levels of MET,
MELK, SDC1 and TOP2A in primary tumor compared to normal samples. On the contrary, THBS1 was
under-expressed in primary tumor. These findings suggested the results of the identified candidate
hub genes are reliable. The survival analysis results showed that MELK and TOP2A were linked with
poor survival in pancreatic adenocarcinoma (p < 0.01). MET was also related with poor survival in the
cancer (p = 0.013). However, expression levels of SDC1 and THBS1 were not significantly associated
with survival probability in the samples, respectively (p = 0.12, Figure 5).
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4. Discussion

During the past decades, many studies have been performed to disclose the causes and underlying
mechanisms of pancreatic adenocarcinoma formation and progression. However, the 5-year survival
rate for sufferers has only seen slight improvement. Additionally, trustworthy molecular marker
with high prognostic value has not yet been determined in pancreatic adenocarcinoma treatment.
Due to this disappointing outcome, development of a specific biomarker is urgently needed to detect
early pancreatic adenocarcinoma which has a central role in affording patients the best possible
outcome. Of equal importance, a new molecular target of drug needs to be identified and validated in
order to develop underlying drugs that may be successful in pancreatic adenocarcinoma treatment.
Many studies concentrate on an independent genetic event, or the result is generated from independent
studies which are inconsistent with each other by microarray analysis [18–20]. In this study, the
number of up-regulated genes was significantly more than the down-regulated genes (93 vs. 45)
for DEG. Previous research reported that the over-expressed genes were markedly more than the
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under-expressed genes in DEG [21]. Some GEO samples (GSM) of pancreatic adenocarcinoma were
not grouped as the cancer group in the cluster analysis. This result may be explained by the fact
that these patients were diagnosed as pancreatic cancer patients, and there must be a reason for the
lack of clustering such as types of pancreatic adenocarcinoma, different disease subtypes and disease
activity or disease stages [22]. Another possible explanation for this is that pancreatic adenocarcinoma
pathogenesis in different patients may depend on common changes of the expression of particular
critical genes, and rather on personal particular changes of different genes.

There is a growing interest in finding for gene network replace alone genes, contributing to
the etiology of complicated diseases, because changes in biological characteristics need interaction
in expression of gene sets. The enrichment analysis tool is a beneficial step in this direction for
estimating overrepresentation of specific gene category or pathway in a gene list [23]. The results
of our analysis showed that DEG was significantly enriched in biological processes including cell
migration, cell adhesion, cell-cell adhesion, and extracellular matrix disassembly. One study on
gene ontology analysis of the 98 DEG showed that cell adhesion was the main enriched process by
genome-scale analysis in patients with pancreatic adenocarcinoma [24]. Moreover, the enriched KEGG
pathways of DEG included extracellular matrix receptor interaction and focal adhesion. In human
pancreatic adenocarcinoma, both stromal and cancer cells present to be the source of extracellular
matrix-degrading metalloproteinase and tissue inhibitor of metalloproteinase [25]. According to KEGG
pathway analysis, extracellular matrix (ECM)-receptor interaction was the most enriched pathway in
this study. The result was in line with those of a previous study [24].

Hub genes, namely MELK, MET, THBS1, TOP2A and SDC1, were selected with the common parts
of 12 topological algorithms in analyzing the DEG PPI network. Notably, only three down-expressed
genes, namely SOCS3, F8 and THBS1 were displayed in the PPI network. THBS1 acts as an adhesive
glycoprotein that mediates cell-to-cell and cell-to-matrix interaction. In the invasion of human
pancreatic adenocarcinomas, THBS1 was implicated in regulating matrix remodeling and played
pivotal role in cancer cell growth and metastasis [26]. Hence, stromal THBS1 immunoreactivity and
expression was considered as a prognostic marker and a new indicator of invasiveness in patients
with pancreatic adenocarcinomas [27]. Simultaneously, one observation suggested that metronomic
ceramide analogs (C2 and AL6) inhibited angiogenesis in pancreatic cancer through up-regulation of
THBS1 [28]. THBS1 was significantly decreased in pancreatic cancer patients compared with healthy
controls, and low levels of THBS1 were markedly correlated with poorer survival, preclinically and
at clinical diagnosis [29]. Surprisingly, while the expression level of THBS1 was lower in pancreatic
cancer samples than normal, no significant difference was found in the results of this analysis. Survival
analysis on individual hub genes disclosed that the survival probability was not obvious between the
high expression of THBS1 and the medium/low expression group. It seems possible that these results
are due to multifaceted and sometimes opposing effects of THBS1 on tumor progression depending on
the molecular and cellular composition of the microenvironment [30]. Therapeutic strategy targeting
THBS1 has been widely explored and plentiful peptides and modified structural agents derived from
THBS1 have been developed. For example, compounds of ABT898, and CVX-045 were severally
conducted in clinical trials but they were no longer in clinical development due to the adverse events
of low objective response rate and slow clearance [31,32]. Trabectedin is a marine natural product.
It has been approved for the treatment of advanced or metastatic soft tissue sarcoma and relapsed
ovarian cancer. One report indicated that trabectedin displayed anti-angiogenic activity related to the
up-regulation of THBS1 [33]. Trabectedin is currently undergoing phase II clinical trials for several
other tumors.

SDC1 functions as a transmembrane receptor and engages in cellular proliferation, cell
transplantation and cell-matrix interaction. It has previously been observed that SDC1 expression may
play an important role in the pathobiology of pancreatic cancer cell, which is different from that in other
gastrointestinal cancers [34]. Notably, while the expression level of SDC1 was higher in pancreatic cancer
samples than normal, survival analysis on separate hub genes revealed that the survival probability was
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not obvious between the high expression of SDC1 and the medium/low expression group. These results
were likely to be related to the cellular localization of SDC1 as cell membrane anchored and/or shed,
soluble SDC1 with stromal or nuclear accumulation in individual tumor types [35]. In a human
melanoma and ovarian cancer experimental model, the human antibody OC-46F2, specific for the
extracellular domain of SDC1, blocked vessel maturation and tumor development [36]. The unusual
tumorigenic phenotypes resulting from varied SDC1 expression make it appealing for therapeutic
targets. For example, indatuximab ravtansine is a monoclonal antibody-related drug that particularly
aims SDC1-expressing cells, pre-clinical research corroborated the activity of indatuximab ravtansine
in combination with lenalidamide and examethasone for plasma cell myeloma, and a clinical research
is continuous [37]. This achievement seems to promote the hopeful results from pre-clinical and clinical
researches that studied the chance of therapeutically targeting SDC1.

TOP2A is one of DNA topoisomerases. Accumulating evidence indicated that it can lead
to cancer progression in diverse cancer types, and it has been the certified therapeutic target of
anti-cancer and anti-bacterial pharmaceuticals. Recent advances in the field have indicated the
feasibility of devising specific-isoform human topoisomerase II poisons, which may be grew as safer
anti-cancer pharmaceuticals [38]. In research of forecasting gemcitabine sensitivity with pancreatic
adenocarcinomas patient objects, a different expression of TOP2A was discovered in gemcitabine
sensitive tumors which authenticated as one of potential genes linked with resistance to drug [39].
Survival analysis results of this study showed that TOP2A was associated with poor survival in
pancreatic adenocarcinoma and the survival probability was obvious between the high expression of
TOP2A and the medium/low expression group. These results were consistent with another study that
discovered that the up-regulation of TOP2A was markedly linked with cancer metastasis and smaller
survival in adenocarcinomas patient objects [40]. In pancreatic neuroendocrine tumors, TOP2A was
also identified as one of hub genes by gene microarray analysis [41]. Thereby, TOP2A remains as the
vital therapeutic target of anti-cancer drugs.

MELK was revealed to be commonly up-regulated in differing types of solid tumor, with crucial
roles in formation and maintenance of tumor stem cells. In small cell lung cancer and hepatocellular
carcinoma, MELK expression is consistently elevated in cancer relative to normal tissues [42,43].
This study analysis also exhibited similar results, and MELK was linked with poor survival in
pancreatic adenocarcinoma. Interesting, survival probability was obviously different between the
high expression of MELK and the medium/low expression group. Previous results implicated MELK
can control normal and transformed pancreatic duct cell migration [44]. Although the increase of
MELK expression has been elucidated in many tumors, no oncogenic variation in the MELK gene
has been picked out to date. Thus, a small molecule inhibitor of MELK that particularly suppresses
MELK activity may suffer an undesired off-target effect in both normal and tumor cells [45]. Orally
administrative MELK-targeting compound OTSSP167 inhibited the growth of different types of human
cancer including breast, lung, prostate, and pancreas cancer [46]. Hence, inactivation of MELK may be
therapeutically beneficial.

MET protein is a receptor tyrosine kinase and encoded by MET proto-oncogene, also called
tyrosine-protein kinase Met (c-Met). The c-Met kinase has appeared as an appealing target for developing
anti-cancer drugs because of its close connection with the generation of diversified human tumors,
dismal clinical results and even drug resistance. Active human cancer-linked pancreatic stellate cells
caused proliferation and microtube formation of microvascular endothelial cells by c-MET signal
pathway, which exert a primary effect in human pancreatic adenocarcinoma progression [47]. In stage
I-II pancreatic cancer, high MET expression was correlated with dismal prognosis and assisted in
identifying patients with a high-risk of cancer recurrence and depressing survival prognoses [48].
One report provided evidence that targeting MET in combination with gemcitabine may be effective in
human pancreatic adenocarcinoma and ensured further clinical evaluation [49]. Blocking the activity
of c-Met in tumor cells, in combination with other ways for diminishing desmoplasia in the cancer
microenvironment, might notably elevate the success of chemotherapy [50]. The mounting evidence
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demonstrated that MET is regarded as a novel therapeutic approach in pancreatic cancer and as a
target for personalized therapy [51]. Crizotinib is a tyrosine kinase inhibitor that it can block peritoneal
diffusion in pancreatic adenocarcinoma through inhibiting cancer cell proliferation and invasion,
at least in part by the suppression of MET signal [52]. Hence, it can be speculated that MET is a
candidate therapeutic target in pancreatic adenocarcinoma and highlighted a collaborative combination
of drugs warranting clinical evaluation for pancreatic adenocarcinoma treatment.

5. Conclusions

In conclusion, our work has identified 138 DEG in the four profile datasets. DEG significant
enriched in biological processes including cell migration, cell adhesion, cell-cell adhesion, extracellular
matrix disassembly and several pathways, mainly associated with ECM-receptor interaction,
proteoglycans in cancer and focal adhesion pathway in pancreatic cancer. These findings could
significantly improve our understanding of the cause and underlying molecular events in pancreatic
cancer, these promising molecular markers identified that gene expression profiling studies including
MET, MELK, SDC1, THBS1 and TOP2A and pathways could be new effective therapeutic targets for
pancreatic cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/8/612/s1,
Figure S1: hierarchical clustering with limiting the analysis only to the 138 common DEGs. The row denotes the
genes, the column denotes the samples, A: GSE15471, B: GSE19650, C: GSE32676, D: GSE71989, Table S1: Analysis
gene ontology and KEGG pathway by KOBAS 3.0; Table S2: Definition of 12 topological algorithms.
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